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Abstract. Speech segregation is one of the most difficult 

tasks in speech processing. This paper uses 
computational auditory scene analysis, support vector 
machine classifier, and post-processing on binary mask 
to separate speech from background noise. Mel-
frequency cepstral coefficients and pitch are the two 
features used for support vector machine classification. 
Connected Component Labeling, Hole Filling, and 
Morphology are applied on the resulting binary mask as 
post-processing. Experimental results show that our 
method separates speech from background 
noise effectively. 

Keywords. CASA, Connected Component 
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1 Introduction 

Human auditory system can clearly distinguish the 
noise and speech even in noisy environment, such 
as baseball fields, construction sites, or factories. 
But the recognition rate of a speech or speaker 
recognition system can decline a lot by the 
influence of background noise. Over the last few 
decades, many advances have been made in the 
area of speech segregation/separation, such as 
Computational Auditory Scene Analysis (CASA) 
[1], independent component analysis (ICA) [2], 
blind source separation (BSS) [3,4], etc. CASA 
comes from the Auditory Scene Analysis (ASA) 
which Bregman proposed. ASA have a great 
influence for the later studies [5]. Bregman divided 
the system into segmentation and grouping stages. 
The segmentation is to divide input sound into 
small Time-Frequency units (T-F units) called 
segment, and grouping is to combine the segments 
which may come from the same source into a 

'group' called stream. Wang [1] used it to simulate 
human auditory system and solved monaural 
speech segregation problem. The computational 
goal of CASA is to obtain an estimated binary mask 
close to an ideal binary mask. Binary mask can be 
considered as a T-F unit filter, which pass the 
target speech and filter out the background noise 
by setting speech units 1 and noise units 0 [7]. An 
ideal binary mask, which differentiates target 
speech and background noise, can be determined 
by signal-to-noise ratio (SNR). If the SNR is greater 
than a threshold, it will be labeled as speech; 
otherwise, it will be labeled as noise. Estimated 
binary mask can generally be obtained from 
a classifier. 

In this paper, we use cochlear auditory models 
and inner hair cells model to simulate the human 
ear of the inner ear auditory characteristics. Next, 
Mel-frequency cepstral coefficients (MFCCs) and 
pitch are used as the features of support vector 
machine (SVM) [8] classifier. Finally, post- 
processing technique such as Connected 
Component Labeling [9], Hole Filling [10], and 
Morphology [11] are applied on the resulting binary 
mask as post-processing.  

Five kinds of noise with different frequency 
characteristics are used in our experiments, 
including three kinds of noise used in both training 
and testing, and two kinds of noise used in testing 
only. We called them matched and 
unmatched noise. 

Section 2 presents our system configuration, 
and section 3 describes the post-processing 
technique used on binary mask. Section 4 shows 
the experimental results. Conclusions are made in 
the final section. 
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2 System Configuration 

Our system configuration is as in Figure 1. 
Gammatone filters [12] are used to model human 
auditory filters, which are called critical bands. The 
input is the sound mixture and the output in each 
channel is divided into overlapping frames. It 
produces T-F units of the sound mixture. MFCCs 
and pitch are used as the features of SVM to 
classify speech units and noise units. Then, we use 
post-processing technique on binary mask to 
improve the speech classification performance. 
The technique includes Connected Component 
Labeling, Hole Filling, and Morphology. After 
obtaining a binary mask from SVM classifiers, the 
segregated speech is resynthesized.  

3 The Post-Processing on Binary Mask 

In this paper, we use post-processing technique on 
binary mask to improve the speech classification 
performance. The technique includes Connected 
Component Labeling, Hole Filling, 
and Morphology. 

3.1 Connected Component Labeling and Hole 
Filling  

The binary mask got from SVM, as an example 
shown in Figure 2, can be treated as a two 
dimensional image. The image's height is the 
number of the channels of Gammatone Bank, and 
the image’s width is the number of the speech 
frames. The foreground (white blocks) in Figure 2 
indicates the speech region, and the background 
(black blocks) indicates the noise region which 
should be filtered. We can see many isolated and 
unconnected white or black blocks in Figure 2.  
These isolated and unconnected blocks on a 
binary mask can be considered as the 
classification error. We, firstly, tried to use 
Connected Component Labeling and Hole Hilling 
to fix the problem. 

Connected Component Labeling is an algorithm 
to label the unconnected component in image 
processing. Commonly used are 4-connected and 
8-connected. Those pixels which are connected 
horizontally or vertically are considered to be the 
same object in 4-connected,and those pixels which 

 

Fig. 1. System configuration 

 

Fig. 2. An example binary mask 
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Fig. 3. Connected Component Labeling 
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are connected horizontally, vertically, or diagonally 
are considered to be the same object in 8-
connected. 4-connected is used in our experiment. 

The procedure is as presented in Figure 3. First, 
label each foreground pixels sequentially.  Second, 
scan and change label from top left to bottom right. 
If the label of the current pixel is larger than the 
labels of upper pixel or left pixel, change it to the 
smallest label number. Again, scan and change 
label from bottom right to top left. The scan and 
change procedure will be repeated until all 
neighboring foregrounds have the same label. At 
last, we got the area of each connected foreground 
(speech) objects. Those isolated small area less 
than 2 points will be reclassified as 
background (noise). 

For the holes on the foreground (speech), we 
use Hole Filling. Scanning from top left to bottom 
right, if one background pixel is surrounded by at 
least 3 pixels in 4 neighbors, we change the 
background pixel to foreground pixel. Only one 
scan is done. The binary mask after applying 
Connected Component Labeling and Hole Filling 
on Figure 2 is shown in Figure 4. 

3.2 Morphology  

Morphology is a popular algorithm in image 
processing to make the contour of objects smooth. 
It is used on our estimated binary mask to smooth 
the spectrogram. We applied one time Erosion and 
Dilation on the mask. Firstly, a foreground pixel is 
changed to background if it has a background pixel 
as a 4-neighbor. This procedure is called Erosion. 
Then, in Dilation, a background pixel is changed to 
foreground if it has a foreground pixel as a 
4- neighbor. 

4 Experiments 

The clean speech corpus we used in our 
experiments is extracted from MAT-160 database 
recorded by the Association for Computational 
Linguistics and Chinese Language Processing 
(ACLCLP). It is divided into training set and testing 
set. 30 sentences recorded by 15 males and 15 
females are used as training set. The total length 
is 140 seconds. 4 sentences recorded by 2 males 
and 2 females are used as testing set. The total 

length is 15 seconds. Five kinds of noise with 
different frequency characteristics are used. They 
are machine noise (in high band), siren noise (in 
medium band), babble noise (in wideband), white 
noise (in wideband) and factory noise (in low 
band). The first three kinds of noise with increasing 
energy level and total length of 140 seconds are 
used in training and separately added into clean 
testing speech as matched noise mixture, and the 
last two kinds are added into clean testing speech 
as unmatched noise mixture.  

4.1 Signal-to-Noise Ratio  

MFCCs and pitch are used as features of SVM to 
determine the binary mask to classify speech units 
and noise units. The experimental parameters are 
shown in Table 1. 

Different measures are used to evaluate the 
experimental results. First, on signal level, we use 
Signal-to-Noise Ratio (SNR) to evaluate. Then, by 
comparing the ideal binary mask and the mask 
from our method, several measures are used 
including HIT-FA Rate (HIT rate minus False Alarm 
rate) [13,14], which is the difference between Hit 
Rate (Hit) and False Alarm rates (FA), True 
Rejection Rate (TRR), True-Acceptance Rate 
(TAR), Filtering Rate (FR) and Distortion 
Rate (DR). 

 

Fig. 4. The binary mask after doing Connected 

Component Labeling and Hole Filling on Figure.2 

 

Fig. 5. An example ideal binary mask 
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Table 1. The Experimental Parameters 

Name Value 

sampling frequency 12000Hz 

bits/Sample 16bit 

frame length 40ms 

frame overlapping 20ms 

window function Hamming window 

order of Gammatone bank 4 

center frequency of Gammatone bank  [50, 6000] 

no. of  channels of Gammatone bank 128 

MFCC feature dimensions 39 

Table 2. SNRs in Matched Noise and Unmatched Noise Condition 

SNR -3 dB 0 dB 

Matched noise 

Babble 7.32 dB 8.15 dB 

Machine 6.52 dB 9.84 dB 

Siren 8.16 dB 10.08 dB 

Average 7.33dB 9.35dB 

Unmatched noise 

White 5.16 dB 7.52 dB 

Factory 3.58 dB 3.95 dB 

Average 4.37dB 5.73dB 

Table 3. True Rejection Rate 

Noise NW NR TRR(%) 

Matched noise 

Babble  2386 93486 97.5% 

Machine  7142 88730 92.6% 

Siren 1320 94552 98.6% 

Unmatched noise 
White  15708 80164 83.6% 

Factory  47831 48041 50.1% 

Table 4. True Acceptance Rate 

Gender SR SW TAR(%) 

Male 39909 5403 88.1% 

Female 42728 2584 94.7% 

Table 5. Three Tests to Evaluate the Performance of Connected Component Labeling, Hole Filling, and Morphology 

Test Connected Component Labeling Hole Filling Morphology 

Test 1 No No No 

Test 2 Yes Yes No 

Test 3 Yes Yes Yes 
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First, we evaluate the classification 
performance of SVM alone. To do this, the post-
processing (Connected Component Labeling, Hole 
Filling, and Morphology) on binary mask is not 
added in the experiments of 4.1 and 4.2.  

The input sound mixtures with signal to 
matched noise or unmatched noise ratio of -3dB 
and 0dB are used in our experiment. After our 

speech segregation system, speech and noise are 
separated and the output SNRs are shown in  
Table 2. 

As shown in Table 2, in matched noise 
condition, the -3dB mixture can improve to the 
average 7.33dB, and the 0dB mixture can improve 
to the average 9.35dB. In unmatched noise 
condition, the -3dB mixture can improve to the 

Table 6. HIT-FA of 0dB/-3dB Mixture of (a) Test 1, (b) Test 2, (c) Test 3 

(a) 

Noise HIT FA HIT-FA 

Matched noise 

 

Babble 44/22% 19/17% 25/5% 

Machine 68/61% 43/42% 25/19% 

Siren 89/83% 59/57% 30/26% 

Average 67/55.3% 40.3/38.7% 26.7/16.7% 

Unmatched noise 

White 53/36% 36/29% 18/7% 

Factory 84/81% 40/41% 44/40% 

Average 68.5/58.5% 38/35% 31/23.5% 

(b) 

Noise HIT FA HIT-FA 

Matched noise 

 

Babble 45/23% 20/17% 25/6% 

Machine 69/62% 43/42% 26/20% 

Siren 89/84% 59/57% 31/27% 

Average 67.7/56.3% 40.7/38.7% 27.3/17.7% 

Unmatched noise 

White 55/37% 36/29% 19/8% 

Factory 85/82% 40/41% 45/41% 

Average 70/59.5% 38/35% 32/24.5% 

(c) 

Noise HIT FA HIT-FA 

Matched noise 

 

Babble 34/14% 14/11% 20/3% 

Machine 59/52% 34/33% 25/19% 

Siren 85/77% 53/51% 32/26% 

Average 59.3/47.7% 33.7/31.7% 25.7/16% 

Unmatched noise 

White 45/26% 25/18% 20/8% 

Factory 79/75% 30/31% 49/44% 

Average 62/50.5% 27.5/24.5% 34.5/26% 
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average 4.37dB, and the 0dB mixture can improve 
to the average 5.73dB. 

4.2 True Rejection Rate and True Acceptance 
Rate  

To test the classification performance of SVM, two 
experiments are set. The input of the first 
experiment is noise alone and we detect its True 
Rejection Rate (TRR). The input of the second 

experiment is clean speech and we detect its True 
Acceptance Rate (TAR). The TRR is the 
percentage of noise units a system correctly reject 
and the TAR is the percentage of speech units a 
system correctly verifies. In ideal cases, 
supposedly, we will get 100% TRR and TAR for 
noise (the first experiment) and clean speech (the 
second experiment) conditions.  

Table 3 present the TRR results of the matched 
or unmatched noise. NR is the number of correctly 

Table 7. FR of 0dB/-3dB Mixture 

Noise Test 1 Test 2 Test 3 

Matched noise 

Babble  80/82% 80/83% 86/89% 

Machine  56/57% 57/58% 66/67% 

Siren 41/43% 41/43% 46/48% 

Average 59/60.7% 59.3/61.3% 66/68% 

Unmatched noise 

White  64/71% 64/71% 74/81% 

Factory  59/58% 59/58% 69/68% 

Average 61.5/64.5% 61.5/64.5% 71.5/74.5% 

Table 8. DR of 0dB/-3dB Mixture 

Noise Test 1 Test 2 Test 3 

Matched noise 

Babble  56/78% 55/73% 66/85% 

Machine  33/57% 31/38% 41/59% 

Siren  11/17% 10/16% 14/22% 

Average 33.3/50.7% 32/42.3% 40.3/55.3% 

Unmatched noise 

White  46/63% 45/63% 54/73% 

Factory  16/19% 15/18% 20/25% 

Average 31/41% 30/40.5% 37/49% 
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classified noise units (reject), and NW is the 
number of misclassified noise units (false alarm). 
SR is the number of correctly classified speech 
units (hit), and SW is the number of misclassified 
speech units (miss). As Shown in Table 3, 
obviously, it is more difficult to filter out noise 
correctly when the noise is unmatched (untrained). 
The result of factory noise, which distributes in low 
band and is difficult to distinguish with speech, is 
the worst.  

Then, we input clean male (7.5 second long, the 
two male testing sentences) and clean female 

speech (7.5 second long, the two female testing 
sentences) separately. The result of TARs is 
shown in Table 4. The TAR is higher in female 
speech. 

4.3 HIT-FA, Filtering Rate and Distortion Rate  

To further evaluate the performance of Connected 
Component Labeling, Hole Filling, and Morphology, 
we design three tests as in Table 5 and compare 
their results. Test 1 uses our system without 
Connected Component Labeling, Hole Filling, and 
Morphology. Test 2 uses Connected Component 
Labeling and Hole Filling only, and Test 3 uses all 
of the three. 

Several measures are used, including HIT-FA, 
FR and DR. HIT-FA is the difference between HIT 
and FA and is useful in predicting the intelligibility 
of speech synthesized using estimated binary 
masks [13][14]. The HIT, FA, FR, and DR are 
defined as: 

Hit Rate (HIT)=SR/(SR+SW) (1) 

False Alarm Rate (FA)=NW/(NR+NW) (2) 

Filtering Rate (FR)=NR/(NR+NW) (3) 

Distortion Rate (DR)=SW/(SR+SW) (4) 

Higher FR and lower DR are desired for speech 
segregation.  

To calculate these measures, we need to 
compare our estimated binary mask with ideal 
binary mask. In our experiment, ideal binary mask 
is defined as: 

If both noise and speech energy are very small 
( < 0.01), the T-F unit will be ignored and not put 
into calculation. 

Else if speech energy > 0.5 * noise energy, the 
T-F unit is labeled as speech. 

Else if speech energy ≦ 0.5 * noise energy, the 

T-F unit is labeled as noise.  

An example resulting ideal binary mask is as 
shown in Figure 5. Blue area is labeled as speech 
and red area is labeled as noise. Black area are 
units with very small energy and can be ignored. 

Table 6 is the result of HIT, FA, and FIT-FA of 
0dB/-3dB mixture. The average unmatched noise 
HIT-FA of Test 3 is the highest, while the average 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Fig. 7. T-F units of (a) -3 dB mixture with white noise 

(b) Test 2 (c) Test 3 (d) clean speech. Waveforms of 
(e) -3 dB mixture with white noise (f) Test 3 (g) clean 
speech 
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matched noise HIT-FA of Test 2 is the highest. 
Table 7 and 8 show the FR and DR results of 0dB/-
3dB mixture. Comparing the results shown in Table 
7 and Table 8, Test 3 has higher FR and Test 2 
using Connected Component Labeling and Hole 
Filling only has lower DR. That is, although 
Morphology can increase FR, it also increases DR. 

The T-F units of -3 dB mixture with matched 
babble noise and unmatched white noise, the T-F 

results of Test 2, Test 3, and clean speech are 
shown in Figures 6 and 7. The waveforms of 
mixture, Test 3, and clean speech are also shown. 
Comparing our results with the sound mixtures, our 
method can successfully segregate speech and 
improve the speech quality. 

5 Conclusions 

This paper proposes SVM classification and post-
processing including Component Labeling, Hole 
Filling, and Morphology on CASA mask for speech 
segregation. By observing the results of different 
measures, T-F units, and waveforms, our method 
separates speech from background 
noise effectively. 
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