ISSN 2007-9737

Learning to Answer Questions by Understanding Using Entity-Based
Memory Network

Xun Wang!, Katsuhito Sudoh?, Masaaki Nagata', Tomohide Shibata®, Daisuke Kawahara®, Sadao Kurohashi?

L NTT Coorperation,

Japan

2 Nara Institute of Science and Technology,

Japan

3 Kyoto University, Kyoto and Nara,

Japan

{wang.xun,nagata.masaaki}@lab.ntt.co.jp, sudoh@is.naist.jp,{shibata,dk,kuro}@i.kyoto-u.ac.jp

Abstract. This paper introduces a novel neural
network model for question answering, the entity-based
memory network. It enhances neural networks’ ability
of representing and calculating information over a
long period by keeping records of entities contained
in text. The core component is a memory pool
which comprises entities’ states. These entities’ states
are continuously updated according to the input text.
Questions with regard to the input text are used
to search the memory pool for related entities and
answers are further predicted based on the states of
retrieved entities. Entities in this model are regard
as the basic units that carry information and construct
text. Information carried by text are encoded in the
states of entities. Hence text can be best understood
by analysing its containing entities. Compared with
previous memory network models, the proposed model
is capable of handling fine-grained information and more
sophisticated relations based on entities. We formulated
several different tasks as question answering problems
and tested the proposed model. Experiments reported
satisfying results.

Keywords. Text comprehension, entity memory
network, question answering.

1 Introduction

It has long been a major goal of the natural
language processing (NLP) community to enable
computers to understand text as humans do. A lot

of NLP tasks have been tensely studied towards
this goal. Among them, questions answering
carries great importance and has been a huge
challenge. A question answering (QA) task is to
predict an answer for a given question with regard
to related information. It can be formulated as a
map f : {related_text,question} — {answer}
[9]. To predict the correct answer, computers are
required to have a understanding of the text.

Almost all problems in NLP can be formulated
as QA tasks. Some tasks, like information
retrieval and dialog system, are by nature question
answering tasks. Other problems, like machine
translation, pos tagging, co-reference resolution
and so on, can also be formulated as question
answering tasks. Take the co-reference resolution
for example, given a piece of text, we raise
questions like “What does XX refer to?” and expect
the system to give correct answers. Similarly, we
can model pos tagging as a question answering
task by asking “What are the parts of speech?” for
each sentence.

These NLP tasks can be regarded as a special
form of question answering, the closed-domain
question answering, which only accepts a certain
type of questions. On the other hand, open-domain
question answering accepts various kinds of
questions. Obviously the latter is much more closer

Computacién y Sistemas, Vol. 21, No. 4, 2017, pp. 799-808
doi: 10.13053/CyS-21-4-2845

ISSN 2007-9737

800 Xun Wang, Katsuhito Sudoh, Masaaki Nagata, Tomohide Shibata, Daisuke Kawahara, Sadao Kurohashi

to complete text comprehension and much more
difficult to resolve than the former.

Existing work on NLP tasks that can be
formulated as closed-domain question answering
are highly differentiated, each designed for an (or
a class of) unique task(s) with unique features
and unique architectures. It is almost impossible
to develop a comprehensive system which can
conduct several different tasks without damaging
the performance, let alone the open-domain
question answering.

Though challenging, it is important and mea-
ningful to pay attention to comprehensive systems.
Resolving several different tasks under a unified
scheme is to some extent, closer to how humans
process languages. It differs from previous work in
that comprehension of text is needed to serve as
the basis for answering various questions.

As we know, the work employing machine
learning models for natural language processing
normally involves two steps: feature representation
and modelling. Feature representation converts
text into features which can be easily computed by
the model. Models are then designed accordingly
to process the input features and generate the
desired output. Developing a comprehensive
system with a unified scheme faces challenges
in both aspects: we have to develop a kind
of feature representations which is capable of
representing all the information contained in text
as different tasks may need different information,
and develop a model which is capable of paying
attention to different aspects of the information
carried by features with regard to the problems
raised and generating the desired results. The two
challenges are to be met and overcome towards a
comprehensive system.

Now with the deep neural networks, it becomes
not only possible, but also probable to develop
such a multi-purpose system in a unified scheme.
All deep learning models rely on distributed
representations representing various features as
vectors. These vectors are believed to have
encoded all the semantic and syntactic information
in themselves. By replacing the various features
used in traditional models with vector represen-
tations, we can solve the problem of feature
representations. But existing deep neural network

Computacion y Sistemas, Vol. 21, No. 4, 2017, pp. 799-808
doi: 10.13053/CyS-21-4-2845

Table 1. An example from bAbl, a toy dataset for
question answering

Mary moved to the bathroom.
John went to the hallway.
Where is Mary? Bathroom. 1
Daniel went back to the hallway.
Sandra moved to the garden.
Where is Daniel? Hallway. 4

O, WN =

models are often developed for a certain problem
or a certain class of problems. In other words,
they are in no sense different from traditional
methods in being highly differentiated. To fully
explore the potential of distributed representations
and the neural networks, we introduce a novel
model named the entity-based memory network.
Entities refer to anything that exist in reality or
are purely hypothetical. We assume that text can
be projected to a world of entities. The key of
conducting comprehension and reasoning over text
is to identify its containing entities and analyse
the states of these entities and the relations
between them. The entity-based memory network
we proposed is capable of keeping a memory
of entities conducting selection when answering
questions.

The proposed model is tested on several
datasets, including the bAbl dataset [22], large
movie review dataset [11] and the machine
comprehension test dataset [14]. Results show
we have achieved satisfying results using the
entity-based memory network. The rest of the
paper is organized as follows: Section 2 describes
our approaches and elaborates the details. Section
3 reviews previous work that uses memories.
Section 4 presents the experiments and the
analysis. Section 5 concludes the paper.

2 Approaches

2.1 Overview

Firstly we use an example to illustrate the model.
Table 1 shows a piece of text.

This piece of text contains 4 sentences and 2
questions. There are 7 entities in total, all of them

ISSN 2007-9737

Learning to Answer Questions by Understanding Using Entity-Based Memory Network 801

underlined. This text is elaborated around the 7
entities. It describes how their states change (i.e.,
the change of a character’s location) when the
story goes on. Note that here all the entities are
concrete concepts that exist in reality. It is also
possible to talk about abstract concepts.

The core of the proposed model are entities.
Take the text shown in Table 1 for example. We
take Sentence 1 (S;) as input and extract the
entities it contains {Mary, bathroom}. Vectors
representing the states of these entities are
initialized using some pre-learnt word embeddings
{Mary, bathroom} and stored in a memory pool.
Meanwhile, we turn S; into a vector (§1>) using
an autoencoder model or other models depending
on your preference. Then we use the sentence
vector S; to update the entities’ states {Mary,
bathroom}. The goal is to reconstruct §1> solely

from {Mary, bathroom}. In the same way, we
process the following text (S3) and its containing
entities (John, hallway) until encounter a question
(Ss). Ss is converted into a vector (Ss3) following the
same method that processes previous input text.
Then taking §3> as input, we retrieve related entities
from the memory which now stores all the entities
(Mary, bathroom, John, hallway) that appear before
Ss. The related entities’ states are then used to
produce a feature vector. In this case, (Mary and
bathroom) are related to the question and their
states are used for constructing the feature vector.
Note the states of these entities now are different
from their initial values due to S;. Based on the
feature vector, we then use another neural network
model to predict the answer to S3.

The model monitors the entities involved in text
and keeps updating their states according to the
input. Whenever we have a question with regard to
the text, we check the states of entities and predict
an answer accordingly. The proposed model
comprises of 4 modules, as is shown in Fig. 1.
Each module is designed for a unique purpose and
together they construct the entity-based memory
network model.

1. I: Input module. Take as input a sentence and
turn it into a vector. Meanwhile, extract all

the entities it contains. The question is also
processed using this module.

2. G: Generalization module. Update the states
of related entities according to the input.
Create a new memory slot for entities that are
not contained in the memory pool.

3. O: Output feature module. It is triggered
whenever a question arrives. Retrieve
related entities according to the input question
and then compose an output feature vector
accordingly.

4. R: Response module. Generate the response
according to the output feature vector.

2.2 Entity-based Memory Network Model

Here we present a formal description of the
proposed model. Assume we have text Sy, Ss, ...S,
whose entities are annotated in advance as
€1,€2,...,Em-

Input Module We firstly turn each sentence S;
into its vector representation:

S; = f1(S;). (1)

Generalization Module For a sentence S;, we
collect all the entities it contains {ef, ..., ¢}, ..., % }.
These entities’ states {e¢}} are simultaneously
updated according to S, as follows:

Sl = folel, ..., ek, ..., e;)7

{ei} = argmin(|S! — 5|). @
{ei}

f2 is to reconstruct S, only using the states of
Si’s containing entities {ei}. {ei} are updated
to minimize the difference between S/ and ;.
Recall that S; is generated using f; with the whole
sentence S; as input. We compress the information
carried by S; into a vector S. and then unfold it into
{ert-

After processing the sentences, we construct
a memory pool which consists of entities whose
states are regarded as capable of representing the
information carried by the input text.

Computacién y Sistemas, Vol. 21, No. 4, 2017, pp. 799-808
doi: 10.13053/CyS-21-4-2845

ISSN 2007-9737

802 Xun Wang, Katsuhito Sudoh, Masaaki Nagata, Tomohide Shibata, Daisuke Kawahara, Sadao Kurohashi

o

1. Extract entities. |

\
4. Generate |
‘~ output feature. |

5. Predict the \
- answer. \

Lfffff,fJ ¢ 1 e e g N . ~
Answer (Word or sentence)
o 1
- 2. Update i
P Entity Response Module
- states of Vectors
- entities. (Memories)
Question
Input sentences - |
l Generalization Module
T —————
Sentence Vector 3. Retrieve !
i related memories. |
Input Module Output Feature Module

Fig. 1. Architecture of the entity-based memory network. The model is divided into four modules which are shown in

the figure using squares

Output Feature Module Question ¢ is turned
into a vector ¢ = f1(¢) and then {'is used to retrieve
related entities from the memory pool.

Qo =17,

Qi1 =9(Qj-2,¢72),

p(€5,Q; 1) = h(€}, Qi 1),

0; = u(0;-1,p(G, Q1) * &5).

p(e},Qf_l) is the probability (or score) of e;
being selected to compose the feature vector for
answering ¢. In @, we consider the entity selected
in the previous iteration. @ is kept updated using &
and p. O, is the output feature vector.

After several iterations, we use the final O,,
as the output feature vector O. Note that if the
O, does not change much between iterations, we
will omit the remaining entities. This early-stop
strategy helps reduce the time cost.

Computacion y Sistemas, Vol. 21, No. 4, 2017, pp. 799-808
doi: 10.13053/CyS-21-4-2845

Response Module Then we decide the answer
which is usually one word using a(q) = v(O). a(q)
produces a vector whose each item corresponds
to one word in the vocabulary. a(g); indicates
the probability of word; being used as the correct
answer. We choose the one with the highest
probability. As stated, models like recurrent neural
network can be used to output a sentence.

2.3 Implementation

This is a supervised model and requires annotated
data for the training. The annotated data contains
the input text, questions and answers. Also we
need all the entities and entities that are related to
the answer labeled.

We define the function form for training as
follows: As for fi, many models, like the recurrent
neural network, recursive neural network and so
on [12, 17, 8], can be used to convert a sentence
into a vector. Here we use an Long Short-Term
Memory (LSTM) autoencoder [10] which takes a

ISSN 2007-9737

Learning to Answer Questions by Understanding Using Entity-Based Memory Network 803

S’y

) ‘ Reconstruct Sentence Using Entities

Pre-trained [
Word Vectors

[Marye;

| Bathroom e; |

Fig. 2. ;I'he Generalization Module: Using S; as an example, the autoencoder is used to convert the sentence into a
vector S; and the entities contained in S; are used to reconstruct the sentence vector

word sequence as input and outputs the same
sequence.

[f> takes a list of entity states as input and tries to
reconstruct S;. We use the Gated Recurrent Unit
(GRU) [2]:

Sk = tanh(GRU(SF1, e1)),
L - (4)
Si=157,

a GRU can be represented as the follows:

zi =6(W,*x; + U, * hy_1)’,

hz =tanh(W sz + U * (re o hy_1))?, (5)
r] =8(Wy s xy + Uy x hy_q),

B = (U= =iy + 2{n],

o represents an element-wise multiplication. z and
r are two gates controlling the impact of historical
h on the current h. The GRU takes x as input and
updates the state of the neuron h. Compared with
LSTM, it simplifies the computation while still keeps
a memory of previous states. Therefore it takes
less time to train.

Our goal is to minimize the loss |57 — S;|. Using
the stochastic gradient gescent, we are able to train
f> and also update {ei}. The input module and

the generalization module do not interact with the
remaining. Thus they can be trained in advance.

The output feature module checks the memory
pool repeatedly to select entities to form a feature
vector:

Qj_l = tanh(GRU(Qj_g, ejig)),
p(€;, Q]-_Ll) = sigmoid(W = GRU (€3, jSl) +b),

O; = tanh(GRU(Oj-1,p(€;,Qj—1) * €5)).
(6)
To generate the final answer, we use a simple
neural network which takes the feature vector O
as input and predict a word as output. p, =
v(0) = softmaz(tanh(W’' x O 4+ b)). The word
with the highest probability is selected. Suppose
a sentence is to be generated, we use the GRU to
update O and then generate the sentence {w.} as
follows:

pﬁ}l = softmaz(tanh(W' x O;_1 + b)),

Wi—1 = arg maxpﬁ,fl, (7)

—

Oi = tanh(GRU(Oi_l, wf_l))

Similar to [23], we use the stochastic gradient
descent algorithm to minimize the loss function
shown in Equation 2.3 over parameters. For an

Computacién y Sistemas, Vol. 21, No. 4, 2017, pp. 799-808
doi: 10.13053/CyS-21-4-2845

ISSN 2007-9737

804 Xun Wang, Katsuhito Sudoh, Masaaki Nagata, Tomohide Shibata, Daisuke Kawahara, Sadao Kurohashi

Entity states Scores— 2" iteration

Scores -- 1% iteration

E——
E—
EE— .
° ' |
L e N e
Updatei Updatei
E 1
| |
1 1
\1/ |
—_

Scores— m™ iteration

Output feature vector

*

Update

Question

Fig. 3. The Output Feature Module: In each iteration, entities are assigned different scores which indicate their

importance in constructing the output feature vector

input S; and a given question ¢ annotated with the
correct answer word;, and related entities {e., }, the
loss function is as follows:

Z max(0,y — (p(ec;,q) — plei, q)))+
i#£c

Z max((), Y= (pwordk - pwor(il)) + |@2|

Here is the margin and |©2| is the squared sum
of all parameters which is used for regularization.
Note that © does not include parameters of f;
and f,. Their parameters and states of entities
are learnt as described in Section 2.2. Word
vectors used to initialize entity states and words
in autoencoder come from GloVe [13]. The
dimension is set to be 50.

2.4 Data Annotation

The model requires entities to be annotated in
advance. In this work, we treat each noun and
pronoun as an entity. Different words are regarded
as different entities. This strategy saves us the
effort of entity resolution which is a challenge
for many languages. It also makes possible the

Computacion y Sistemas, Vol. 21, No. 4, 2017, pp. 799-808
doi: 10.13053/CyS-21-4-2845

application of the proposed model towards the task
of entity resolution.

For datasets with related entities annotated, we
can use the loss function described above. But
annotating the related entities is time and labour
costing. Most datasets available are not annotated.
The weakly supervised learning can be applied
to such data by trimming the loss function to
Zl;&k maX(O,*y - (pwordk - pwordl)) + |®2| For
unannotated data, a fully supervised training is
also possible if we regard entities contained in
questions as related entities or if we can use other
methods to identify entities that are believed to be
related.

3 Memories in Deep Neural Networks

The model presented above is novel in considering
historical entities. Taking more information to
consideration for a task generally leads to better
results. For example, RNN takes a sequence,
instead of just separate words, as input, and
hence is able to produce better representations for
sentences. The modified version of RNN, LSTM,
capable of keeping a memory of historical input,
is proven more effective in handling long-distance
dependency than RNN.

ISSN 2007-9737

Learning to Answer Questions by Understanding Using Entity-Based Memory Network 805

(a) Long Short-Term Memory

(b) Gated Recurrent Unit

Fig. 4. lllustration of (a) LSTM and (b) GRU

3.1 Memory at Neuron Level (LSTM & GRU)

The long short-term memory network (LSTM) is
regarded as an improvement of the traditional
recurrent neural networks (RNN). LSTM provides
us with an efficient method to process information
over extended time interval.

In the back-propagation of a recurrent neural
network, the gradient is multiplied a large number
of times (as many as the number of time steps)
by the weight matrix which connects neighbouring
layers in the model. This means that, the
magnitude of weights in the transition matrix can
have a strong impact on the learning process. If the
weights in this matrix are small, it can lead to the
gradient vanishing problem, making more difficult
the task of learning long-term dependencies in the
data. On the other hand, if the weights in this
matrix are large, it can lead to a situation where the
gradient signal is so large that it can cause learning
to diverge. This is often referred to as exploding
gradients.

To address this problem, researchers introduce
the long short-term memory cells in neural network
models [4]. A long short-term memory cell is
composed of four main elements: an input gate,
a neuron with a self-recurrent connection, a forget
gate and an output gate. The input gate controls
the impact of the input value on the state of
the memory cell and the output gate controls the
impact of the state of the memory cell on the
output. The self-recurrent connection controls
the evolution of the state of the memory cell
and the forget gate decides whether to keep or
reset the histories of the memory cell's states.
These elements serve different purposes and work
together to make LSTM cells much more powerful
than traditional neural cells. LSTM is widely used

in various tasks in NLP and other machine learning
fields [16, 19, 20, 3].

LSTM, as is shown in Fig. 4 [2], uses additional
memory units to control the gates. It increases
the complexity of the neural networks. The Gated
Recurrent Unit (GRU) simplifies the structure and
reports performance on par with LSTM but costs
less time to train. An empirical analysis of GRU
and LSTM model shows that they have similar
performance on sequence modeling [2]. In our
model, we use the GRUs as an effective method
to deal with information over time series. We have
a formal and elaborated description about how to
use them in our work in Section 2.

3.2 Memory at Layer Level (Memory Network)

In LSTM, the neuron looks at the input in a
relatively small scale. Normally the neuron takes
one word vector as input each time thus it cannot
look beyond the level of words. Layer-level
memory networks are designed to keep memories
of sentence vectors.

The Memory Network (MNN) [23] puts historical
input in @ memory pool and then select related
memories to answer questions. The core
component is the memory pool that stores all
the input sentences so that they can be retrieved
later to answer questions. This model contains
several neural networks which are jointly optimized
according to the task. Experiments on a toy
dataset show that this model is able to answer
simple questions according to the input text.

Later [7] propose the Dynamic Memory Network
(DMNN) which introduces the attention mechanism
into the memory network model. When retrieving
memories, the location of the next related
sentence is predicted according to the related
sentences identified in the previous iterations.
Using the attention mechanism, they obtain
further improvements. Some other work [18, 1]
follow the work of MNN by introducing additional
memory network modules. These work focus on
storing sentence vectors for later retrieval with no
exceptions. Most of them have been tested on
the toy dataset bAbl [22] and are reported to have
achieved satisfying results. When further tested
on some practical tasks, these models also show

Computacién y Sistemas, Vol. 21, No. 4, 2017, pp. 799-808
doi: 10.13053/CyS-21-4-2845

ISSN 2007-9737

806 Xun Wang, Katsuhito Sudoh, Masaaki Nagata, Tomohide Shibata, Daisuke Kawahara, Sadao Kurohashi

the ability to produce results as good as existing
state-of-the-art systems or even better results.

Compared with LSTM, memory networks which
store sentence vectors as memories have the
superiority of processing information from a large
scale. Experiment results they reported on a
series of tasks are concrete proofs. But there
is also a problem with the memory networks.
Taking sentence vectors as input means that it
is difficult to further analyze and take advantages
of relations between smaller text units, such as
entities. For example, when an entity e, of
sentence A interacts with another entity e, of
sentence B, we have to take the whole sentences A
and B into consideration rather than just focus on
e, and e,. This inevitably brings about noise and
damages the comprehension of text. The failure of
obtaining fine-grained information prevents further
improvements. That is the reason why we propose
the entity-based memory network.

4 Experiments

4.1 bAbl

To verify the effectiveness of the proposed model,
we conduct experiments on several datasets.
Firstly, we try the proposed model on the bAbl
dataset [22].

bAbl is a toy data set developed for
comprehension-based question answering.
The example shown in Table 1 is extracted from
the bAbl dataset. It contains 20 topics, each of
which contains short stories, simple questions with
regard to the stories and answers. The data is
generated with a simulation which behaves like a
classic text adventure game. According to some
pre-set rules, text is generated in a controlled
context.

Previous work reports extremely satisfying
results using memory networks for most topics
(around 90% for most of them). However, we
notice an interesting thing that all of them with no
exception fail on the problem of path-finding which
is to predict a simple path like "north, west” given
the locations of several subjects. Another one is
the positional reasoning. The Memory Network
[22] reports accuracies of 36% and 65% for the

Computacion y Sistemas, Vol. 21, No. 4, 2017, pp. 799-808
doi: 10.13053/CyS-21-4-2845

Table 2. Results on Large Movie Dataset

Sys. Acc.%
Maas’11 [11] 89
Johnson’14 [5] 93.4
Johnson’15 [6] 95

two topics. The Dynamic Memory Network [7]
reports accuracies of 35% and 60%. The proposed
model (Entity-MNN) reports accuracies of 53% and
67% respectively. It is still far from satisfying but
the improvements on the two tasks indicates the
superiority of the entity-based memory network.

Despite this, results on the toy dataset is not as
convincing as that on practical tasks. Given how
the bAbl data is generated, it should be very easy
to achieve a 100% accuracy if we do simple reverse
engineering to identify the entities and rules. The
good results of memory networks, including our
model, can not be solely attributed to their ability of
comprehension. It may be partly due to their ability
of identifying the entities and rules from text.

4.2 Large Movie Review Dataset

We further tested our model on the Large Movie
Review Dataset [11], which is a collection of 50,000
reviews from IMDB, about 30 reviews per movie.
Each review is assigned a score from 1 (very
negative) to 10 (very positive). The ratio of positive
samples to negative samples is 50:50. Following
the previous work [11], we only consider polarized
samples with scores no greater than 4 or no
smaller than 7.

For each review, we present it as a short story
and then add a question “what is the opinion?”.
The answer is either “negative” or “positive”. In
this way we turn this task into a question answering
problem. Note that although here the answer to a
question is either “negative” or “positive”, we do not
put any constraints on the output.

It is treated in the same way as open domain
question answering and the system is expected to
learn to predict the output by itself.

We do not use the full dataset as the training
takes a long time. We randomly select 10K
samples (5K negative samples and 5K positive

ISSN 2007-9737

Learning to Answer Questions by Understanding Using Entity-Based Memory Network 807

Table 3. Results on Machine Comprehension Test

Sys. Acc.(%) MC160 Acc.(%) MC500

Type Single | Multiple | Average Multiple | Average
Richardson’13 [14] | 76.8 62.5

Wang'15 [21] 84.2 67.9

Sachan’16 [15]

samples) for training and another 10K for test. We
obtain an accuracy of 97.2% on the subset which is
higher than the 89% reported by [11], 93.4% by [5]
and 95% by [6] which use the same dataset though
different sizes.

4.3 Machine Comprehension Test

The machine comprehension test (MCTest) da-
taset [14] has 500 stories and 2000 questions
(MC500). All of them are multiple choice reading
comprehension questions. The stories are for
children so limited world knowledge is required. An
additional smaller dataset with 160 stories and 640
questions (MC160) is also included in the MCtest
data and used in our work.

Since the proposed model does not consider
the form of multiple choice questions, we need to
convert MCTest data into suitable formats firstly.
When answering a multiple choice question, one is
provided with several alternatives of which at least
one is correct. These alternatives can be regarded
as information known.

For a question, we replace the “Wh-”" words using
each alternative and generate new declarative
sentences. These sentences are generally
understandable though may not be grammatically
correct. Then we use the proposed system
to decide whether the generated sentences
are correct or wrong. Information carried by
alternatives are encoded in the newly generated
sentences. However, we do not distinguish
between questions with only one answer and
those with more than one answers as these newly
generated sentences are treated separately. In
other words, all questions are treated as having
multiple answers.

The MCTest contains only hundreds of stories
and is usually used for test only as statistical

models normally require a large amount of training
data. However, we still obtain satisfying results
using this dataset. Table 3 demonstrates the
effectiveness of the entity-based model on the
open-domain question answering dataset. We
outperform the previous state-of-the-art [21, 15] on
both MC160 and MC500. Note our model does not
employ rich semantic features as others do, and
hence is easy to be migrated to languages aside
from English.

4.4 Analysis

The proposed model is designed based on the
assumption that entities are the core of text. By
updating the states of entities, information carried
by text is encoded into entities. Thus all questions
which are related to the text can be answered
based on entities solely. Entities enable us to break
a sentence into smaller text units and analyse text
from a smaller scale. Therefore the entity-based
model is more sophisticated and powerful than
those based on sentences as has been proven in
our experiments.

A shortcoming with such a model is that, it
cannot handle text that contains very few entities.
Also hidden entities are not considered. As
we know, pro-drop languages, like Japanese and
Chinese, tend to omit certain classes of pronouns
when they are inferable. This is referred to as
zero or null anaphora. The proposed model will
encounter problems when dealing with such text.

5 Conclusion

This work presents the entity-based memory
network model for text comprehension. All the
information conveyed by text is encoded into the

Computacién y Sistemas, Vol. 21, No. 4, 2017, pp. 799-808
doi: 10.13053/CyS-21-4-2845

ISSN 2007-9737

808 Xun Wang, Katsuhito Sudoh, Masaaki Nagata, Tomohide Shibata, Daisuke Kawahara, Sadao Kurohashi

states of its containing entities and questions
regarded to the text are answered using these
entities. Experiments on several tasks have proven
the effectiveness of the proposed model.

The proposed model is based on the assumption

that entities can express all the information of
text. In future research, we will further explore its
ability by considering more components in text. not
merely entities.

References

1.

10.

11.

. Le, Q. V. & Mikolov, T. (2014).

Bordes, A., Usunier, N., Chopra, S., & Weston, J.
(2015). Large-scale simple question answering with
memory networks. arXiv preprint arXiv:1506.02075.

. Chung, J., Gulcehre, C., Cho, K., & Bengio,

Y. (2014). Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555.

. Dyer, C., Ballesteros, M., Ling, W., Matthews,

A., & Smith, N. A. (2015). Transition-based
dependency parsing with stack long short-term
memory. arXiv preprint arXiv:1505.08075.

. Hochreiter, S. & Schmidhuber, J. (1997). Long

short-term memory. Neural computation, Vol. 9,
No. 8, pp. 1735-1780.

. Johnson, R. & Zhang, T. (2014). Effective use of

word order for text categorization with convolutional
neural networks. arXiv preprint arXiv:1412.1058.

. Johnson, R. & Zhang, T. (2015). Semi-supervised

convolutional neural networks for text categorization
via region embedding. NIPS, pp. 919-927.

. Kumar, A., Irsoy, O., Su, J., Bradbury, J., English,

R., Pierce, B., Ondruska, P., Gulrajani, I., &
Socher, R. (2015). Ask me anything: Dynamic
memory networks for natural language processing.
arXiv preprint arXiv:1506.07285.

Distributed
representations of sentences and documents. ICML,
volume 14, pp. 1188—-1196.

. Lehnert, W. G. (1978). The process of question

answering: A computer simulation of cognition.
Lawrence Erlbaum Associates.

Li, J., Luong, M.-T., & Jurafsky, D. (2015). A
hierarchical neural autoencoder for paragraphs and
documents. arXiv preprint arXiv:1506.01057.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D.,
Ng, A. Y., & Potts, C. (2011). Learning word vectors
for sentiment analysis. ACL-HLT, pp. 142—150.

Computacion y Sistemas, Vol. 21, No. 4, 2017, pp. 799-808
doi: 10.13053/CyS-21-4-2845

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J.,
& Khudanpur, S. (2010). Recurrent neural network
based language model. Interspeech, volume 2,

pp. 3.

Pennington, J., Socher, R., & Manning, C. D.
(2014). Glove: Global vectors for word representa-
tion. EMNLP, volume 14, pp. 1532—43.

Richardson, M., Burges, C. J., & Renshaw,
E. (2013). Mctest: A challenge dataset for
the open-domain machine comprehension of text.
EMNLP, volume 3, pp. 4.

Sachan, M. & Xing, E. P. (2016). Machine compre-
hension using rich semantic representations. ACL.

Schmidhuber, J., Gers, F. A., & Eck, D. (2002).
Learning nonregular languages: a comparison
of simple recurrent networks and Istm. Neural
Computation, Vol. 14, No. 9, pp. 2039-2041.

Socher, R., Lin, C. C., Manning, C., & Ng,
A. Y. (2011). Parsing natural scenes and natural
language with recursive neural networks. ICML,
pp. 129-136.

Sukhbaatar, S., Weston, J., Fergus, R., et al.
(2015). End-to-end memory networks. NIPS,
pp. 2440-2448.

Sundermeyer, M., Schliiter, R., & Ney, H. (2012).
Lstm neural networks for language modeling.
Interspeech.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Se-
quence to sequence learning with neural networks.
NIPS, pp. 3104-3112.

Wang, H. & McAllester, M. B. K. G. D. (2015).
Machine comprehension with syntax, frames, and
semantics. ACL, Volume 2: Short Papers, pp. 700.

Weston, J., Bordes, A., Chopra, S., Rush, A. M.,
van Merriénboer, B., Joulin, A., & Mikolov, T.
(2015). Towards ai-complete question answering:
A set of prerequisite toy tasks. arXiv preprint
arXiv:1502.05698.

Weston, J., Chopra, S., & Bordes, A. (2014).
Memory networks. arXiv preprint arXiv:1410.3916.

Article received on 15/12/2016; accepted on 25/02/2017.
Corresponding author is Xun Wang.

