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Abstract. The design and the proof of correctness
of distributed algorithms in dynamic networks are
difficult tasks.  These networks are characterized
by frequent topology changes due to unpredictable
appearance and disappearance of mobile devices and/or
communication links. In this paper, we propose
a correct-by-construction approach for specifying and
proving distributed algorithms in a forest topology. In the
first stage, we specify a formal pattern using the Event-B
method, based on the refinement technique. The
proposed pattern relies on the Dynamicity Aware-Graph
Relabeling Systems (DA-GRS) which is an existing
model for building and maintaining a forest of spanning
trees in dynamic networks. It is based on evolving graphs
as a powerful model to record the evolution of a network
topology. In the second stage, we deal with distributed
algorithms which can be applied to spanning trees of the
forest. In fact, we use the proposed pattern to specify
a tree-coloring algorithm. The proof statistics comparing
the development of this algorithm with and without using
the pattern show the efficiency of our solution in terms of
proofs reduction.

Keywords. Distributed algorithms, dynamic networks,
forest, formal pattern, event-B method, coloring.

1 Introduction

1.1 Background

With the proliferation of mobile devices and advances
in wireless communication technologies, mobile ad-hoc

networks (MANETS) [24] have drawn the attention of
the research community in the last few years. A
MANET is a collection of mobile devices, called nodes,
such as laptops, smartphones, etc. These nodes are
interconnected by wireless links without the aid of any
fixed infrastructure or centralized administration.

In MANETS, each node acts both as a host and as
a router to forward messages for other nodes that are
not within the same radio range. They are free to move
and form an arbitrary topology. Then, MANETs are
characterized as an extremely dynamic system where
links between nodes change over time. A vehicular
ad-hoc network (VANET) [5] is an example of a MANET.
It is an emerging technology that allows vehicles on
roads to communicate for enhancing the driving safety,
reducing the congestion, etc.

To model dynamic networks, we use the evolving
graph model [15] which consists in recording the
evolution of the network topology as a discrete sequence
of static graphs. The communication between nodes
and the nodes behavior can be modeled by a distributed
algorithm [25]. The latter is designed to run on
interconnected autonomous computing entities in order
to achieve a common task.

To make designing distributed algorithms easier, we
use local computation models and particularly graph
relabeling systems [23]. A graph relabeling system is
based on a set of relabeling rules which are executed
locally. These rules, closely related to mathematical and
logical formulas, are able to derive the correctness of
distributed algorithms.
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1.2 Motivation

Proving the correctness of distributed algorithms in
dynamic networks represents a non-trivial challenge.
In fact, wireless communications need to be taken
into account to faithfully specify and verify algorithms
requirements. Different approaches have been proposed
in the literature in order to redefine distributed algorithms
in dynamic networks and prove their correctness [7]
[16] [9] [22] [10] [4]. However, the major limitation of
the studied works is the lack of consensus about their
developments and their proofs. Furthermore, proofs
which have been presented are done manually.

In addition, distributed algorithms can be applied
only to a particular type of graphs such as tree, ring,
etc. In our previous work [14], have adopted the
centralised counting algorithm which operates on the
star topology. In this paper, we deal with algorithms
which operate on a tree-based topology like election
and coloration. A tree in a graph is an acyclic and a
connected subgraph and a set of disjoint trees is called
forest. According to [11], the network can be partitioned
anytime into several connected components. Each
one represents a given cluster of nodes that evolves
semi-independently. In this case, we can talk about
a forest of spanning trees, where a spanning tree is
formed in every connected component. Previous works
[20] demonstrated the validity of using spanning trees in
networking area. Indeed, establishing a spanning tree in
the network is a well known strategy in communication
networks. The availability of such structures can be
really useful to simplify a large number of tasks, among
which broadcasting, routing or termination detection.

1.3 Contribution

In order to efficiently construct and maintain tree-based
topologies, we propose a formal pattern based on
the Dynamicity Aware- Graph Relabeling Systems
(DA-GRS) model [8]. This model is an extension of graph
relabeling systems. To specify our pattern, we use a
formal method which provides a real help for expressing
correctness with respect to safety properties in the
design of distributed algorithms. Our proposed approach
is based on the correct-by-construction paradigm [17].
The latter can be supported by a progressive and
incremental process controlled by refinement [3] of
models for distributed algorithms. This process allows
us to simplify the proofs and to validate the integration
of requirements. The Event-B formal method [1]
can support this methodological proposal suggesting
proof-based guidelines. An overview of our proposed
approach has been presented in [13].
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The main contributions of this paper are as follows:

1. To propose a formal pattern which allows us to
construct and maintain tree-based topologies in
dynamic networks based on the DA-GRS model.

2. To illustrate our proposed pattern by an example
of a greedy coloring algorithm of a tree. This
algorithm consists of assigning the minimal number
of colors which ensures that the color of each node
in the tree is different from those of its neighbours.
Our approach can guide the user to specify other
algorithms which operate on tree-based topologies.

3. To show the efficiency of our solution in terms of
proofs reduction, we present the proof statistics
comparing the development of this algorithm with
and without using the pattern. So, we can reduce
efforts of proofs and specification.

1.4 Organization of the Paper

The paper is organized as follows: Section [2] presents
a review of related works. In Section |3} we introduce
preliminary notions of the evolving graph model and
Event-B formal method. Section |4] provides an informal
description of the proposed pattern. In Section [5] we
specify our pattern with the Event-B method. Section [f]
presents a case study which illustrates the efficiency of
our solution. Finally, Section [7] concludes this paper and
provides insights for future work.

2 Related Work

Several works have addressed the problem of proving
the correctness of distributed algorithms in dynamic
networks. In our work, we have reused the framework
introduced by A. Casteigts [7], where graph relabeling
systems are coupled with evolving graphs. In fact,
he proposes an analysis framework for distributed
algorithms on dynamic networks.  This framework
provides general formalisms and methods for studying
the main properties of distributed algorithms. It allows to
characterize the necessary and/or sufficient connectivity
conditions required for the success of a distributed
algorithm in dynamic networks. To illustrate it, he ana-
lyzes three simple algorithms (propagation algorithm,
centralized counting and decentralized counting).

The proposed framework [7] was extended in [22]
to provide a sufficient condition for the decentralized
counting algorithm. In fact, the author shows that a
complete underlying graph is sufficient to prove the
correctness for the decentralized counting algorithm. In
addition, he introduces the concept of tight conditions



to strengthen the guarantees offered by necessary and
sufficient conditions. Indeed, a condition is tight if at
least one execution sequence of the algorithm over the
evolving graph reaches the desired state. Then, he
demonstrates the tightness of the sufficient condition
provided for the decentralized counting algorithm.

M. Barjon et al. [4] has addressed the construction
and the maintenance of a spanning forest (the
synchronous case), without any kind of assumption
on the rate of changes. The proposed algorithm is
the adaptation of a coarse-grain interaction algorithm
proposed by A. Casteigts et al. [10] (asynchronous
case). It allows the maintenance of a non-minimum
spanning forest in unrestricted dynamic networks, using
an interaction model inspired from graph relabeling
systems. This algorithm is based on token circulation
techniques that turn splitting and merging of trees into
purely localized phenomena. In fact, a computation step
takes as input the state of a pair of nodes and modifies
these states according to certain rules.

According to this study, we notice the absence of a
general model to specify and prove the correctness of
distributed algorithms on evolving graphs. In addition,
only [10] and [4] have focused on the forest topology.
Furthermore, proofs which have been presented are
done manually.

3 Basic Concepts

In this section, we provide some basic concepts to
explain our work. First, we present the evolving graph
model to record the dynamic behavior of a network
topology. After that, we give an overview of the Event-B
method.

3.1 Evolving Graph Model

The evolving graph model, proposed in [15], represents
an abstraction of dynamic networks, through the
formalisation of a time domain in graphs. In this model,
a dynamic graph can be decomposed as a sequence of
static graphs. Each static graph represents a snapshot
of the dynamic network at a given time. As an example,
we consider the four snapshots taken at different time
intervals of a MANET, as depicted in Fig. Formally,
let St = to, t1, ..., tn b€ a sequence of increasing dates
used to capture static graphs. These dates correspond
to every time step in a discrete-time system (T C N).
Except for to and ¢,,, each t; corresponds to one or more
topological events that modify the network. Let S¢ =
Go,G1,...,Gp—1 be the sequence of undirected static
graphs. Each G; represents the network topology during
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the period [t;, ti+1) in the evolving graph g. Finally, let G
be the union of all G; in Sg, called the underlying graph
of g (see Fig.[1](b)). The edges are labeled with the date
of their presence. For example, the presence of the edge
“ab” in Fig. [T(a) at the dates “1” and “2” is represented in
Fig. [Tb) by an edge “ab” labeled “1, 2". Then, the triple
9=(G, S, Srt) is the corresponding evolving graph.

3.2 Event-B Overview

The Event-B modeling language is an evolution of the
B language [1]. A system specification (model) in
Event-B consists of two types of components: context
and machine.

Context. A context specifies the static parts of a
model. It may contain carrier sets, constants, axioms,
and theorems that can be derived from the axioms of a
context.

Machine. An Event-B machine describes a reactive
system. It may contain variables, invariants, theorems,
and events. Variables define the state of a machine.
They are constrained by invariants. An invariant is
defined to be a predicate preserved by each event. The
dynamic behavior of the system is defined by the set
of events specified in the Events clause. Generally, an
event can be defined as follows:

any Pr where G then S end,

where: Pr is a set of parameters, G is the
guards which specify the necessary conditions for the
event observation, S is the action which consists in
several assignments. The assignments can be either
deterministic or non-deterministic. =~ A deterministic
assignment has the standard syntax and meaning. It is
denoted by x:= E(k, v) where x is a state variable and
E(k, v) is an expression.

A non-deterministic assignment can be of two forms:
(@) The first form, = :€ E(k,v), arbitrarily chooses a
value from the set E(k, v) to assign to x. (b) The second
form is denoted by =z |Q(z,y,x") which arbitrarily
chooses to assign to x a value that satisfies the predicate
Q. Q is called a before-after predicate and expresses
the relation between the previous values x (before the
action) and the new ones x’ (afterwards).

Refinement. The concept of refinement is the
main feature of Event-B. The refinement of a machine
allows to enrich it in a step-by-step fashion. It is
the foundation of the correct-by-construction approach
[17]. It is also used to transform an abstract model
into a more concrete version by modifying the state
definition. In fact, new variables and events can be
introduced. Furthermore, abstract events can be refined
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Fig. 1. Example of an evolving graph covering a period of time from ¢, t0 ¢4

Abstract sees
Machine AM 3> Context C1
refines extends
' |
Concrete sees
Machine CM Context C2

Fig. 2. Event-B constructs and their relationships

to more concrete ones. The relation between variables
in the concrete and abstract model is given by a gluing
invariant. ~ The relationship between machines and
contexts is defined as shown in Fig. 2t A machine AM
may see a context C1, this means that all carrier sets and
constants defined in C7 can be used in AM. A machine
CM can be built to be a refinement of the machine AM.
CM is called a refinement or a concrete version of the
machine AM. Likewise, a context C2 can extend the
context C1, this means that all properties defined in C2
are added to C1.

Proof Obligations. An Event-B specification is
considered as correct only if each machine, as well as
the process of refinement, is proved by adequate Proof
Obligations (POs); i.e events preserve the invariant(s)
and each event is feasible. POs are generated by
the RODIN tool [2], which provides an environment for
developing correct-by-construction models for software-
based systems. They can be discharged either
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automatically by an integrated proof tool or through
interactive proof tool.

4 Informal Pattern Presentation

In software engineering, the idea of design patterns [19]
is to have a general and reusable solution to commonly
occurring problems. In general, a design pattern is not
necessarily a finished product, but rather a template on
how to solve a problem which can be used in many
different situations. In this section, we propose a formal
pattern for specifying and proving the correctness of
distributed algorithms in dynamic networks. It can be
applied only to algorithms which operate on a tree-based
topology. The proposed pattern defines the different
topological changes in a dynamic network and the
manner of time evolution. Let ¢ = (G, Sq,St) be
an evolving graph. Every static graph, G; € Sg,
corresponds to the network topology during the interval
of time [t;, t;+1) where t; represents the date when one
or several topological events occur in the system. In this
paper, we take into consideration only the appearance
and disappearance of edges in the network like the
existing works in this context [10] [4] [7] [22]. Then, we
can distinguish two events:

e Adding edge: It consists in adding a new edge to
the graph at the current date t.

o Removing edge: It consists in removing an edge
from the graph at the current date t.
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Fig. 3. Three rules for the DA-GRS

In order to efficiently construct and maintain
tree-based topologies, we use the DA-GRS. The latter is
a local computation based model which guarantees that
the network remains covered by a spanning forest at any
time, in which 1) no cycle can possibly occur, 2) every
node belongs to a tree (an isolated node belongs to a
tree with a single node which is the root) and 3) there is
always exactly one root (also called token) in every tree.

The root of each tree is labeled R and the other nodes
are labeled N. The DA-GRS is based on three rules
which are presented in Fig.

o R1: Merging rule. Whenever two tokens (nodes
labeled R) arrive at the endpoints of the same edge,
one of them destroys its token and selects the other
as parent. As a result of this rule, the two trees
merge.

e R2: Circulation rule. If there is no possible
merging, a node in the state R (has the token)
passes the token to one of its neighbours in the tree
(child) which becomes the new root.

o R3: Regeneration rule. Whenever an edge of the
tree disappears, the node on the child side (labeled
N) does not possess the token. In this case, there
will exist a tree without a token. Then, the node
must regenerate a token (i.e. it becomes a root).

In this work, we assume that the incrementation of
time from a date t to a date t+7 is done after: 1) at
least one appearance and/or disappearance of an edge
is performed in the network and 2) each connected
component of the network is covered by a spanning
tree.

5 Formal Development of the Pattern

As mentioned earlier, the specification of our pattern
is performed with the Event-B method and done with
the RODIN platform. An Event-B development is an
incremental process controlled by the refinement of
models. We note that two basic levels are necessary
to build a correct pattern as shown in Fig.
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Context e
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Forest

Fig. 4. The refinement strategy of the proposed pattern

The first model PO: We can notice only the
appearance of new edges and disappearance of other
edges from a graph G; at a date ¢; to the following graph
Gi41 at a date ti+1 (see Fig. [B). The system time is
initialized to zero (t=0).

At this date, no topological event (events which modify
the topology) has been performed. The incrementation
of time is done, if one or several topological events
(add edge and/or remove edge) have been produced.
Formally, we define three events:

e Add_Edge: This event is observed when an edge
does not belong to the graph at a current date t. As
a result, this edge will be added to the graph.

e Remove_Edge: It consists in removing an existing
edge of the graph at a current date t.

e Increment_Time: This event is observed when one
or several topological events (Add_Edge and/or
Remove_Edge) occur in the network.

The second model P1: Once the machine of the
first level has been specified and proven, it can be
refined in order to build and maintain a forest of spanning
trees in dynamic networks. In fact, we introduce labels
of nodes to specify the DA-GRS rules. Formally, we
add three events (Merging_Rule, Regeneration_Rule and
Circulation_Rule) and we refine the events specified in
PO to take into consideration the local label modification.
At this level, we indicate that the incrementation of time
can take place, if each connected component of the
network is covered by a spanning tree.

In fact, we suppose that the algorithm for building and
maintaining a spanning forest (DA-GRS rules) acts as an
“observer” that knows when a spanning tree is formed
in each component. This kind of detection is called
observed termination detection [18].

An example of the evolving graph sequence, which
refines the first level, is shown in Fig. @ In this figure,
a spanning tree in each component is presented with
red color. The nodes which do not belong to any tree
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Fig. 5. Example of an evolving graph sequence in PO

edge (isolated nodes) are labeled R. In fact, every node
forms a tree of its own and is the root of that tree (it has
a token).

With these machines, contexts are required with a
particular definition in the specification. The first one is
the context Graph which defines the basic properties of
the network. The second one is the context Forest. It is
defined as an extension of the context Graph. It specifies
elements of a tree and includes node labels that describe
the DA-GRS rules.

5.1 Formal Specification of the Contexts of the
Pattern

The context Graph: A graph is modeled by a set
of nodes called V. In our work, we have supposed
that a dynamic graph is composed of stable nodes.
For this reason, we define V in the context as an
abstract set. Listing [1] shows the specification of
the context Graph. By means of the axm1, we
specify that the number of nodes in the network
is finite. Moreover, we introduce a constant, called
tn, which represents the final system date. This
constant is an integer different to the start date of
the system (see axm2).

Listing 1. Context Graph

Context
sets
constants tn
axioms

axml : finite(V)
axm2 : tn € N1
end

Graph
v

The context Forest: A tree can be defined as
an acyclic and connected subgraph. In order to
specify a tree, we have to define anode r (r € V1
and V1 C V) which is the root of the tree and
a parent function t (see Listing [2). Otherwise,
each node has a unique parent node, except for
the root. For more information about tree building,
the reader can read [6]. Formally, we obtain the
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following Event-B definition: ¢ € V1 \ {r} — V1.
A tree is an acyclic subgraph. A cycle c¢ in a finite
graph t built on a set V1 is a subset of V whose
elements are members of the inverse image of ¢
under t, formally: ¢ C ¢t~![c].

In order to guarantee the non existence of a
cycle in a tree, we must prove that the set c is
equal to the empty set. As in [6], we describe this
property in the following way: Ve - (¢ C V1 Ac¢ C
t7 ) = c=02.

We introduce the constant trees to be the set of
all trees (with root r) of the graph g. Also, we add
some requirement properties: trees is non-empty
set of possible trees on the graph (axm2) and each
node is labeled R or N (axm3). We specify label
nodes as a set called LN_free.

5.2 Formal Specification of the Machines of the
Pattern

The initial model (Machine P0): At this abstract
level, we define the machine PO which sees the
context Graph. The invariants specification of PO is
given in Listing[3] At a current date t, a network can
be formally modeled as a simple and undirected
graph g where nodes denote processors and
edges denote direct communication links (inv1).
An undirected graph means that there is no
distinction between two nodes associated with
each edge (inv2).

A graph is simple, if it has zero or one edge
between any two nodes and no edge starts and
ends at the same node (inv3). The domain
restriction “V «id” is a subset of the relation id that
contains all of the pairs whose first element is in
V. The identity relation “id” maps every element to
itself.

The current date t is an integer lower or equal
to the final system date (inv4). Moreover, we
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Fig. 6. Example of an evolving graph sequence in P1

Listing 2. Context Forest

Context Forest
extends Graph
sets LN _tree
constants trees, R, N
axioms
axml : trees = {t,7,V1-VIC VAr € VIAtE (VI\{r}) = VIA (Ve-e CVIAcC (t7 )
= c= )|t}
axm2 : trees # &
axm3 : partition(LN_tree, {R}, {N})

end

introduce a new variable called “change” (inv5).
If one topological event has been produced,
“change” is set to “17, otherwise “change” is set
to “0”. So, if “change” is equal to “1”, the date t
is different from the final date tn (inv6). By means
of the invariant inv7, we specify that if the current
date t is strictly greater than “0” and “change” is
equal to “0”, then the graph does not undergo any
topological event (g(t)=g(t-1)).

Listing 3. Invariants of the machine PO

invt : g€ 0.t >P(VxV)

inv2 : Viti-ti € dom(g) = g(ti) = (g(ti))~*
inv3 : Vti-ti € dom(g) = (V <id)Ng(ti) =2
invd : teNAt<itn

invs : change € {0,1}

invé : change=1 — t#tn

inv? : t>0 A change =0 = g(t) = g(t — 1)

Initially, the system date is equal to zero (t =
0). Also, the variable “change” is equal to zero
which means that no topological event has been
produced. At this abstract level, we define three
events:

e Event Add_Edge: This event, specified in
Listing [4] is activated when an edge “z — y”
between the nodes x and y does not belong
to the graph g at the current date t (grdi,
grd2 and grd3) and ‘t” is different to the final

date “tn” (grd4). As a result, this edge will be
added to g(t). To respect the invariant inv2, we
add both “z — y” and “y — 2" to g(t) (act1).
Also, the variable “change” takes the value “1”
(act2) to indicate that a topological event has
been produced.

Listing 4. Event Add_Edge, in PO

Event Add_Edge
any T,y
where
grdl : z—yeV xV
grd2 : z—y ¢ g(t)
grd3 : z#y
grdd : t#tn
then
actl : g(t):=g(t)U{z — y,y — =}
act2 : change :=1
end

e Event Remove_Edge: As depicted in Listing
an edge has been removed at the current
date tif it is present in the graph (grd1) and “t”
is different to the final date “tn” (grd2). In the
action component, we update the graph g(t)
(act1) and we set the variable “change” to “1”
(act2).

e Event Increment_Time: This event (see
Listing [6) can be triggered if one or several
topological events have been produced. In the
guard component, we verify that the current
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Listing 5. Event Remove_Edge, in PO

Event Remove_Edge

any T,y

where
grdl : z— y € g(t)
grd2 : t#tn

then

actl : g(t) = g(t)\ {z — y,y > 2}
act2 : change:=1
end

date t is strictly lower than the final system
date tn (grd1) and the variable “change” is
equal to “1” (grd2). In the action component,
we increment the time to “t+7” and we set the
graph at the date “t+71” to the graph g(t) (act1
and act2). In addition, we reset the variable
“change” (act3). So, we have no topological
change at the date t +1.

Listing 6. Event Increment_Time, in PO

Event Increment_Time
where
grd1l : t<in
grd2 : change =1
then
actt : t:=t+1
act2 : g:=g < {t+1—g(t)}
act3 : change :=0
end

The second model (Machine P1): To specify the
machine P17, we begin by adding two variables:

Trees_t: It is defined as a total function which
assigns a set of disjoint trees P(irees) to each date
from (0..t) (see inv1, Listing[7).

lab: 1t is defined as a total function which
assigns a label R or N from LN_tree to each node
at a date from (0..t) (see inv2, Listing[7).

Listing 7. Some invariants of the machine P1

invl : Treest €0..t — P(trees)
inv2 : labe (V x (0..t)) = LN_tree

The addition of these two variables involves
adding new properties. We have formalized these
properties in the form of Event-B invariants as
follows:
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e There is no intersection between the nodes
of the disjoint trees: This constraint is
ensured by the invariant inv3. We note that the
domain of tr1 (dom(tr1)) is the set of the first
parts of all the pairs of nodes in tr1. Also, the
range of ir1 (ran(tr1)) is the set of the second
parts of all the pairs of nodes in fr7.

inv3: Viti, trl, tr2-ti € dom(Treest) A
trl € Treest(ti) AN tr2 €  Treest(ti) A
trl # tr2 = (dom(trl) U ran(trl)) N (dom(tr2) U
ran(tr2)) = @

¢ Each disjoint tree has only one root labeled
R and all the other nodes are labeled N.

inv4: vti tr-ti € dom(Treest)Atr € Trees t(ti) —>
(Fz-(x — ti) € dom(lab) A lab(z — ti) = RA (My-y €
(dom(tr) U ran(tr)) \ {z} A (y — ti) € dom(lab) =
lab(y — ti) = N))

e A node which does not belong to any
disjoint tree (it can belong to graph edges)
is labeled R. It forms a tree of its own and
it is the root of this tree.

inv5: vti,z-ti € dom(Treest) Az € V A ({{z}} N
{trtr € Trees_t(ti)|dom(tr) U ran(tr)} = @) =
lab(z — ti) = R

Initially, all the nodes are labeled R at the date
“t=0". Otherwise, every node is considered as a
tree with a single node and it is the root of this tree.
Then, the set of disjoint trees is empty (Trees_t(0)=
).

In order to construct and maintain tree-based
topologies:

e We introduce three events: Merging_Rule,
Regeneration_Rule and Circulation_Rule.

o We refine the events of PO in order to take into
consideration local label modification.

In this paper, we only detail the specification of the
refined events of PO.

Specification of the event Add_Edge: At this
second level, the event Add_Edge presented in
the machine PO remains unchanged. In fact, the
appearance of a new edge in the network at the
current date t requires only the addition of the
edge, without modifying the labels of nodes.



Specification of the event Remove_Edge: We
refine the event Remove_Edge detailed at the first
level by reinforcing the guard component. In fact,
we add a new guard (grd3: Vir-t € dom(Trees_t) A
tr € Treest(t) = (x — y ¢ trANy— x ¢ tr)to
specify that the removed edge (z — y and y — x)
does not belong to any disjoint tree at the current
date t.

Specification of the event Increment_Time:

We refine the event Increment_Time presented in
the machine PO as depicted in Listing In fact,
we add a new guard grd3 to indicate that each
connected component at the date { is covered by
a spanning tree.

Then, two neighboring nodes x and y of the
graph should belong to the same spanning tree.
In the action component, we add two actions (act4
and act5) to indicate that the set of disjoint trees at
the date t+17is equal to T'rees_t(t) (act4). Moreover,
the labels of nodes at the date t+17 are equal to the
current labels at the date t (actb).

6 Case Study: Tree-coloring Algorithm

To illustrate the proposed pattern, we present
the greedy coloring algorithm which operates
on tree-based topologies, encoded by the local
computations model. This algorithm is used in
many practical applications such as scheduling
[21] and register allocation in compilers [12].

The main objective of this section is to
demonstrate how the pattern can be used and
incorporated during development to specify the
coloring algorithm. Firstly, we present an overview
of the coloring algorithm. Secondly, we explain how
we can use our pattern to specify the algorithm.
Thirdly, we detail the specification of the algorithm.
Finally, we illustrate the efficiency of our solution by
comparing the proof statistics of this algorithm with
and without using the pattern.
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6.1 Algorithm Overview

Let's consider a tree with a degree equal to D.
We suppose that the number of colors is equal or
less than “D+1”. The set of colors are identified
by the numbers (7,..., D+1). Initially, all the nodes
are colored by the color number “1” in the colors
list. The coloring algorithm is given by the rule R
presented in Fig. [7] It can apply a computation to
a star. A star is a node with its neighbours.

If the node (center) has the same color (Ci) as
one of its neighbours, it changes its color with a
new color C’. The number associated with the color
C’ is equal to “max(C1, Ci, Ck)+1". That is to say,
it takes the lowest color value which is different to
all the neighbours colors of the center node.

A run of the algorithm consists in applying the
relabeling rule R specified by the algorithm until
this rule becomes not applicable. In the final
configuration, all the adjacent nodes in the tree
have different colors.

Rule R

—e—0 @——=0

Ci#C1 C’=max(C1, Ci, Ck) +1
Ci#Ck

Fig. 7. Relabeling rule of the tree-coloring algorithm

6.2 Using our Pattern in the Development of
the Tree-coloring Algorithm

In this section, we present the idea of the pattern
incorporation into an Event-B development. In fact,
we explain how our pattern is used to correctly
specify the tree-coloring algorithm. The process
can be seen in Fig.

Generally, the development of a distributed
algorithm in Event-B starts with a very abstract
model. Then, by successive refinements, we
obtain a concrete one that expresses the local
behavior of processors in the network. Each
refinement level is defined by an Event-B machine.
We follow the different steps to refine and
incorporate the proposed pattern during the
system development:

Computaci6n y Sistemas, Vol. 21, No. 4, 2017, pp. 863-881
doi: 10.13053/CyS-21-4-2857



ISSN 2007-9737

872 Faten Fakhfakh, Mohamed Tounsi, Mohamed Mosbah, Dominique Méry, Ahmed Hadj Kacem

Listing 8. Event Increment_Time, in P1

Event Increment_Time
refines Increment_Time
where

grdl : t<tin
grd2 : change =1

grd3 : Vir,z,y-tr € Treest(t) Az € (dom(tr) Uran(tr)) AN(z—y € g(t) Vy — z € g(t)) =

y € (dom(tr) Uran(tr))
then

actl : t:=t+1

act2 : g:=g< {t+1—g(t)}

act3 : change:=0

actd : Treest:=Treest < {t+1— Trees_t(t)}

a((‘:tS lab:=labgt {y-yeV|(y—t+1) —lably — t)}
en

Pattern for the forest
topology

REFINES

Coloring?2

‘ T - i
| | x :
i l _ @ REFINES | !
i SEES < X . SEES .
i Graph €——— P0__: @ Matching | Coloring0 ——> Coloration
. <« : ]
N r 1 e
+ EXTENDS REFINES ! REFINES !
| ! | :
i | i ! | i
| ! . |
' SEES ' Incorporating ! . '
i Forest € P1— > Coloringl |
\ | ! |
i ] ' ]
i i ' i
: ! i :
i i ' i

' ]

! .

Algorithm development

Fig. 8. Using our pattern in the development of the tree-coloring algorithm

e Step 1: We define a machine Coloring0
which refines the machine PO (@ in Fig. [8). Then,
it includes the events of PO. We have to add
one event (oneshot) which specifies the result of
the algorithm in one shot and does not describe
how the solution is computed. The analogy of
someone closing and opening their eyes. This level
can verify that a colored graph can be obtained
from an initial graph where all the nodes have the
same color. In the colored graph, we can notice
that, in each connected component, the center of
each star has a color different to at least one of its
neighbours (see Fig. [9).

To specify the machine Coloring0, we need to
add a new context called Coloration to specify
algorithm properties. Coloring0 can access to all
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Fig. 9. Coloring a graph in one shot (Machine Coloring0)

components of the context Graph via the clause
“SEES".

e Step 2: In order to specify the machine
Coloring1, we use the approach proposed by T.
Hoang et al. [19] for reusing existing patterns in
Event-B. Concretely, we use a tool, as a plug-in
for the RODIN platform, provided by T. Hoang et
al. In fact, we match all variables, events and




context information of the pattern specification PO
with those of the machine Coloring0 (® in Figure
[B). Then, the refinement P17 can be incorporated to
create the refinement Coloring1 of Coloring0. The
generated refinement is correct-by-construction
and no proof obligation needs to be generated.
For more details about the methodology proposed
by T. Hoang et al., the reader can see [19]. In
the machine Coloring1, we add some details to
globally specify the computation of the algorithm
result. In fact, we refine the event introduced
at the first level to ensure that each connected
component is covered by a spanning tree. Also,
each pair of neighbouring nodes of a spanning
tree do not share the same color (see Fig. [10).
Moreover, we introduce a new event to ensure the
graph coloration.

e Step 3: We introduce a new machine called
Coloring2 which refines Coloring1.  Coloring2
specifies locally the nodes interactions in order
to correctly color the nodes of each connected
component (spanning tree) in the graph. It is an
application of the relabeling rule R (see Fig. [T1).

6.3 Formal Specification of the Tree-coloring
Algorithm

6.3.1 The Context Coloration

To specify the coloring algorithm, we add a new
context called “Coloration” (see Listing [8) which
extends the context “Graph”. We define “colors_list”
as a finite set of colors (axm1). The cardinality
of “colors_list” is less than card(V) (axm2). Let’s
“color” be a constant defined by the axiom axm4. It
is a bijective function which assigns a unique color
to each identifier.

Listing 9. Context Coloration

Context Coloration
extends Graph
sets colors_list
constants color
axioms
axml : finite(colors_list)
axm2 : card(colors.list) < card(V)
axm3 : colors.list # &
axm4 : color € (1..card(V')) — colors_list
end
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6.3.2 The First Level: Machine Coloring0

The machine Coloring0 refines the machine PO
of the pattern. At this abstract level, Coloring0
expresses only the goal of the distributed algorithm
and does not describe the process of computing
the solution. Formally, the events Add_Edge and
Remove_Edge remain unchanged and we add one
new event called “oneshot”.

To specify this event, we need to introduce some
variables (see Listing[10):

— nodes_color: It contains the color of each
node in the graph at the current date t
Formally, this variable is specified in inv8 of
Listing Initially, at the date “t=0", all the
nodes have the same color.

— adjacent nodes: It assigns to each node at
a date from (0..t) the set of its neighbouring
nodes (inv9).

— state: It allows to check if the system reaches
a stable state. In fact, if the event oneshot is
triggered, the variable “state” takes the value
“1” otherwise “state” is equal to “0” (inv10).
Initially, this variable is equal to zero. If “state”
is equal to “1”, only the event Increment_Time
can be activated.

— solution: It contains the set of colored and
connected components at the current date ¢
(inv11). Initially, all the nodes have the same
color. Then, solution(t) is empty.

— components: |t specifies the set of connected
components in the graph at the current date ¢
(inv14).

The addition of these variables requires adding
other properties in the invariant component as
depicted in Listing [10}

— The set of neighbors of a node “x” at a date {i

is the set of nodes that are connected to “x” in
the graph g(ti) (inv12).

— lf the variable “state” is equal to “1”, each node
having the degree “1” has a color different to
its neighbor (inv13).
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Fig. 10. Informal description of the machine Coloring1
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Legend
Graph edge|
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Fig. 11. Informal description of the machine Coloring2

Specification of the event oneshot

At the first level, the event oneshot reveals the
result of the coloring algorithm in one step without
describing how the solution is computed. It verifies
that, in each connected component, each node has
a color different to at least one of its neighbours. In
Listing [T 1] we provide the specification of the event
oneshot.

In the guard component,
constraints:

we verify some

— The parameter “colored_-components” is a set
of colored and connected components in the

graph (grd1).

— The set of connected and colored components
at the current date t is empty (grd2).

— There is no intersection between the nodes of
colored_components (grd3).

— Each edge in the graph g(t) is an edge of a
colored and connected component (grd4).

— Each node, which is adjacent to a node of
a connected component, must belong to this
component (grd5).

— Each node of colored_components has a color
different to at least one of its neighbours
(grd6).
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— The system does not reach a stable state and
the date t is strictly lower than “in” (grd7).

— One or several topological events have been
produced in the graph (grd8).

In the action component, we specify that
“Solution(t)” contains the set of colored and
connected components (act1). Moreover, we set
the variable “state” to “1” (act2).

At this level, we reinforce the event Incre-
ment_Time of the pattern as shown in Listing

In fact, we add a new guard grd3 to verify that
the system reaches a stable state. Otherwise,
the event Increment_Time can be activated only if
“state” is equal to “1”. Moreover, we reinforce the
action component to reinitialize the set of adjacent
nodes, the color of each node and the solution
of the algorithm at the date t+7 (act4, act5 and
act6). Also, we update the variables State and
connected_components to “0” (act2 and act7).

In order to prohibit the triggering of topological
events after the event oneshot, we reinforce the
events Add_Edge and Remove_Edge by adding a
new guard (state=0).

We present in Fig. [12) the sequencing between
the events of the machine Coloring0. The diagram
explicitly illustrates that after the initialization of all
the machine variables, one or several topological
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Listing 10. Machine Coloring0 invariants

iinv8 :
| inv9 :
| inv10:
| invit:
| inv12:

node_color € V x (0 ..
adjacent_nodes € V x (0
state € {0,1}

solution € 0..t — P(P(V x V))

Vti,z-tt € (0.t) ANz € V = adjacent_nodes(x — ti) =

t) — colors_list
. t) = P(V)

[ {y-z—y€glti)vVy—x e g(ti)|y}

| inv13:

| card(adjacent_nodes(y — t)) =

| inv14:

Vz,y -y € adjacent_nodes(z +— t) A state = 1A
=1 = node_color(x — t) # node_color(y — t)
components = {t1,V1-t1 C gt) AVIC VA (Vs:s CVIAs# DA tl[a] Cs=V1Cs)A

I(Vm,y-z EVIAz sy €gt)=y € V1) Adom(tl) = VI Atl = t1'|t1}

Listing 11. Event oneshot, in Coloring0

Event oneshot

any colored_-components

where
grd1 : Vcomp-comp € colored-components =—> comp C g(t) A comp € components
grd2 : solution(t) = &
grd3 : Vcompl, comp2-compl # comp2 A compl € colored-componentsA

comp2 € colored_.components = (dom(compl) U ran(compl))N
(dom(comp2) U ran(comp2)) = &

grdd : Va,y-x— y € g(t) = (Jcomp-comp € colored_components \ x — y € comp)
grd5 : Vcomp, z-comp € colored_components A ({z} U comp) € components —> z € comp
grdé : Vcomp,xz-comp € colored.components A z € (dom(comp) U ran(comp)) —

node._ colar(m — t) # node_color(y — t
grd7 : state =0At < tn

grd8 : change =1

then
actl : solution(t) := colored_-components
act2 : state:=1

end

(3y-y € adjacent_nodes(x — t) Ay € (dom(comp) U ran(comp))A

events can be triggered using the event Add_Edge
or Remove_Edge.

The consequence of the events occurrence may
allow the triggering of the event Increment_Time
followed by the event oneshot if the actual
date is lower than the final system date. The
event oneshot is followed either by Add_Edge or
Remove_Edge events.

6.3.3 The Second Level: Machine Coloring1

The refinement of Coloring0 named Coloring1 in-
troduces more details about the coloring algorithm.
At this level, we can notice at a current date t a
forest of spanning trees, where a spanning tree is
formed in every connected component. In each
spanning tree, each pair of adjacent nodes have
different colors.

The specification presented at the first level of
the pattern still exists. However, we have to add
a new property in the invariant component. It
specifies that when the system reaches a stable
state (state=1), each two adjacent nodes in a

disjoint tree have different colors:

Vti,z,y-ti € (0..t) Atr € Treest(ti) Nz € (dom(tr) U
ran(tr)) Ay € adjacent_nodes(x — ti) A state =1 = y €
(dom(tr) U ran(tr)) A node_color(x — ti) # node_color(y
ti)

At this level, we refine the event oneshot defined
in Coloring0. Indeed, we have to reinforce the
guard component to verify some constraints (see
Listing[13):

e Each connected component at the date t
is covered by a spanning tree. Then, two
neighbouring nodes x and y of the graph should
belong to the same spanning tree (grd1).

e The set of colored and disjoint trees at the date ¢
is empty (grd2).

¢ All adjacent nodes in each disjoint tree do not
share the same color (grd3).

The abstract parameter “colored_components’,
defined in the machine Coloring0, is replaced with
concrete value by means of a withess. In fact,
“colored_components” represents at this level the
set of disjoint trees. In Event-B, a witness is
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Listing 12. Event Increment_Time, in Coloring0

Event Increment_Time
where
grdl : ¢t <tn
grd2 : change =1
grd3 : state=1
then
actl : t:=t+1
act2

. g, connected_components : |g' = g <& {t + 1+ g(t)} A connected_components’ =
t

{t1,V1-t1 C g (t+ 1)AVICVA(Vs:s CVIAs# D Atl[s] Cs=V1Cs)A
(Va,bra€ ViAarmbe g (t+1)=be V1) Adom(tl) = VI Atl = t17 ¢}

act3 : change:=0
act4 : adjacent.nodes := adjacent-nodes < {x-x € V|(x — t + 1) — adjacent_nodes(x — t)}
acts : node_color := node_color & {z-x € V|(x — t + 1) — node_color(z — t)}
acté : Solution := Solution < {t + 1 — Solution(t)}
act7 : State:=0
end

defined as a simple equality predicate involving the
abstract parameters.

In the action component, we reinforce the action
act1 to specify that “solution(t)” is equal to the set
of disjoint trees at the date t.

In order to ensure the graph coloration, we
introduce the event “Progress” as shown in Listing
In the guard component, we define tr as a
disjoint tree at the date t (grd1). The nodes x and
y are two adjacent nodes of the tree ir (grd2 and
grd3). By means of the guard grd4, we specify that
x and y have the same color. The parameter “c”
represents a color different to the color of the nodes
x and y (grd5). In the guard grd6, we verify that
“state” is equal to “0” and the date “t” is lower than
“tn”. In the action component, we update the color
of the node x to “c” (act1).

Fig. [13) depicts the sequencing between the
events of the machine Coloring1. Initializing the
variables of the machine may allow the triggering of
the event Add_Edge, Remove_Edge or the merging
of two disjoint trees by the event Merging_Rule.
These three events are followed by the event
Increment_Time if one or several topological
events have been performed (change=1).

The occurrence of these events can be
also followed by the event Regeneration_Rule,
Circulation_Rule or Progress if the corresponding
pre-conditions (guards) are satisfied. The
triggering of the event Increment_Time is followed
by the event oneshot if the actual date “t” is lower
than the final system date “tn”.
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6.3.4 The Third Level: Machine Coloring2

The third machine, called Coloring2, refines the
previous one (Coloringl) to describe the local
label modification and encode the relabeling rule
described in Fig. Formally, we introduce four
variables in the machine Coloring2:

e degree_node: It is defined as a total function
which indicates the degree of each node in a
disjoint tree at a date from (0..f). Initially, the degree
of each node in a tree is equal to the cardinality of
its neighbours which belong to this tree.
inv1: degreenode € (V x (0..t)) — N.

o frees_at_ti: It is defined as a total function which
assigns for each date from (0..t) a set of trees.
inv2: trees_at_ti € (0..t) — P(trees)

e degree_tree: It is defined as a total function to
specify the degree of a tree at a date from (0..1).
inv3: degree_tree € (tree x (0..t)) — N.

e colors_for_tree: It is a function which gives the
colors of a tree at a date from (0..1).

inv4: colors_for_tree € (tree x (0..t)) — P(colors_list).

At this level, we initialize the node_color of each
node to color(1) which represents the color number
“1”. The addition of the four variables involves
adding new properties. To do so, we introduce
some invariants called gluing invariants which link
the abstract state variables to the concrete ones:
¢ A tree tr having all the edges included in g(ti)
forms a tree at the date ti.
inv5: vii tr - ti € (0..t) Atr € tree Atr C g(ti) = tr €
trees_at_ti(ti)

o All the edges of a tree tr at a date ti are
included in the graph g at the date ti.
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INITIALISATION (g, t, node_color,
adjacent_nodes, solution, change, state)

Add_Edge

change:=1

change:=1

Remove_Edge

Increment_Time

change:=0
state:=0

Fig. 12. Execution events of the machine Coloring0

[ Add_Edge ] [ Remove_Edge ] [ Merging_Rule ]

change:=1

change:=1

l

INITIALISATION (g, t,
node_color,adjacent_nodes,
solution,change,state, lab, Trees_t)
[ \
pre-conditions
are satisfied
v _Yes
[ Regeneration_Rule Circulation_Rule Progress

Jphange::l

!

No

Increment_Time

!

change=1

Fig. 13. Execution events of the machine Coloring1
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Listing 13. Event oneshot, in Coloring1

Event oneshot
refines oneshot
where

grd1 : Vir,z,y-tr € Trees-t(t) Az € (dom(tr) Uran(tr)) Ay € adjacent_nodes(z — t) —

y € (dom(tr) Uran(tr))
grd2 : solution(t) = &

grd3 : Vir,z,y-tr € Treest(t) Az € (dom(tr) Uran(tr)) Ay € adjacent_nodes(z — t) —>

node_color(x — t) # node_color(y > t)
grd7 : state =0At < tn
grd8 : change =1

with

colored_components : colored.components = {tr-tr € Trees_t(t)|tr}

then
act1l : solution(t) := {tr-tr € Trees_t(t)|tr}
act2 : state:=1

end

Listing 14. Event Progress, in Coloring1

Event Progress

any x,y,tr,c

where
grdl : tr € Trees_t(t)
grd2 : z € (dom(tr) Uran(tr)) Ay € (dom(tr) U ran(tr))
grd3 : y € adjacent_-nodes(x — t
grd4 : node_color(x — t) = node_color(y + t)
grd5 : c € colors_list A ¢ # node_color(x — t)
grdé : state =0At <tn

then
act1 : node_color(z — t) :=c

end

inv6: vti tr - ti € (0..t) Atr € trees.atti(ti) = tr €
tree A tr C g(ti)

e The degree of a node x in a disjoint tree tr
at a date ti is equal to the cardinality of its
neighbours which belong to tr.

inv7: vti - ti € (0..t) Atr € Trees_t(ti) Az € (dom(tr) U
ran(tr)) = degree(z — ti) = card({u-(u— z €trVa —
u € tr)|u})

¢ At a date ti, a node x which does not belong
to any disjoint tree has a degree equal to zero.

inv8: vti,x-ti € dom(Treest) Ao € V A ({{z}} N {trtr
Trees_t(ti)|dom(tr) Uran(tr)} = @) = degree_node(k —
ti) =0

e The degree of a tree tr, at a date ti, is equal to
the maximum degree of all its nodes.

inv9: viitr - ti € (0.t) Atr € trees.atti(ti) —
degree_tree(tr +— ti) = mazx({z - x € (dom(tr) U
ran(tr))|degree_node(x — ti)})

e The colors of nodes in a disjoint tree are in-
cluded in the set of colors “(1..(degree_tree(tr —
ti) +1))".

inv10: Vtitr - ti € (0.t) A tr € Treest(ti) —
colors_for_tree(tr — ti) C {i-i € 1..(degree_tree(tr —
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ti) + 1)|color (i)}

e The color of each node x in a disjoint tree
tr, at a date ti, belongs to the set of colors
“colors_for_tree(tr — ti)”.

inv11: viti tr, x-ti € (0.t)Atr € Trees_t(ti)Ax € (dom(tr)U
ran(tr)) = node_color(z + ti) € colors_for_tree(tr —
ti)

e We ensure by means of the theorem Thit
that the degree of each tree is lower than the
number of all the nodes.

Thi: vtitr - ti € (0.t) A tr € trees.at ti(ti) —
degree_tree(tr — ti) < card(V)

o We verify by means of the theorem Th2 that
the degree of each tree node is equal or greater
than “17.

Th2: Ytijtr,z - ti € (0..t) Atr € trees_at_ti(ti) A z €
(dom(tr) Uran(tr)) =—> degree_node(z — ti) > 1

The machine Coloring2 specifies the local label
modification and encode the relabeling rule of
the algorithm. At every time, each node is in
a particular state and this state will be encoded
by a node label. According to its own state and
to the states of its neighbours, each node may




decide to perform a computation step by applying
the relabeling rule R. In order to specify the rule R,
we introduce a new event called “Rule” depicted in
Listing[15]

This event refines the event Progress defined
in the machine Coloring1. In fact, we reinforce
the event Progress by adding two parameters “V1”
and “colors_adj”. “V1” is a subset of nodes of
the tree tr (grd2) and “colors_adj” represents the
colors of all the nodes of V71 (grd5). By means of
the guard grd3, we specify that V1 is composed of
the node “x” and all its neighbours. We introduce
the witness “c: ¢ = color(max(colors_adj) + 1)” to
replace the abstract parameter “c”, with the color
having the number “max(colors_adj)+ 1”. In the
action component, we reinforce the action act7 to
specify that the node x takes the color identified by
the number “(max(colors_adj) + 1)".

At this level, we refine the event oneshot defined
in the machine Coloring1 to verify other properties
at the end of the algorithm execution (see Listing
[16). To do so, we reinforce the guard component.
In fact, we add a new guard grd9 to ensure that
each node of a disjoint tree has a color identified
by the number “1” or “2”. Otherwise, the graph
is colored by two colors. We introduce the guard
grd10 to specify that all the isolated nodes have
the color number “1”.  Finally, we refine the
event Increment_Time of the machine Coloring1.
In fact, we reinitialize the variables degree_node,
trees_at_ti, degree_tree and colors_for_tree at the
date t+1. The machine Coloring2 has the same
diagram as the machine Coloring1 (see Fig. [13).
However, we replace the event Progress by the
concrete event Rule.

6.4 What we Gain with the Pattern Approach

One of our objectives in this paper is to reduce the
proof efforts. In fact, we aim to increase automatic
proofs and decrease those that need interactive
efforts to be discharged. Table [1f shows the proof
statistics related to the development of the pattern
and the coloring algorithm with and without using
the pattern.

It includes the proof obligations generated and
discharged by the RODIN platform and those
interactively proved. As we can see, by developing
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the pattern separately, we have to prove 144
obligations. But we have the following advantages:

e We have a significant reduction of the
proofs interactively discharged in the machine
Coloring0 because Coloring0 is a refinement
of PO.

e We do not need to prove that Coloringl is a
refinement of Coloring0 since it is correct by
construction. In fact, we have already done
this proof when developing the pattern. We
have to prove only some details related to the
tree-coloring algorithm (20 obligations).

e We can reuse the pattern to specify other case
studies such as election algorithm.

Consequently, we can save efforts on modeling
as well as proving the correctness of distributed
algorithms in a forest.

7 Conclusion and Future Work

In this paper, we have presented a reuse-based
solution for specifying and proving distributed al-
gorithms which operate on tree-based topologies.

Our contribution consists in proposing a formal
pattern based on the evolving graph model. It relies
on the DA-GRS to construct and maintain a forest
of spanning trees in dynamic networks.

To illustrate our pattern, we have presented the
tree-coloring algorithm as a case study. The proof
statistics show that our solution can save efforts
on specifying as well as proving the correctness of
distributed algorithms in a forest topology.

As a future work, we plan to illustrate
the proposed pattern with other examples of
distributed algorithms. We also aim to extend
our pattern in order to take into consideration the
appearance and disappearance of nodes in the
network.

Another direction for future work consists in
dealing with other algorithms which operate on
other network topologies such as complete graph,
ring, etc.
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Listing 15. Event Rule, in Coloring2

Event Rule
refines Progress
any z,y,tr, V1, colors_adj
where
grd1l : tr € Treest(t
grd2 : V1 C (dom(tr) U ran(tr))
grd3 : z e VIA(Vy -y € VI\{z} = \\z—y €trvy —xectr)
grdd : y e (V1\ {z}) A node_color(xz — t) = node_color(y — t)
grd5 : colors_adj = {u-u € V1|color™!(node.color(u — t))}
grd6 : state =0
with
c: ¢ = color(max(colors_adj) + 1
then
actl : node_color(xz — t) = color(max(colors.adj) + 1)
end
Listing 16. Event oneshot, in Coloring2
Event oneshot
refines oneshot
where
// see Listing 1.13
grd9 : Vir,z-tr € Treest(t) Az € (dom(tr) Uran(tr)) = color ~ (node_ color(m —t)) € {1,2}
g_rg10 Yoz € V Adegree-node(x — t) =0 = color ~ (node_color(z — t)) =
wit
Cﬁmponentsi components = {tr-tr € Trees_t(t)|tr}
then
actl : solution(t) := {tr-tr € Trees_t(t)|tr}
act2 : state:=1
end
Table 1. Proof statistics
| | Models | Total POs | Automatic POs (%) | Interactive POs (%) |
Pattern Machine PO 40 17 (42%) 23 (58%)
Machine P1 104 40 (38%) 4 (62%)
Without Machine Coloring0 75 59 (79%) 6 (21%)
attern Machine Coloring1 139 58 (42%) 1 (58%)
P Machine Coloring2 64 22 (34%) (66%)
With Machine Coloring0 35 5 (43%) 0 (57%)
attern Machine Coloring1 19 (37%) (63%)
P Machine Coloring2 64 22 (34%) 42 (66%)
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