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Abstract. Lexicalization of the input of sequential taggers 
has gone a long way since it was invented by Molina 
and Pla [4]. In this paper we thoroughly investigate the 
method introduced by Indig and Endrédy [2] to find out 
the best lexicalization level for chunking and to explore 
the behavior of different IOB representations. Both tasks 
are applied to the CoNLL-2000 dataset. Our goal is to 
introduce a transformation method to accommodate the 
parameters of the development set to the training set 
using their frequency distributions which other tasks like 
POS tagging or NER could benefit too.
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1 Introduction

Shallow parsing, or arbitrary phrase chunking is
a well-known sequential tagging (more specifically
a bracketing) problem. The CoNLL-2000 dataset
[7] is the de facto standard dataset for measuring
tagger performance in chunking for English.
The current state-of-the-art method Gut, Besser,
Chunker [2] achieves the F-score of 95.06%
(96.49% for NPs). It is based on CRFsuite
[5], a simple linear-chain conditional random
field (CRF) tagger1 and an improved version of
the lexicalization of the previous state-of-the-art
tagger, SS05 [6] (94.01% and 95.23% for NPs),
which contains a lexicalization method invented
by Molina and Pla [4] in conjunction with voting

1This tagger is also tested without lexicalization with the
following results for arbitrary phrase chunking: IOB1: 92.84%,
IOB2: 93.40%, IOE1: 92.92%, IOE2: 93.25% and with the best
result IOBES: 93.79%.

between different representations using HMM
taggers (with only POS-tag as input).

It is notable that all the aforementioned methods
use simple taggers with smart transformation of
the input and output before and after tagging.
Without this type of transformation even the most
sophisticated tagger, which uses a bidirectional
LSTM-CRF model [1] only achieves 94.46 %
F-score.

Indig and Endrédy questioned the methodology
behind SS05 and compared different taggers on
different levels of lexicalization with different voting
schemes [2]. The authors could not reproduce
the previous results due to the many programming
errors discovered in the original code. But as
a result of their thorough measurements they
concluded that majority voting did not add much
to the performance, therefore there is no real
difference between the different representations
and CRFsuite is the best performing tagger
among the ones they compared. They also
raised a question that all previous papers had
left unanswered: ‘How does the tagger maintain
well-formedness of tags?’2.

However, the authors did not state anything
about the lexicalization threshold3, which we
investigate in this paper. We use their mild
lexicalization with the CRFsuite tagger to find out
the actual optimal values and to make statements
about the stability of the method. We evaluate all

2The term ‘well-formedness’ is explained in details in
Section 2.

3That was set to 50 in SS05 [6] as a result of ‘experimenting’
and used afterwards without questioning.
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five previous representations, even though it was
shown that IOBES has superior performance to the
other four [2].

We also present two methods (see Section 3 and
4) that may improve the accuracy of a tagger for a
given test set. In the first method we adapt the
lexicalization of the training set by using the input
data from the test set. In the second method we
use the uniform shape of the underlying Zipfian
distributions of the development and test sets to
get better parameter values automatically. We
think that these two methods can be utilized for
other tasks like POS tagging and NER as well, as
word frequency is naturally available in all tasks
and languages. In this paper we evaluate the two
methods on English phrase chunking only. The
following section covers the details needed to know
on the topic.

2 Chunking, Representation of Chunks

Chunking is in fact a labeled bracketing problem
translated into sequential tagging (B=[, E=],
I=inside, O=outside, S=[]). They represent one
level (labeled) bracketing that corresponds to
the subtree of the parse tree of the sentence
that contains the bracketed phrase. However,
chunks can be assigned to tokens without real
parsing, which would require more computational
effort – and a full-fledged accurate parser that
many languages still lacks – than sequential
tagging. Using the same tagger framework
one can solve tasks including but not limited to
Part-of-Speech (POS) tagging and Named-entity
recognition (NER). The aforementioned problems
has an off-the-shelf solution as well for most of
the languages which can be used for chunking
to handle the lack of a real parser. Traditionally,
also speed-up can be achieved by using tags that
represent the position of a token in the sequence
of bracketed entities, where each bracketed
chunk can span multiple tokens similar to the
representation of elements used in Named-entity
recognition.

To lessen the number of classes and make
the whole process even faster, there are repre-
sentations of these brackets that omit some of
the redundant classes which can be deduced

automatically by the sequence of chunks (as-
suming well-formedness). In some cases this
process makes the whole representation implicit
(see IOX1 variants over IOX2 variants). To indicate
a definite status of a token the following labels
can be defined: beginning (B), inside (I), end (E),
outside(O) of the sought phrases if there is such
token. To be precise, one-token-long sequences
must be indicated with a separate chunk type which
is often denoted by single (S) or one-token-long
(1). Each of the aforementioned tags except the
O tag has an additional type or label when multiple
type of chunks are sought. The reader may notice
that using all of these indications, especially in
conjunction with the chunk type labeling system
are highly redundant. This gave rise to different
representations with less number of chunk tags
(see Table 1).

Table 1. Multiple IOB representations: An example
sentence from the test set represented with five different
IOB label sets

word IOB1 IOB2 IOE1 IOE2 IOBES
These I B I E S
include O O O O O
, O O O O O
among O O O O O
other I B I I B
parts I I I E E
, O O O O O
each I B I I B
jetliner I I E E E
’s B B I I B
two I I I I I
major I I I I I
bulkheads I I I E E
, O O O O O

In addition to the numerous possible repre-
sentations, one can find the following equivalent
variants of the ‘full’ label set in the literature: the
BILOU format4 (B=B, I=I, L=E, O=O, U=S) or the
bracket variant ([=B, I=I, ]=E, O=O, []=S) which are
equivalent to SBIEO5 or in a more conventional

4Begin, Inside, Last, Outside, Unique.
5Single, Begin, Inside, End, Outside.
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name, IOBES representation. We use the latter
naming in this paper. The bracket variant in the
untyped form is also called Open-Close notation
(O+C or OC for short), but in this case the
representation is very fragile and sensitive to the
positioning of the tags as one mistake can destroy
well-formedness.

The representations that use less tags still
maintaining all information have two main types:
the implicit (IOX1) and explicit (IOX2) variants,
where X denotes the other important distinguishing
feature: the omission of the beginning or the end
tags as one of them is considered redundant.
When only begin tags are used, one can choose
from IOB1 or IOB2 tagsets and when only the
end tags are in use there are the IOE1 and IOE2
representations.

In the implicit representation when two subse-
quent chunks of the same type are found, one
of the chunks is modified. In the IOB1 case the
beginning I-tag of the second chunk is substituted
with a B-tag of the same chunk type, and in the
IOE1 case the ending I-tag of the first chunk is
substituted with an E-tag of the same chunk type.
Thus all the redundant tags are omitted (including
S). The IOB2 variant is also referred to as BIO or
IOB format or CoNLL format.

Note that without the chunktypes using the
implicit variant of labeling, subsequent chunks of
the same type can not be distinguished from each
other. Therefore these versions are inferior to
the others. Also in the untyped case, there is
the prefixless notation where only chunk types
are kept. And the Inside-Outside (IO) notation,
where only the I and O labels are in use. In
these two inferior variants, one can not distinguish
consecutive chunks of the same type but they are
useful for searching such patterns, because they
are very simple and therefore fast.

One can see that the conversion between these
representations is not trivial, but the Stanford
CoreNLP’s IOBUtils [3] has the proper converter
available to reliably convert between them and can
also fix well-formedness issues (which feature we
used in our measurements before the evaluation).
These representations are traditionally handled
uniformly, but we show how differently they

behave6. For more information on the IOB
representation see [8].

2.1 Lexicalization

The lexicalization invented by Molina and Pla
[4] is thoroughly investigated by Indig and
Endrédy [2] and they present a mildly lexicalized
variant (see Table 2) of the method that has
superior performance. We use this variant
in our measurements with different lexicalization
thresholds. However, we are aware of the problem
arising when using low thresholds that produce
many labels and therefore make most of the
taggers exponentially slow. Also we note that
the number of invalid sequences grows with the
number of classes as the taggers are not aware
of well-formedness. The latter problem can be
overcome by using a proper IOB converter which
can also fix well-formedness issues (see Section 2
for details).

Table 2. Mild lexicalization: only IOB labels of the words
above a given frequency threshold are augmented with
the word and with its POS tag, otherwise the fields are
left untouched. We use ‘+’ as separator because it is
easier to parse than the originally used ‘-’ symbol

Unlexicalized Mildly Lexicalized
(original form) (just words)

Word POS Label POS Label
Steve NNP B-NP NNP B-NP
said VBD O VBD O
the DT B-NP the+DT the+DT+B-NP
bike NN I-NP NN I-NP

The main motivation of the approach of Indig
and Endrédy [2] was to reduce the number of
labels because for agglutinative languages the
original method is not feasible due to the high
number of tags even without any lexicalization.
But we also remark that this problem also exists
with low thresholds used during lexicalization.
Hypothetically, if we would lexicalize all vocabulary
words, the whole problem could be reduced into a
POS-tagging problem, with some extra tags added

6Compare Figure 2 and figures in Section 6.
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to represent the bracketing, so a totally different
approach would be needed to maintain feasible
training time.

The other problem with lexicalization is the
difference between the test and development sets.

The development set has similar properties as
the training set that it is stripped from, but in real
life the test set is from another corpus with different
frequency distribution of word forms. We also
investigate whether (a) using frequent words from
the test set for lexicalizing the training set and (b)
transforming of the optimal threshold obtained on
the development set to the test set yields better
results and therefore makes the whole method
more stable across different test sets.

3 Method

We separated a development set from the
CoNLL-2000 training set by using every 10th
sentence as it was used in the aforementioned
papers. We used mild lexicalization and
the CRFsuite tagger. For each of the five
representations we applied training and test runs
for the development and test sets with different
lexicalization levels to see which threshold yields
the optimal results.

As the size of the three sets differs7, we chose 10
as the lower bound and incremented the threshold
by one till no words were left. The resulting word
sets were used for lexicalization8. We lexicalized
the three sets according to each lexicalization level
conforming to the two lexicalization sources and
tagged both the development and the test set
yielding four tagging results per lexicalization level
per representation9. The resulting tagged sets
were then delexicalized and the well-formedness of
tag sequences was fixed with IOBTools converter
of CoreNLP [3] before evaluation. The gold

7The training set is 198,870, the development set is 21,793
and the test set is 49,389 token long.

8For the test set we could not use the chunk information
as it is suggested for the development set in SS05, therefore
we used all words independent from their known gold standard
chunk type.

9We do not utilize the results from the development set
lexicalized with the words yield from test set (DT).. See
Section 5 for a more detailed explanation on the used set and
lexicalization source pairs.

standard annotation is only revealed in the
evaluation step until then it was treated as
non-existent as is for real life data, where the whole
evaluation step is omited because there is no gold
standard annotation for the tested set at all.

In order to determine the effect of our methods
(see results in Table 3 and 4), we explored the
resulting scores and searched for the best F-score
achieved in the development phase to set the
according lexicalization level for the measurements
afterwards in the test phase. We distinguished
two lexicalization sources (the test and the
development set) that could be combined10 with
the actual set to be tagged. Due to the difference
of the development set and the prospective test set,
we also measured the effect of the transformation
of the lexicalization level – which was the best
in the development phase – to accommodate the
threshold to the lexicalization results of the test
set in order to improve the results (see Table 4).
The details of the transformation algorithm are
presented in the next section.

4 Lexicalization Level Transformation

5 Results

Both the development and the test set have a
Zipfian distribution underlying, but with different
characteristics due to their different size and
domain. We should find the appropriate slope for
the tangent of the optimal threshold level on the
Zipfian curve of the development set (using the
two neighboring points of the curve). Using this
slope, we can apply linear optimization to find the
tangent with the same slope (denoted with a) on
the test set’s Zipfian using the following formula:
minx,y(ax + y). The algorithm should return with
the corresponding position of the curve for the test
sets Zipfian yielding a more optimal lexicalization
level that results from the invariant properties of the
two Zipf curves (see Figure 1).

10By lexicalizing the training set, train the tagger with that set
and tag the likewise lexicalized ‘test’ set.
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Fig. 1. Zipfian distribution of the development and test sets. The tangent of the curve corresponding to the lexicalization
level producing the maximum score on the development set is transformed to the test set by linear optimization
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Fig. 2. Lexicalization thresholds for IOBES. (The other representations are similar. See Section 6)

6 Lexicalization Thresholds for other
Representations

For each lexicalization level we created the
following test sets with their corresponding training
sets: the development set lexicalized with the
words yield from the development set (DD) to set
the fixed lexicalization level for the measurements

afterwards on the test set lexicalized with the words
yield from the development set (TD) to determine
the final F-score (see Table 3).

For comparison we also checked the same
lexicalization threshold on the results of the test set
lexicalized with the words yield from the test set
(TT) and we also used a trasformed lexicalization
level (Tr prefix) to see the improvement.
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Fig. 3. Multiple lexicalization thresholds evaluated for IOB1 representation. Till about 50 the lexicalization with the test
set’s words are clearly better. There is also a significant decrease after reaching the maxima around 16
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Fig. 4. Multiple lexicalization thresholds evaluated for IOB2 representation. Till about 50 the lexicalization with the test
set’s words are clearly better. There is also a significant decrease after reaching the maxima around 16

We does not reveal the gold standard annotation
of the test set until the final evaluation part, so
both presented methods (Section 3 and 4) can be
used in real life for any test set with or without gold
standard data.

In case of Section 3 the optimal parameters
(threshold) are set previously on the development

set therefore we do not train on (the gold standard
annotation of) test set.

Independently, by transforming ‘blindly’ the
optimal threshold gained from the development set
to the test using the two Zipfians (Section 4) we
do not utilize (the gold standard annotation of) the
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Fig. 5. Multiple lexicalization thresholds evaluated for IOE1 representation. Till about 50 the lexicalization with the test
set’s words are clearly better. There is also a significant decrease after reaching the maxima around 16
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Fig. 6. Multiple lexicalization thresholds evaluated for IOE2 representation. Till about 50 the lexicalization with the test
set’s words are clearly better. There is also a significant decrease after reaching the maxima around 16

test set just the frequency distribution – which is
available naturally – for the parameter adjustment.

On Figure 2 the best F-scores come from lower
threshold levels. One can see a monotonic
increase almost until the lowest lexicalization
levels (60 ← 150). We can conclude that the
IOBES variant has clear advantage over the other

representations (about 1%) and the explicit (IOX2)
variants beat the implicit (IOX1) variants (about
0.5%).

Until a threshold value of about 50, lexicalization
with words of the test set is clearly better. There is
a significant decrease after reaching the maximum
around 16. On the right side of Figure 2, one
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Table 3. Maximal scores on different setups (best
lexicalization levels) [The lexicalization threshold is indicated
below the score. Each representation has its maxima on
different level, but around 16. (See Section 3 for column
names)]

DD TD DT TT

IOB1 94.41 94.25 94.41 94.12
55 16 99 114

IOB2 95.13 94.87 95.02 94.65
16 16 41 24

IOE1 94.47 94.21 94.42 94.12
16 16 114 24

IOE2 95.08 94.91 94.97 94.63
16 16 60 24

IOBES 95.55 95.55 95.16 95.13
13 16 29 41

Table 4. The final scores for the test set (with fixed
lexicalization levels)

DD TD TT Tr-TT

IOB1 94.41 94.16 93.96 93.97
55 55 55 59

IOB2 95.13 94.87 93.78 94.38
16 16 16 24

IOE1 94.47 94.21 93.30 93.80
16 16 16 24

IOE2 95.08 94.91 93.68 94.40
16 16 16 24

IOBES 95.55 95.53 94.74 94.85
13 13 13 21

Table 5. Summary of final F-scores, which out-
performed the previous state-of-the-art results (+0.5%
improvement)

chunking method arbitrary
phrases NPs

Shen and Sarkar [6] 94.01 95.23
Indig and Endrédy [2] 95.06 96.49
Our best (13 as threshold) 95.53 96.69

can observe the biggest difference between the
different lexicalization sources. The advantage of
using the words from the test set is due to the fact
that tokens with medium frequency are different
from text to text.

Table 3 (training, development phase) contains
the quantitative analysis of the different lexicaliza-
tion models along with lexicalization thresholds that
belong to the maxima11.

One can see that most of the lexicalization levels
that belong to the best F-scores (%) are below 50,
which was tested by Shen and Sarkar [6] and Indig
and Endrédy [2].

We can conclude that each lexicalization level
behaves similarly regardless of the tested set, but
the behavior of the two lexicalization models are
quite different. In the development phase the best

11The first letter of each column name denotes the set used
in the testing phase and the second letter denotes the source of
lexicalization. D is for the development set, T is for the test set.

Computación y Sistemas, Vol. 21, No. 4, 2017, pp. 637–646
doi: 10.13053/CyS-21-4-2866

Balázs Indig644

ISSN 2007-9737



F-score (optimal upper bound) is achieved with the
development set as lexicalization source. We used
these lexicalization levels in Table 4 in the testing
phase.

In Table 4 (testing phase with the predetermined
lexicalization level) one can see that the best
scores were achieved by using the words from
the development set, but the transformation has
improved the results of the raw mapping of the
levels. The first column contains the maxima of
the development set, the second and third column
contains the raw mapping of the lexicalization level
to the test set with the two lexicalization sources,
the fourth column contains the transformed (Tr)
values and scores, which are better than the raw
scores (third column), but worse than the F-scores
in the second column.

The final scores compared with the previous
results are shown in Table 5 concluding that with
a lower threshold we could gain 0.5% over the
previous results on arbitrary phrase chunking.

7 Conclusion and Future Work

We have presented a thorough analysis of different
lexicalization levels with the current state-of-the-art
method for arbitrary phrase chunking. Our detailed
analysis revealed that the lexicalization level of 50,
which was used in the previous state-of-the-art
method was not the best choice. We could gain
0.5% after setting this threshold to 13. This
leads to the conclusion that using this method
for chunking is more similar to POS-tagging than
to named-entity recognition and may be done
simultaneously in the future.

We introduced a novel method that can be
used to transform the parameters gained on the
development set to the test set taking advantage
of the invariant properties of the similarity of the
two frequency distributions – which are naturally
available – in order to have better and possibly
more stable results. Using this transformation we
could improve the results of the tagging near to
the global optima of the underlying method, but
could not beat the result of TD. However, we think
lexicalization level transforming relevant for other
tasks that benefit from finding frequency cut-offs
across corpora.

Due to the fact that frequency distributions
do not behave like normal functions because of
the individual differences in the data, our linear
optimisation method did not achieve the best
F-scores. A higher level approximation that takes
this fact into account better and uses more global
information could make this method applicable.

For English the chunking task can be con-
sidered solved as nowadays there are many
good-performing parser for English, but for
other languages (that lack good parsers) the
CoNLL-2000 dataset could be a good benchmark
and our method may improve results for those
languages or other tasks as well. Our software
is available at: https://github.com/ppke-nlpg/

less-is-more.
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