
Presburger Constraints in Trees

Everardo Bárcenas1, Edgard Benı́tez-Guerrero2, Jesús Lavalle3, Guillermo Molero-Castillo1

1 Universidad Nacional Autónoma de México,
Mexico

2 Universidad Veracruzana,
Mexico

3 Benemérita Universidad Autónoma de Puebla
Mexico

ebarcenas@unam.mx, edbenitez@uv.mx, jlavalle@cs.buap.mx, gmoleroca@fi-b.unam.mx

Abstract. The fully enriched µ-calculus is an
expressive propositional modal logic with least and
greatest fixed-points, nominals, inverse programs and
graded modalities. Several fragments of this logic
are known to be decidable in EXPTIME. However,
the full logic is undecidable. Nevertheless, it
has been recently shown that the fully enriched
µ-calculus is decidable in EXPTIME when its models
are finite trees. In the present work, we study
the fully-enriched µ-calculus for trees extended with
Presburger constraints. These constraints generalize
graded modalities by restricting the number of children
nodes with respect to Presburger arithmetic expressions.
We show that this extension is decidable in EXPTIME.
In addition, we also identify decidable extensions of
regular tree languages (XML schemas) with interleaving
and counting operators. This is achieved by a
linear characterization in terms of the logic. Regular
path queries (XPath) with Presburger constraints on
children paths are also characterized. These results
imply new optimal reasoning (emptiness, containment,
equivalence) bounds on counting extensions of XPath
queries and XML schemas.

Keywords. Presburger arithmetic, modal
logics, automated reasoning, XPath, regular
languages, interleaving.

1 Introduction

The µ-calculus is an extension of the propositional
modal logic with least and greatest fixed-points.

This logic subsumes many temporal, modal and
description logics (DLs), such as the Propositional
Dynamic Logic (PDL) and the Computation Tree
Logic (CTL) [10, 9]. Due to its expressive
power and nice computational properties, the
µ-calculus has been extensively used in many
areas of computer science, such as program
verification, concurrent systems and knowledge
representation. In this last domain, the µ-calculus
has been particularly useful in the identification of
expressive and computationally well-behaved DLs
[10], which are used as the web ontology language
OWL, now a standard technology for the W3C.
Another standard for the W3C is the XPath query
language for XML.

XPath also takes an important role in many
XML technologies, such as XProc, XSLT and
XQuery. Due to its capability to express recursive
and multi-directional navigation, the µ-calculus has
also been successfully used as a framework for
the evaluation and reasoning of XPath queries
[5, 4, 12]. However, extending (Presburger)
arithmetical constraints for XPath queries leads to
undecidablity [36]. In the current paper, we identify
a decidable extension, vı́a a logic characterization,
of XPath queries with Presburger arithmetical
constraints on children paths.

The µ-calculus is as expressive as the monadic
second order logic (MSO) [12], it has thus been
successfully used in the XML setting in the

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

ISSN 2007-9737

p

q q . . . q

(a) Regular tree expression: p(q?)

p

q q q q q

(b) Counting tree expression: p
(
q[3,5]

)
Fig. 1. Tree expressions

description of schema languages [4], which can
be seen as the tree version of regular expressions.
Analogously as regular expressions are interpreted
as sets of strings, XML schemas (regular tree
expressions) are interpreted as sets of unranked
trees (XML documents). For example, expression
p(q?) represents the sets of trees rooted at p
with either none, one or more children subtrees
matching q. See Figure 1(a) for an interpretation
of p(q?). Counting operators impose occurrence
bounds on children [28]. For instance, p

(
q[3,5]

)
denotes the trees rooted at p, with at least 3 but no
more than 5 children matching q. In Figure 1(b),
it is depicted an interpretation of p

(
q[3,5]

)
. In

the present work, we proposea new EXPTIME
decision algorithm for regular tree languages with
counting operators. Furthermore, we also identify
a new extension of regular tree languages with
the interleaving operator [27]. This extension has
also an EXPTIME upper bound. This operator
is used to denote the trees resulting from the
permutation of siblings, and it has also applications
in algebraic approaches of concurrent computation
models. Also, in XML schema languages there are
interleaving operators, such as in RelaxNG.

1.1 Related Work

The extension of the µ-calculus with nominals,
inverse programs and graded modalities is
known as the fully enriched µ-calculus [10].
Nominals are intuitively interpreted as singleton
sets, inverse programs are used to express
past properties (backward navigation along
accesability relations), and graded modalities

express numerical constraints on the number
immediate successor nodes [10]. However,
satisfiability/validity of the fully enriched µ-calculus
was proven by Bonatti and Peron to be undecidable
[11]. Nevertheless, Bárcenas et al. [4] recently
showed that the fully enriched µ-calculus is
decidable in single exponential time when its
interpretations are restricted to finite trees. Graded
modalities in the context of trees are used to
constrain the number of children nodes with
respect to natural numbers. In this work, we
introduce a generalization of graded modalities.

This generalization considers numerical bounds
on children with respect to Presburger arithmetical
expressions, as for instance φ > ψ, which
restricts the number of children where φ holds
to be strictly greater than the number of children
where ψ is true. Other works have previously
considered Presburger constraints on tree logics.
MSO with Presburger constraints was shown to
be undecidable by Seidl et al. [31]. Demri
and Lugiez proved a PSPACE-complete bound
on the propositional modal logic with Presburger
constraints [16]. A tree logic with a fixed-point
and Presburger constraints was shown to be
decidable in EXPTIME by Seidl et al. [33, 32]. In
the current work, we push decidability further by
allowing nominals and inverse programs in addition
to Presburger constraints.

Regarding expressiveness, in [17] is proposed
an extension of MSO with counting on unranked
trees, together with the corresponding weighted
automata. Other forms of counting considering
more extensive tree regions, such as ancestors or
descendants, have been studied in [37, 2, 8, 39,
5, 34, 1, 24], however in contrast with the current
work, these works consider node occurrence
constraints with respect to natural numbers only.
An extension of first order logic with two variables
FO2 with counting quantifiers interpreted over two
forests of ranked trees was recently proposed
in [13, 14]. The counting quantifiers consist of
existential ∃#k (# ∈ {≤,≥, =}) restrictions with
respect to a constant k. This logic was shown to
be in NEXPTIME.

As in this article, Fischer-Ladner satisfiability
algorithms for counting extensions of the
µ-calculus for trees are introduced in [4, 5].

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Everardo Bárcenas, Edgard Benítez Guerrero, Jesús Lavalle, Guillermo Molero Castillo282

ISSN 2007-9737

In these works, it was also showed that these
counting constraints with respect to numbers only,
although exponentially more succinct, does not
introduce extra-expressive power. This allowed
to use the traditional Fixed-Point Theorem for the
µ-calculus to prove the algorithm correctness.
Contrastingly, in the current work we propose
a counting extension of the µ-calculus with full
Presburger arithmetic, which clearly implies more
expressive power. In order to prove the algorithm
correctness, we prove a generalization of the
Fixed-Point Theorem for the Presburger extension
of the µ-calculus for trees, which is also technical
result of independent interest.

Complexity and succinctness of regular tree
(string) languages extended with counting and
interleaving operators have been extensively
studied in [28, 27, 19, 4, 15]. In [19], Gelade shows
that the interleaving operator is exponentially
more succinct, even when it is directly encoded
by tree automata. It is also shown that
hardcoding counting operators produces doubly
exponential larger expressions. Meyer and
Stockmeyer showed in [28] that the equivalence
of regular expressions with counting operators is
EXPSPACE-complete. EXPSPACE completeness
of the equivalence of regular expressions with
interleaving was proven in [27].

In [4], it is described and extension of regular
trees expressions with counting and interleaving,
where emptiness, containment and equivalence
are decidable in EXPTIME. In the current work, we
identify further extensions of interleaving occurring
in recursive and disjunctive fragments. Emptiness,
containment and equivalence are also proved to
be EXPTIME.

Regarding counting, operators introduced in [4],
although impose occurrence bounds on children,
do not restrict the consecutive occurrence of
children. This contrasts with traditional semantics
of counting in regular languages [28, 19]. In the
current work, by means of Presburger constraints,
we identify an extension of regular tree expressions
with traditional counting operators decidable in
EXPTIME. In [15], it is introduced a polynomial
algorithm for the containment of regular trees with
both counting and interleaving.

The algorithm assumes two main restrictions on
tree expressions: propositions occur only once,
and counting can be applied to propositions only.
The EXPTIME algorithm proposed in the current
work overcomes these two limitations.

Counting operators on regular paths (XPath)
have been studied before in [36, 4, 5]. ten Cate and
Marx [36] showed that Presburger constraints on
full regular paths lead to an undecidable formalism.

In [4], it was shown that when restricting only
children with respect to a natural number (encoded
in binary), reasoning (emptiness, containment and
equivalence) is in EXPTIME. This result was
extended to operators capable of constraining
(w.r.t. a binary number) any regular path,
including ancestors, descendants, compositions,
etc. [5]. In this paper, we show that full Presbuger
arithmetic becomes decidable on children paths.
Furthermore, we set new optimal EXPTIME
bounds for containment and equivalence on full
(multi-directional) regular paths with Presburger
constraints on children.

1.2 Outline

We introduce a modal logic for trees with
fixed-points, inverse programs, and Presburger
constraints in Section 2.

In Section 3, an EXPTIME satisfiability algorithm
is described and proved correct. Also, it is
shown that the computational cost of the algorithm
is single exponential time with respect to the
size of the input formula, even if the Presburger
constraints are encoded in binary form.

In Section 4, we introduce extensions of regular
tree languages with counting and interleaving
operators.

In Section 5, regular path queries extended with
Presburger constraints on children are introduced.
Both extensions of regular trees and paths are
shown to be succinctly captured in terms of logic
formulas. This implies the satisfiability algorithm
can be used as an optimal reasoning framework
for regular trees and paths with counting and
interleaving.

A summary together with a discussion of further
research perspectives are reported in Section 6.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Presburger Constraints in Trees 283

ISSN 2007-9737

2 Tree Logic with Recursion, Inverse,
and Presburger Constraints

In this section, we introduce an expressive modal
logic for finite unranked tree models. The
tree logic (TL) is equipped with operators for
recursion (µ), inverse programs (I), and Presburger
constraints (C). This logic can be seen as the fully
enriched µ-calculus [10], extended with Presburger
constraints, interpreted over tree structures.

2.1 Syntax and Semantics

We first consider a set of propositions P , a finite
set of modalities M = {↓,→, ↑,←}, and a set of
variables X.

Definition 1 (µTLIC syntax). The set of µTLIC
formulas is defined by the following grammar:

φ :=p | x | ¬φ | φ ∨ φ | 〈m〉φ | µx.φ | γ> b,

γ :=aφ | γ + γ,

where p ∈ P , x ∈ X, m ∈M , b ∈ N, k ∈ N \ {0, 1},
a ∈ Z \ {0}. Numbers a, k and b are asumed to
be encoded in binary. We consider the following
assumptions about variable occurrences: as usual,
in order to ensure the existence of fixed-points, we
assume variables occurs positively, that is, under
the scope of an even number of negations [38];
also, variables are guarded, that is, variables occur
bounded (where µ is the only binding operator) and
under the scope of a modal formula (〈m〉φ), or a
counting formula (γ > b) [38]; and in order to make
the least and greatest fixed points coincide, we
assume variables are cycle-free, that is, variables
does not occur under the scope of a modality and
its converse [20].

In order to provide a formal semantics, we need
some preliminaries. A tree structure T is a tuple
(P ,N ,R,L), where:

— P is a set of propositions;

— the set of nodes N is defined as a complete
prefix-closed non-empty finite set of words
over the natural numbers N, that is, N is a
finite set of words N ⊆ N?, such that if n · i ∈
N , where n ∈ N? and i ∈ N, then also n ∈ N ;

— R : N ×M ×N is a transition relation, written
n ∈ R(n′,m), such that for all (n ·i), (n ·i+1) ∈
N , where i ∈ N, n ∈ R(n·i, ↓), (n·i) ∈ R(n, ↑),
(n·i+1) ∈ R(n·i,→) and (n·i) ∈ R(n·i+1,←),
we say n is the parent of n · i, hence n · i is the
child of n, n · i+1 is a following (right) sibling of
n · i, and hence n · i is a previous (left) sibling
of n · i+ 1; and

— L : N×P is a left-total labeling relation, written
p ∈ L(n).

In the setting of XML documents (unranked trees),
node labels are defined by a function instead of
a relation, that is, exactly one proposition holds at
each node. The satisfiability algorithm described in
Section 3 can easily be adapted for this restriction
(see Definition 6).

Given a tree structure, a valuation V of variables
is defined as a function from the set variables X to
a set of nodes V : X 7→ 2N . For nodes N ′ ⊆ N ,
we write V

[
N ′
/x

]
to denote the valuation V ′, such

that V ′(x) = N ′ and V ′(x′) = V (x) for x′ 6= x.

Definition 2 (µTLIC semantics). Given a tree
structure T and a valuation V , µTLIC formulas are
interpreted as follows:

[[p]]
T
V = {n | p ∈ L(n)} ,

[[x]]
T
V =V (x),

[[¬φ]]
T
V =N \ [[φ]]

T
V ,

[[φ ∨ ψ]]
T
V = [[φ]]

T
V ∪ [[ψ]]

T
V ,

[[〈m〉φ]]
T
V =

{
n | R(n,m) ∩ [[φ]]

T
V 6= ∅

}
,

[[µx.φ]]
T
V =

⋂{
N ′ ⊆ N

∣∣∣ [[φ]]
T
V [N′/x] ⊆ N

′
}

,

[[γ > b]]
T
V =

{
n | ||γ||TnV > k

}
,

||aφ||TnV =a×
∣∣∣R(n, ↓) ∩ [[φ]]

T
V

∣∣∣ ,
||γ1 + γ2||TnV = ||γ1||TnV + ||γ2||TnV .

We say a tree T satisfies, or is a model of, a
formula φ, if and only if, the interpretation of φ
under T and any valuation V is not empty, that is,
[[φ]]
T
V 6= ∅. A formula is valid, if and only if, it is

satisfied by every tree. It is easy to see a formula
φ is valid, if and only if, ¬φ is unsatisfiable.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Everardo Bárcenas, Edgard Benítez Guerrero, Jesús Lavalle, Guillermo Molero Castillo284

ISSN 2007-9737

The satisfiability problem for µTLIC consists
in deciding whether or not a given formula
is satisfiable.

We now give an intuition about the interpretation
of formulas: propositions p are node labels;
negation and disjunction are interpreted as the
complement and the union of sets, respectively;
modal formulas 〈m〉φ are true in nodes, such
that φ holds in at least one accessible node
through adjacency m, which may be either ↓,
→, ↑ or ←, which in turn are interpreted as
the children, right sibling, parent and left siblings
relation, respectively; µx.φ is interpreted as the
least fixed-point; a counting formula γ > b hold in a
node, if and only if, the number of its children where
γ true satisfy the corresponding constraint > b,
respectively, for instance, p1 + (−2)p2 > 0 holds
in nodes where the number of children where p1
holds is greater than twice the number of children
where p2 is true.

We also use the following traditional notation:

> := p ∨ ¬p, ⊥ := ¬>,

φ ∧ ψ := ¬(¬φ ∨ ¬ψ), [m]φ := ¬〈m〉¬φ,

γ ≤ b := ¬(γ ≤ b).

Note that > is true in every node, hence ⊥ in none,
conjunction φ ∧ ψ holds whenever both φ and ψ
are true, [m]φ holds in nodes where φ is true in
each accessible node through m, and γ ≤ b is true
in nodes where the corresponding children satisfy
≤ b. Other common counting operators can also
be expressed, for instance, γ = b can be written
instead of (γ ≤ b) ∧ (γ > b − 1), where b > 0.
Below in further sections, we also write b1#γ#b2
(# ∈ {>,≤, =}) instead of (γ#b1) ∧ (γ#b2).

Examples

Consider for instance the following formula ψ:

p ∧ (r ≤ 2q),

where (r ≤ 2q) stands for 1r + (−2)q ≤ 0. ψ is
true in nodes labeled by p, such that the number
of its q children is at least twice the number of
its r children. This is a common example that
goes beyond the expressive power of (graded)
µ-calculus and regular languages [16].

pψ

q q q q r r

Fig. 2. A model for ψ := (p ∧ [r ≤ 2q])

In Figure 2, there is a graphical representation of
a model for ψ:

It is also possible to express recursive
navigation, for example, consider the following
formula φ:

µx.ψ ∨ 〈↓〉x,

φ is true in nodes with at least one descendant
where ψ is true, that is, φ recursively navigates
along children until it finds a ψ node.

Backward navigation may also be expressible
with the help of inverse programs (converse
modalities). For instance, consider the following
formula ϕ:

µx.ψ ∨ 〈↑〉x,

ϕ holds in nodes with an ancestor where ψ is true,
that is, ϕ recursively navigates along parents until it
finds a ψ node. Furthermore, in contrast with other
approaches without converse modalities [16, 32],
this new feature allows to count also on sibling
nodes. For instance:

〈↑〉(p > 10)

holds in nodes with more than 10 siblings named p.

2.2 Other Forms of Counting

We now show how several notions of counting
(nominals, graded modalities and global counting)
can also be expressed in terms of µTLIC formulas.

Hybrid Logics

The interpretation of nominals is a singleton, that
is, nominals are formulas which are true in exactly
one node in the entire model [9]. Now, it is easy
to see that µTLIC can navigate recursively thanks
to the fixed-points, and in all directions thanks to
inverse programs.

Hence, µTLIC can then express for a formula to
be true in one node while being false in all other

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Presburger Constraints in Trees 285

ISSN 2007-9737

nodes of the model. Nominals are then defined as
follows:

nom(φ) =φ ∧ Siblings(¬φ ∧Descendants(¬φ)),

∧Ancestors(¬φ ∧ Siblings(¬φ)),

∧Descendants(¬φ),

where formulas Siblings(φ), Ancestors(φ), and
Descendants(φ) are true, if and only if, φ is
true in all siblings, ancestors, and descendants,
respectively. More precisely:

Navm(φ) :=〈m〉µx.φ ∧ (〈m〉x ∨ ¬〈m〉>),

Siblings(φ) :=Nav→(φ) ∧Nav←(φ),

Descendants(φ) :=Nav↓(φ ∧ Siblings(φ)),

Ancestors(φ) :=Nav↑(φ).

Graded Logics

In modal logics, graded modalities are specialized
operators for expressing numerical bounds on the
occurrence of a sole formula in adjacent nodes. In
the context of tree models, the numerical bounds
are on children nodes [4]. For instance, formula
〈↓, k〉φ holds in nodes with at least k + 1 children
where φ is true. More precisely, given a tree
structure T and a valuation V , graded formulas are
interpreted as follows:

[[〈↓, k〉φ]]
T
V =

{
n |
∣∣∣{n′ | n′ ∈ R(n, ↓) ∩ [[φ]]

T
V

}∣∣∣ > k
}

,

[[[↓, k]φ]]
T
V = [[¬〈↓, k〉¬φ]]

T
V ,

where k is a positive integer number encoded in
binary. [↓, k]φ formulas are true in nodes with
all but at most k children satisfying φ. It is then
easy to see that Presburger formulas can express
graded modalities, more precisely, for any tree T
and valuation V , we have that:

[[φ > k]]
T
V = [[〈↓, k〉φ]]

T
V .

Global Counting

Global numerical constraints, as its name suggest,
are operators used to impose constraints on the
occurrence of a sole formula with respect to a
constant in the entire model [37, 2, 39, 5].

That is, a formula φ >G k holds in the entire
model, if and only if, φ is satisfied by at least k + 1
nodes. More precisely, the interpretation of global
counting formulas with respect to a tree T and a
valuation V is the following:

[[φ >G k]]
T
V =

{
N if

∣∣∣[[φ]]
T
V

∣∣∣ > k,

∅ otherwise.

Note that the intended interpretation of φ ≤G k
is the same as for formula ¬ (φ >G k). In [5], it
was shown that regular path queries (XPath) with
numerical constraints on any path, for instance
ancestors or descendants, can be succinctly
expressed by global counting formulas. It was also
shown in [5] that global numerical constraints does
not provided extra expressive power by means
of a reduction to the two-way µ-calculus (without
counting). More precisely, for any binary tree T
(for technical convenience, binary trees are used
instead of n-ary trees, there is a well known
bijection between them, see Figure 3 on page 7)
and valuation V , we have the following:

[[φ >G k]]
T
V =[[µx.(Cφk ∧ r) ∨ 〈↑〉x ∨ 〈←〉x]]TV ,

where r stands for the root node ¬〈↑〉> ∧ ¬〈←〉>,
and Cφk counts at least k + 1 occurrences of φ in
descendant nodes. More precisely:

Cφ0 :=µx.φ ∨ 〈↓〉x ∨ 〈→〉x,

Cφ1 :=µx.
(
φ ∧

(
〈↓〉Cφ0 ∨ 〈→〉C

φ
0

))
∨,(

¬φ ∧ 〈↓〉Cφ0 ∧ 〈→〉C
φ
0

)
∨ 〈↓〉x ∨ 〈→〉x,

Cφi :=µx.
(
φ ∧

(
〈↓〉Cφi−1 ∨ 〈→〉C

φ
i−1 ,

∨
∨

k1+k2=i−2

〈↓〉Cφk1 ∧ 〈→〉C
φ
k2

))
,

∨

(
¬φ ∧

∨
k1+k2=i−1

〈↓〉Cφk1 ∧ 〈→〉C
φ
k2

)
,

∨ 〈↓〉x ∨ 〈→〉x.

µTLIC can therefore also express global numerical
constraints. However, it is not hard to see that
hardcoding of global numerical constraints comes
at an exponential cost [5].

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Everardo Bárcenas, Edgard Benítez Guerrero, Jesús Lavalle, Guillermo Molero Castillo286

ISSN 2007-9737

3 Satisfiability

In the current section, we describe a satisfiability
algorithm for the logic µTLIC. That is, given
an input µTLIC formula, the algorithm decides
whether or not there is a tree model satisfying
the formula. The algorithm inspired from the
well-known Fischer-Ladner approach [18] and the
binary encoding of counting constraints introduced
in [5, 4]. Candidate trees are enumerated starting
from the single nodes (leaves). Then, parents are
iteratively added until a satisfying tree is found. The
stop condition for this iterative process is given by
the number of available nodes, which are defined
as sets of subformulas (of the input formula).
These subformulas represents the information
required to build the trees: node names, tree
topology, Presburger constraints. One notable
distinction of our algorithm is that Presburger
constraints are encoded in binary form.

Before describing the algorithm, we describe the
notion of trees. Then we show that the algorithm is
correct and in EXPTIME.

3.1 Fischer-Ladner-Presburger Trees

We first give a detailed description of the
syntactic version of tree models constructed by the
satisfiability algorithm.

Some preliminaries are now introduced. There
is well-known bijection between binary and n-ary
trees [22]. One adjacency is interpreted as the
first child relation and the other adjacency is for
the right sibling relation. In Figure 3 is depicted
an example of the bijection. Hence, without loss
of generality, from now on, we consider binary
unranked trees only. At the logic level, formulas
are interpreted as expected: 〈↓〉φ holds in nodes
such that φ is true in its first child; 〈→〉φ holds in
nodes where φ is satisfied by its right (following)
sibling; 〈↑〉φ is true in nodes whose parent satisfies
φ; and 〈←〉φ satisfies nodes where φ holds in its
left (previous) sibling.

For the satisfiability algorithm we consider
formulas in negation normal form only.

n

n n

n . . . n

n . . . n

n

n n n . . . n

n . . . n

Fig. 3. Bijection of n-ary and binary trees

The negation normal form (NNF) of µTLIC
formulas is defined by the usual De Morgan rules
and the following ones:

nnf(¬p) :=¬p,
nnf(¬x) :=¬x,

nnf(¬(φ ∨ ψ)) :=nnf(¬φ) ∧ nnf(¬ψ),

nnf(¬(φ ∧ ψ)) :=nnf(¬φ) ∨ nnf(¬ψ),

nnf(¬〈m〉φ) :=〈m〉nnf(¬φ) ∨ ¬〈m〉>,

nnf(¬µx.φ) :=µx.nnf(¬φ) [x/¬x] ,

nnf(¬(γ > b)) :=γ ≤ b,
nnf(¬(γ ≤ b)) :=γ > b.

Hence, negation symbol ¬ in formulas in NNF
occurs only in front of propositions and formulas
of the form 〈m〉>. It is also easy to see that the
negation normal form of a formula has linear size
with respect to the size of the formula. Also notice
that we consider an extension of µTLIC formulas
consisting of conjunctions, γ ≤ b, and > formulas,
with the expected semantics.

From now on, we often write γ#b to denote any
of the following formulas: γ > b or γ ≤ b.

We now consider a binary encoding of natural
numbers. Given a finite set of propositions, the
binary encoding of a natural number is the Boolean
combination of propositions satisfying the binary
representation of the given number. For example,
number 0 is written

∧
i≥0 ¬pi, and number 7 is

p2 ∧ p1 ∧ p0 ∧
∧
i>2 ¬pi (111 in binary). The binary

encoding of numbers is required in the definition

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Presburger Constraints in Trees 287

ISSN 2007-9737

of counters, which are used in the satisfiability
algorithm to verify counting subformulas.

Definition 3 (Counters). Given a formula φ and a
number b > 0, a counter of φ set to k is defined by:

(C(φ) = b) := φi,

where i ∈ {0, . . . , dlog(b)e}, φi is a sequence of
propositions φi occurring positively in the binary
encoding of b.

Consider for instance the counter of formula φ
set to 7:

(C(φ) = 7) := φ0,φ1,φ2.

We write (C(φ) = b) ∈ S, when each φi ∈ S, where
(C(φ) = b) := φi.

A formula φ induces a set of counters
corresponding to its counting subformulas. The
bound on the number of propositions used by
counters is given by K(φ), and it is proved in
Theorem 5.

Nodes in Fischer-Ladner-Presburger trees
are defined as sets of subformulas. These
subformulas are extracted with the help of the
Fischer-Ladner-Presburger Closure. Before
defining the Closure, we define the following set of
subformulas of a counting expression:

S(aφ) = {φ}, S(γ1 + γ2) = S(γ1) ∪ S(γ2).

We often write φγ to denote φ ∈ S(γ).

Now, consider the following binary relation RFLP

on the set of µTLIC formulas, for i = 1, 2, ◦ = ∨,∧,
j = 0, . . . , dlog(K(φ))e and each φγ ∈ S(γ):

RFLP (ψ, nnf(¬ψ)) ,

RFLP (ψ1 ◦ ψ2,ψi) ,

RFLP (〈m〉ψ,ψ) ,

RFLP (µx.ψ,ψ
[
µx.ψ/x

])
,

RFLP (γ#b, 〈↓〉µx.φγ ∨ 〈→〉x) ,

RFLP (γ#b,φjγ
)

,

RFLP (¬ψ,ψ) .

Definition 4 (Fischer-Ladner-Presburger Closure).
Given a formula φ, the Fischer-Ladner-Presburger
Closure of φ is defined as CLFLP(φ) = CLFLP

k (φ),
such that k is the smallest positive integer
satisfying CLFLP

k (φ) = CLFLP
k+1(φ), where for i ≥ 0:

CLFLP
0 (φ) ={φ},

CLFLP
i+1(φ) =CLFLP

i (φ),

∪
{
ψ | RFLP(ψ′,ψ),ψ′ ∈ CLFLP

i (φ)
}

.

Example 1. Consider the following formula:

φ := p ∧ [(q − r) > 1] ∧ r > 0.

This formula holds in p nodes with at least
one more q child with respect to r children.
In Figure 4, there is graphical representation
of a φ-tree (Definition 7) for formula φ. In
the definition of φ-trees, we use the notion of
Fischer-Ladner-Presburger closure, which in the
case of φ is defined as follows for j = 0, 1, 2:

CLFLP(φ)={p ∧ [(q − r) > 1] ∧ (r > 0)),

p ∧ [(q − r) > 1], (r > 0), p, [(q − r > 1)],

q, r, qj , rj , 〈↓〉µx.q∨〈→〉x, 〈↓〉µx.r∨〈→〉x},

∪ CLFLP(nnf(φ)).

We are now ready to define the lean set
for nodes in Fischer-Ladner-Presburger trees.
The lean set contains the propositions, modal
subformulas, counters and counting subformulas
of the formula in question (for the satisfiability
algorithm). Intuitively, propositions will serve
to label nodes, modal subformulas contain the
topological information of the trees, and counters
are used to verify the satisfaction of counting
constraints.

Definition 5 (Lean). Given a formula φ, its lean set
is defined as follows:

lean(φ) =
{
p, 〈m〉φ, γ#b,ψiγ ∈ CLFLP(φ)

}
∪ {〈m〉>, p′} ,

provided that p′ does not occur in φ, and m =↓,→
, ↑,← .

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Everardo Bárcenas, Edgard Benítez Guerrero, Jesús Lavalle, Guillermo Molero Castillo288

ISSN 2007-9737

Example 2. Consider again the formula φ := p ∧
[(q − r) > 1] ∧ r > 0 of Example 1, then for i = 1, 2
and j = 0, 1, 2, we have that:

lean(φ) ={p, q, r, qj , rj , 〈↓〉ψi, 〈→〉ψi, 〈↓〉nnf(ψj),
〈→〉nnf(ψj), (q − r)#1, r#0, 〈m〉>, p′},

where
ψ1 = µx.q ∨ 〈→〉x and ψ2 = µx.r ∨ 〈→〉x.

Recall that qj and rj are the corresponding
propositions (associated to q and r) required
to define the corresponding binary encoding
of numbers.

Definition 6. The set of φ-nodes is defined
as follows:

N φ ={nφ ⊆ lean(φ) | p ∈ nφ,

〈m〉ψ ∈ nφ ⇒ 〈m〉> ∈ nφ,

〈↑〉> ∈ nφ ⇔ 〈←〉> 6∈ nφ}.

Intuitively, a φ-node nφ is defined as a subset of
the lean, such that:

— at least (exactly1) one proposition (different
from the counter propositions) occurs in nφ;

— if a modal subformula 〈m〉ψ occurs in nφ, then
〈m〉> also does; and

— both 〈↑〉> and 〈←〉> can not occur in nφ.

When it is clear from the context, φ-nodes are
called simply nodes.

We are finally ready to define the
Fischer-Lander-Presburger φ-trees.

Definition 7. A φ-tree is defined:

— either as empty ∅, or

— as a triple (nφ,Tφ1 ,Tφ2), provided that nφ is a
φ-node and Tφi (i = 1, 2) are φ-trees.

The root of (nφ,Tφ1 ,Tφ2) is nφ. We often call φ-trees
simply trees.

1In the XML setting, exactly one proposition occurs at each
node.

Example 3. Consider again the following formula
φ := p ∧ [(q − r) > 1] ∧ r > 0. Then
T = (n0, (n1, ∅, (n2, ∅, (n3, ∅, (n4, ∅, ∅)))), ∅) is a
φ-tree, where:

n0 ={p,C(q) = 0,C(r) = 0, (q − r) > 1, r > 0,

〈↓〉ψ1, 〈↓〉ψ2, 〈↓〉>},
n1 ={q,C(q) = 3,C(r) = 1, (q − r) ≤ 1, r ≤ 0,

〈→〉ψ1, 〈→〉ψ2, 〈↑〉>, 〈→〉>},
n2 ={q,C(q) = 2,C(r) = 1, (q − r) ≤ 1, r ≤ 0,

〈→〉ψ1, 〈→〉ψ2, 〈←〉>, 〈→〉>},
n3 ={q,C(q) = 1,C(r) = 1, (q − r) ≤ 1, r ≤ 0,

〈→〉ψ2, 〈←〉>, 〈→〉>},
n4 ={r,C(q) = 0,C(r) = 1, (q − r) ≤ 1, r ≤ 0,

〈←〉>}.

φ-nodes ni (i = 0, . . . , 4) are defined from the
lean of φ (Example 2). In Figure 4 is depicted a
graphical representation of T . Notice that counters
in the root n0 are set to zero 0, that is, no
proposition corresponding to counters occurs. This
is because counters are intended to count siblings
only. For instance, counters in n1 are set to 3
and 1 for q and r, respectively, because there
are three q’s and one r in n1 and its siblings.
Counting formulas occur positively only at the
root n0, because they are intended to be true
when the counters in the children of n0 satisfy the
Presburger constraints. Since ni (i > 0) does
not have children, then counting formulas occur
negatively (recall the negation normal form of the
input formula is also in the lean) in these nodes.
Finally, notice that modal subformulas define the
topology of the tree.

3.2 The Algorithm

We now define a satisfiability algorithm for the logic
µTLIC following the Fischer-Ladner method [5, 4,
16, 18]. Given an input formula, the algorithm
decides whether or not the formula is satisfiable.
The algorithm builds φ-trees in a bottom-up
manner. Starting from the leaves, parents are
iteratively added until a satisfying tree, with respect
to φ, is found.

Algorithm 1 describes the bottom-up
construction of φ-trees.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Presburger Constraints in Trees 289

ISSN 2007-9737

n0

n1

q

n2

q

n3

q

n4

r

Step 1

Step 2

Step 3

Step 4

Step 5
p

Fig. 4. φ-tree model for φ = p ∧ [(q − r) > 1] ∧ (r > 0)
built by the satisfiability algorithm in 5 steps

Algorithm 1 Satisfiability algorithm for µTLIC
Y ← N φ

X ← Init(φ)
X ′ ← ∅
while X 6` φ and X 6= X ′ do

X ′ ← X
X ← Update(X ′,Y)
Y ← Y \ root(X)

end while
if X ` φ then

return φ is satisfiable
end if
return φ is not satisfiable

The set Init(φ) gathers the leaves. The
satisfiability of formulas with respect to φ-trees is
tested with the entailment relation `. Inside the
loop, the Update function consistently adds parents
to previously build trees until either a satisfying
tree is found or no more trees can be built. If a
satisfying tree is found, the algorithm returns the
input formula is satisfiable, otherwise, the algorithm
returns the input formula is not satisfiable.

Example 4. Consider the formula φ := p∧[(q−r) >
1]∧ (r > 0). The φ-tree T , described in Example 3,
is built by the satisfiability algorithm in 5 steps. All
leaves are first defined by Init(φ) (Definition 9):
notice that n4 is a leaf because it does not contain
downward modal formulas. Once in the while
cycle, parents and previous siblings are iteratively
added to previously built trees, which by the second
step consists of leaves only: since 〈↓〉(µx.r∨〈→〉x)
and 〈↓〉> occur in n3, and r and 〈↑〉> occur in n4,
it is clear n3 can be the parent of n4, analogously

for n2 and n3, and n1 and n2, respectively; also it
is clear that n0 can be a parent of n1. Notice that
n0 is the root due to the absence of upward modal
formulas 〈↑〉> and 〈←〉>. The construction of T is
graphically represented in Figure 4.

We now give a detailed description of the
algorithm components.

Definition 8 (Entailment). The entailment relation
is defined as follows:

n ` >
φ ∈ n
n ` φ

φ 6∈ n
n ` ¬φ

n ` φ n ` ψ
n ` φ ∧ ψ

n ` φ
n ` φ ∨ ψ

n ` ψ
n ` φ ∨ ψ

n ` φ
[
µx.φ/x

]
n ` µx.φ

.

If there is a node n in a tree T , such that n entails
φ (n ` φ) and formulas 〈↑〉> and 〈←〉> does not
occur in the root of T , we then say that the tree T
entails φ, T ` φ. Given a set of trees X, if there is
a tree T in X entailing φ (T ` φ), then X entails φ,
X ` φ. Relation 6` is defined in the obvious manner.

Leaves are φ-nodes without downward
adjacencies, that is, formulas with the form
〈↓〉ψ or 〈→〉ψ do not occur in leaves. Also,
counters are properly initialized, that is, for each
counting subformula γ#b of the input formula, if a
leaf satisfies φγ , then C(φγ) = 1 is contained in
the leaf, otherwise C(φγ) = 0, that is, no counting
proposition corresponding to φγ occurs in the leaf.
The set of leaves is defined by the Init function.

Definition 9 (Init). Given a formula φ, its initial set
Init(φ) is defined as follows:

{nφ ∈ N φ | 〈↓〉>, 〈→〉> 6∈ nφ

γ#b∈ lean(φ),φγ ∈ nφ ⇒ [C(φγ) = 1] ∈nφ

γ#b∈ lean(φ),φγ 6∈ nφ ⇒ [C(φγ) = 0] ∈nφ}.

Notice that, from definition of φ-nodes, if
formulas of the forms 〈↓〉> and 〈→〉> do not occur
in leaves, then neither formulas of the forms 〈↓〉ψ
and 〈→〉ψ do.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Everardo Bárcenas, Edgard Benítez Guerrero, Jesús Lavalle, Guillermo Molero Castillo290

ISSN 2007-9737

Example 5. Consider again the formula φ of
Example 3. It is then easy to see that n4 is a leaf.
n4 does not contain downward modal formulas 〈↓
〉ψ and 〈→〉ψ. Also, counters are properly initialized
in n4, i.e., C(r) = 1 occurs in n4.

The Update function consistently adds parents to
previously built trees. Consistency is defined with
respect to two different notions. One notion is with
respect to modal formulas. For example, a modal
formula 〈↓〉φ is contained in the root of a tree, if and
only if, its first child satisfies φ.

Definition 10 (Modal Consistency). Given a
φ-node nφ and a φ-tree T with root r, nφ and T
are m modally consistent ∆m(nφ,T), if and only if,
for all 〈m〉ψ, 〈m〉φ in lean(φ), where m ∈ {↓,→}
and m ∈ {↑,←}, we have that:

〈m〉ψ ∈ nφ ⇔ r ` ψ,

〈m〉ψ ∈ r ⇔ nφ ` ψ.

Example 6. Consider φ in Figure 4. In step 2, it
is easy to see that n3 is modally consistent with
n4: formula 〈→〉µx.r ∨ 〈→〉x is clearly true in n3,
because r occurs in n4. In the following steps, ni is
clearly modally consistent with ni+1.

Another consistency notion is defined in terms
of counters. Since the first child is the upper
one in a tree, it must contain all the information
regarding counters, i.e., each time a previous
sibling is added by the algorithm, counters must be
updated. Counter consistency must also consider
that counting formulas occurs in the parents, if and
only if, the counters of its first child are consistent
with constraints in counting subformulas.

Definition 11 (Counter Consistency). Given a
φ-node nφ and trees T1 and T2, we say that nφ

and T1 and T2 are counter consistent, written
Θ(nφ,T1,T2), if and only if, for the roots r1 and
r2 of T1 and T2, respectively, and for all counting
formulas γ#b in lean(φ), we have that:

(C(φγ) = b′) ∈ nφ,nφ ` φγ ⇔ (C(φγ) = b′ − 1) ∈r2,

(C(φγ) = b′) ∈ nφ,nφ 6` φγ ⇔ (C(φγ) = b′) ∈ r2,

(γ#b) ∈ nφ ⇔ ∀ (C(φγ) = b′) ∈ r1 : γ
[
b′/φγ

]
#b.

Example 7. Consider the formula φ of Example 3
and Figure 4. In steps 2, 3 and 4, since previous
siblings are added, counters for q are incremented
in n3, n2 and n1, respectively. In step 5, the
counting formulas q − r > 1 and r > 0 are present
in the root n0, due to the fact that counters, in the
first child, satisfy the Presburger constraints.

Update function gathers the notions of counter
and modal consistency.

Definition 12 (Update). Given a set of φ-trees
X and set of φ-nodes Y , the update function is
defined as follow for i = 1, 2:

Update(X,Y) =
{

(nφ,T1,T2) | Ti ∈ X,nφ ∈ Y ,

∆i(n
φ,Ti), Θ(nφ,T1,T2)

}
.

We finally define the function root(X), which
takes as input a set of φ-trees and returns a set
with the roots of the φ-trees.

3.3 Correctness

We now show that Algorithm 1 is correct, and
then we describe its complexity. Correctness is
shown by proving that the algorithm is sound and
complete. For these proofs, we first need a fixed
point theorem. Proving substitution is monotone is
the first step.

Lemma 1. Given a µTLIC formula φ, a tree
structure T = (P ,N ,R,L) and a valuation V ,
let f : P (N) 7→ P (N) be defined as f (S) =

[[φ]]
T
V [S/x]

, where x is a free variable in φ. If S ⊆ S′,
then f(S) ⊆ f(S′).

Proof. We proceed by induction on the structure
of φ. Base cases are trivial and most inductive
cases are straightforward by inductive hypothesis.
Recall that since we are considering only formulas
in negated normal form, negation symbols ¬ occur
in front of propositions and formulas 〈m〉> only.
Consider for instance the case of conjunction ψ ∧
ϕ. By inductive hypothesis we know [[ψ]]

T
V [S/x]

⊆
[[ψ]]
T
V [S′/x] and [[ϕ]]

T
V [S/x]

⊆ [[ϕ]]
T
V [S′/x], hence

[[ψ]]
T
V [S/x]

∩ [[ϕ]]
T
V [S/x]

⊆ [[ψ]]
T
V [S′/x] ∩ [[ϕ]]

T
V [S′/x], and

then [[ψ ∧ ψ]]
T
V [S/x]

⊆ [[ψ ∧ ϕ]]
T
V [S′/x].

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Presburger Constraints in Trees 291

ISSN 2007-9737

The case of the Presburger formula γ > b is
more interesting. We prove this case by a second
induction on the structure of γ. We distinguish
three base cases, the first one is aψ > b. Notice in
this case a ≥ 0. By the first inductive hypothesis we
know

∣∣∣[[ψ]]
T
V [S/x]

∣∣∣ ≤ ∣∣∣[[ψ]]
T
V [S/x]

∣∣∣. It is then clear that,

for any node n, ||ψ||TnV [S/x]
≤ ||ψ||Tn

V [S′/x]
. The second

base case is a1γ1 +a2γ2 > b, where both a1 and a2
are non-negative integers. This is straightforward
from the first base case. The third base case is
a1γ1−a2γ2 > b. From the first base case, it is easy
to see that for any n and i = 1, 2, ||aiγi||TnV [S/x]

≤
||aiγi||TnV [S′/x]

. Hence, ||a1γ1||TnV [S/x]
− ||a2γ2||TnV [S/x]

≤

||a1γ1||TnV [S′/x]
− ||a2γ2||TnV [S′/x]

. The inductive step in

γ > b is immediate from the bases cases. For
the case γ ≤ b, recall that in order to ensure
the fixed-point existence, variables can only occur
positively, hence, variables in γ occur negatively.
We then proceed analogously as in the case γ > b.

Consider now the case for µy.ψ. Now let Si ⊆ N
be defined by g(Si,S) ⊆ Si, where g(Si,S) =

[[ψ]]
T
V [Si/y][S/x], and S′i ⊆ N by g(Si,S

′) ⊆ S′i.
Now let S0 =

⋂
∀i Si and S′0 =

⋂
∀i S

′
i. Note

that f(S) = S0 and f(S′) = S′0. By inductive
hypothesis we know g(Si,S) ⊆ g(Si,S

′) for every
i. Now by transitivity of the subset relation (recall
g(Si,S

′) ⊆ S′i) we obtain g(S0,S) ⊆ S′0, that is,
there is an i such that S′0 = Si. By definition of
S0, it is easy to see S0 ⊆ Si for every i. We then
conclude S0 ⊆ S′0.

We now prove the fixed point Theorem.

Theorem 1. Given a µTLIC formula φ, a tree
structure T = (P ,N ,R,L) and a valuation V ,
let f : P (N) 7→ P (N) be defined as f (S) =

[[φ]]
T
V [S/x]

, where x is a free variable in φ, then the
least fixed point of f is

⋂
{N ′ ⊆ N | f(N ′) ⊆ N ′}.

Proof. Since N is finite, then there is a finite
number of Si ⊆ N , such that f(Si) ⊆ Si. Let
S =

⋂
∀i Si. Since S ⊆ Si for every i, and

by Lemma 1, we obtain that f(S) ⊆ f(Si). By
definition of each Si, we also know S ⊆ Si for every
i. Then by transitivity of the subset relation we

obtain f(S) ⊆ Si. Now recalling that S =
⋂
∀i Si,

f(S) ⊆ Si implies f(S) ⊆ S. Then by Lemma 1,
f(f(S)) ⊆ f(S). Then again by definition of Si,
there is a j such that f(S) = Sj . Since S ⊆ Sj ,
hence S ⊆ f(S) and therefore S = f(S). Now
since S ⊆ Si for every i, it is then clear that S is the
least fixed point.

A straightforward observation from the fixed
point Theorem 1 is that a fixed point µx.φ is
equivalent to its unfolding φ

[
µx.φ/x

]
, that is, for

any T and valuation V , we have that [[µx.φ]]
T
V =[[

φ
[
µx.φ/x

]]]T
V

.

Theorem 2 (Soundness). If the satisfiability
algorithm returns that φ is satisfiable, then there is
tree model satisfying φ.

Proof. Assume T is the φ-tree that entails φ. Then
we construct a tree model T isomorphic to T
as follows:

— the nodes of T are the φ-nodes;

— for each triple (n,T1,T2) in T , n1 ∈ R(n, ↓) and
n2 ∈ R(n,→), provided that ni are the roots of
Ti (i = 1, 2); and

— if p ∈ n, then p ∈ L(n).

We now show by induction on the structure of the
input formula φ that T satisfies φ.

Base cases are immediate, that is, when the
input formula is either a proposition, a negated
proposition or formulas with the form ¬〈m〉>.

Negations and disjunctions are also immediate
by induction. Modal formulas 〈m〉φ are clearly
satisfied by the construction of the model T and
because φ is satisfied by induction. For counting
formulas a1ψ1 + a2ψ2 + . . . + anψn#b recall by
induction there is a node n in T such that (C(ψ1) =
b1), (C(ψ2) = b2), . . . , (C(ψn) = bn) ∈ n and
a1b1 + a2b2 + . . .+ anbn#b.

Also in T , we know that n is the first child of
a node n0 where a1ψ1 + a2ψ2 + . . . + anψn#b
is entailed. It is then easy to see that T
satisfies a1ψ1 + a2ψ2 + . . . + anψn#b due to the
construction described above. In the case of
fixed-points, if µx.φ is entailed by T , then we
know by the definition of the entailment relation

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Everardo Bárcenas, Edgard Benítez Guerrero, Jesús Lavalle, Guillermo Molero Castillo292

ISSN 2007-9737

that φ
[
µx.φ/x

]
is also entailed by T . In order

to show that φ
[
µx.φ/x

]
is satisfied by T , we

proceed by another structural induction on φ, which
goes smothly since fixed-points are not considered
(variables occur only in the scope of modalities or
counting formulas).

Completeness proof is divided in two main steps:
first we show that there is a lean labeled version
of the satisfying model; and then we show that
the algorithm can actually build the lean labeled
version of the tree model.

Theorem 3. If there is a tree structure
T satisfying a formula φ, then there is a
Fischer-Ladner-Presburger φ-tree entailing φ.

Proof. Assume T satisfies the formula φ. We
construct a lean labeled version T of T as follows:
the nodes and shape of T are the same as in T ;
for each ψ ∈ lean(φ), if n in T satisfies ψ, then ψ is
in n of T ; and the counters are set in the nodes in
T as the algorithm does in a bottom-up manner.

It is now shown by induction on the derivation of
T ` φ that T entails φ. By the construction of T and
by induction most cases are straightforward. For
the fixed-point case µx.ψ, we proceed by induction
on the structure of the unfolding ψ

[
µx.ψ/x

]
.

That there is a finite unfolding comes from the
Fixed-Point Theorem 1: [[µx.φ]]

T
V =

[[
φ
[
µx.φ/x

]]]T
V

.
This induction is immediate because variables and
hence unfolded fixed-points occur in the scope of
modal or counting formulas only.

Before proving that the algorithm builds T , we
need to show that there are enough φ-nodes to
construct T . Recall φ-nodes are lean subsets, and
the lean is composed by propositions, modal and
counting formulas occurring in the input formula,
plus counters. Since counters count children
nodes, we then need a bound on the number of
children. For this purpose, we use a bound of an
integer programming problem.

Theorem 4. [30] Let A be a m × n integer matrix
and b a m-vector, both with entries in Z. Then if
Ax = b has a solution x ∈ Nn, it also has one in
{0, . . . ,n(ma)2m+1}n.

Theorem 5. If a formula φ is satisfiable, then there
is a φ-tree entailing φ where each node has at most
an exponential number of children with respect to
the size of φ.

Proof. Since φ is satisfiable, there is a φ-tree T
entailing φ by Theorem 3. Recall each node
in T is a subset of lean(φ), thus composed by
propositions, modal formulas 〈m〉ψ and counting
formulas γ#b. Notice formulas 〈↓〉ψ and γ#b are
the ones enforcing child witnesses. Also notice 〈↓
〉ψ are equivalent to ψ > 0. We now encode this set
of counting formulas as an integer programming
problem in order to obtain a bound on the number
of required to children: a1φ1 + . . . anφn#b as
a1xφ1

+ . . . + anxφn + x = b + 1 when # is >, and
a1xφ1

+ . . . + anxφn − x = b when # is ≤, where
x ≥ 0. Then, each node has at most an exponential
number of children by Theorem 4.

We are now ready to show that the algorithm
builds the lean labeled version T of the satisfying
model T .

Theorem 6 (Completeness). If there is a tree
model T satisfying a formula φ, then the
satisfiability algorithm returns that φ is satisfiable.

Proof. The proof proceeds by induction on the
height of T . The base case is trivial. Consider
now the induction step. By induction, we know
that the left and right subtrees of T were built by
the algorithm, we now show that the root n of
T can be joined to the previously built left and
right subtrees. This is true due to the following:
∆(n,ni) is consistent with R, where i = 1, 2 and
ni are the roots of the left and right subtrees,
respectively; and by Theorem 5, there are at most
an exponential number of children, with respect to
the size of φ, distinguished by counters, encoded
in binary by a linear number of propositions.

Theorem 7 (Complexity). µTLIC satisfiability is
EXPTIME-complete.

Proof. We first show that the lean set of the input
formula φ has linear size with respect to the size
of φ. This is easily proven by induction on the
structure φ and by Theorem 5: an exponential
number of children can be distinguished by a linear

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Presburger Constraints in Trees 293

ISSN 2007-9737

amount of counting propositions (recall counters
are encoded in binary). We then proceed to
show that the algorithm takes exponential time with
respect to the size of the lean. Since φ-nodes
are defined as subsets of the lean, it is then clear
that the number of φ-nodes is single exponential
with respect to lean size, then there is at most
an exponential number of steps in the loop of
the algorithm.

It remains to prove that each step, including the
ones inside the loop, takes at most exponential
time: computing Init(φ) implies the traversal of
N φ and hences takes exponential time; testing `
takes linear time with respect to the node size,
and hence its cost is exponential with respect to
the set of trees; and since the cost of relations
of modal and counter consistency ∆m and Θ is
linear, then the Update functions takes at most
exponential time. Since the µ-calculus for trees
is EXPTIME-complete [12], then µTLIC is hard for
EXTPIME, therefore, also complete.

4 Extended Regular Tree Languages

In this section, we introduce several extensions
of regular tree languages, which encompass
most XML schema languages used in practice,
such as DTDs, XML Schema and RelaxNG [29,
22]. First we consider the extension with the
interleaving operator [27]. Then the extension
with counting operators [28]. We show that these
extension can be linearly characterized by µTLIC.
In Section 5, we also show that regular path
queries (XPath) [36] with Presbuger constraints
on children path can also be linearly expressed
by µTLIC. As a consequence, µTLIC can be
used as a framework for standard XML reasoning
problems involving schemas and queries with
counting and interleaving operators. In Section 3,
we describe an EXPTIME satisfiability algorithm,
which together with results described in this
Section, imply new optimal (EXPTIME) bounds
on emptiness, inclusion and equivalence of XPath
queries (with counting) and XML schemas (with
counting and interleaving).

4.1 Regular Tree Languages

We define the syntax of regular trees similarly as
in [20, 22].

Definition 13 (Syntax of regular trees). We define
the set of regular tree expressions by the following
grammar:

e := ε | x | p[e] | e · e | e+ e | let x = e in e.

We write p instead of p[ε], and we consider e · ε
and ε · e to be simply e.

Following [22], we now give a precise semantics
of regular tree expressions, but first, we define
the following notation. Consider a tree structure
T = (P ,N ,R,L), recall P is a set of propositions,
N a set of nodes, R is transition function among
nodes forming a tree, and L is a function labeling
nodes with propositions. Then, we write (n, T)
to denote T , with root n and children subtrees
T = T1, T2, . . . , Tk, that is n1,n2, . . . ,nk ∈ R(n, ↓),
where ni is the root of Ti (i = 1, . . . , k). If we write
T ∈ S, we mean the composition of Ti is in set
S. By the composition of a sequence of trees T ,
written T1 ◦ T2 . . . ◦ . . . Tk, we mean the resulting
tree (n, T). The composition of two sets of trees
S1 and S2, written S1 ◦S2, denotes the composition
of all pairs of trees in S1 and S2, more precisely, the
trees T1 ◦ T2, such that Ti ∈ Si (i = 1, 2).

Definition 14 (Semantics of regular trees). Given
a valuation V (from variables to sets of trees),
regular tree expressions are interpreted as follows:

[[ε]]V = {∅} ,

[[x]]V =V (x),

[[p[e]]]V =
{(
n, T

)
| p ∈ L(n), T ∈ [[e]]V

}
,

[[e1 · e2]]V = [[e1]]V ◦ [[e2]]V ,

[[e1 + e2]]V = [[e1]]V ∪ [[e2]]V ,

[[let x = e in e]]V = [[e]]
lfp

(
V [[[e]]V /x]

) ,

where lfp
(
V
[
[[e]]V /x

])
stands for the least fixed

point of the substitution function.
Note that there is always a least fixed point

due to the Knaster-Tarski Theorem [35] on fixed
points (substitution is monotone with respect to the
subset ordering).

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Everardo Bárcenas, Edgard Benítez Guerrero, Jesús Lavalle, Guillermo Molero Castillo294

ISSN 2007-9737

Intuitively, regular tree expressions are
interpreted as sets of unranked trees: ε is
interpreted as the empty set; p[e] denotes the sets
of trees whose root is labeled by p and whose
children are denoted by e; the interpretation of
e1 ·e2 is the set of trees whose children are denoted
by e1 and e2, from left to right; e1 + e2 is interpreted
as the union of the interpretations of e1 and e2;
and let x = e in e is interpreted as the least fixed
point. The Kleene star operator can be expressed
in terms of the least fixed point, for instance, the
regular tree expression p[q?] in Figure 1(a) can be
written as follows:

let x = q · (x+ ε) in p[x+ ε].

We now show that regular tree expressions can
linearly be translated in terms of the µ-calculus,
as already shown in [4, 5]. This implies that
traditional reasoning problems, such as emptiness,
containment (inclusion) and equivalence, can be
efficiently expressed in terms of the satisfiability of
µ-calculus formulas. Before defining a translation
function from regular tree expressions to logic
formulas, we define µx.φ. in φ as a generalization
(several binded variables) of the fixed point
operator with the expected semantics. This
generalization does not provide more expressive
power, although, it is more succinct [4].

Definition 15. We define the following translation
function from regular tree expressions to
µ-calculus formulas:

F (ε) :=⊥,

F (x) :=x,

F (p[e]) :=p ∧ F ↓(e),
F (e1 · e2) :=F (e1) ∧ F→(e2),

F (e1 + e2) :=F (e1) ∨ F (e2),

F (let x = e in e) :=µx.F (e). in F (e),

where Fm(e) is defined as follows form ∈ {↓,→}

— ¬〈m〉> if e is ε,

— ¬〈m〉>∨Fm (e′) if e has the forms ε+ e′, e′+ ε
and e′ is nullable,

— ¬〈m〉> ∨ 〈m〉F (e′) if e has the forms ε + e′,
e′ + ε and e′ is not nullable, and

— 〈m〉F (e) otherwise.

We say an expression e is nullable when it is a
variable bounded to an expression that can be
interpreted as the empty tree, as for instance ε+e′.

Now, consider as an example the expression
p[q?]. This can be expressed in terms µTLIC as
follows:

F (p[q?]) :=F (let x = q · (x+ ε) in p[x+ ε]),

:=µx.q ∧ ¬〈↓〉> ∧ (¬〈→〉> ∨ 〈→〉x),

in p ∧ (¬〈↓〉> ∨ 〈↓〉x).

Theorem 8 (Reasoning on regular trees [4, 5]).
Given any two regular tree expressions e1 and
e2, we have that for any tree T and valuations V
and V ′:

— [[e1]]V = ∅, if and only if, [[F (e)]]
T
V ′ = ∅;

— [[e1]]V ⊆ [[e2]]V , if and only if,
[[F (e1) ∧ ¬F (e2)]]

T
V ′ = ∅; and

— F (ei) has linear size with respect to ei (i =
1, 2).

4.2 Interleaving

The interleaving operator, sometimes called
shuffle operator, is a common extension of
regular languages [27]. In particular, there is
an interleaving operator in XML Schema and
RelaxNG. Intuitively, the interleave of two regular
tree expressions matches the concatenation of
trees corresponding to the expressions regardless
their order. This operator does not introduce more
expressive power to regular languages, however,
it is double-exponentially more succinct [19]. For
instance, the interleaving of expressions pq and rs
can be described as follows:

pq&rs := pqrs+ prqs+ prsq + rpqs+ rpsq + rspq.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Presburger Constraints in Trees 295

ISSN 2007-9737

Definition 16 (Interleaving). The interleaving
operator in regular tree expressions is inductively
defined as follows:

e&ε :=e,

eε&e :=e,

e0&(e1 + e2) :=(e0&e1) + (e0&e2),

(e1 + e2)&e0 :=(e0&e1) + (e0&e2),

(p1[e1] · e2)&(p2[e3] · e4) :=p1[e1] · (e2&(p2[e3] · e4)),

+p2[e3] · ((p1[e1] · e2)&e4).

Counting formulas in µTLIC can be used
to represent the interleaving of regular tree
expressions. For this purpose, we restrict
the expressions that can be interleaved. This
restriction is defined by the following grammar:

e′ := p[e] | e′ · e′ | e′ + e′,

where e is a regular tree expression without
restrictions (Definition 13), and disjunctions have
constant size, that is, for expressions e′1 + e′2, we
have that |e′1|∗ = |e′2|∗, where:

|p[e]|∗ =1,

|e1 · e2|∗ =|e1|∗ + |e2|∗,
|e1 + e2|∗ = max (|e1|∗, |e2|∗) .

For instance, expressions of the form p&q?

are disallowed, notice however that recursion
can occur at another level of interleaving, for
instance, p&r[q?]. Now for an example of
constant size disjunctions, (ppp + qq)&rrr is not
allowed, because |ppp|∗ 6= |qq|∗. Instead, equally
sized disjunction can occur at the same level of
interleaving, for example (ppp + qqq)&rrr. Notice
this restriction applies at top level only, hence
expressions as the following are perfectly allowed
s[ppp+ qq]&rrr.

We then define the translation of interleaving
as follows.

Definition 17 (Translation of interleaving). Given
two regular tree expressions e′1 and e′2, we translate
the interleaving operator as follows:

F (e′1&e′2) := (F (e′1) = 1) ∧ (F (e′2) = 1) ,

∧ (> = chsize(e′1&e′2)) ,

F (e′i) is a linear translation of expression e′i into a
µTLIC formula:

F (p[e]) :=p ∧ F ↓(e),
F (e1 · e2) :=F (e1) ∧ µx.〈→〉(F (e2) ∨ x),

F (e1 + e2) :=F (e1) ∨ F (e2).

The translation F of unrestricted regular tree
expressions is given in Definition 15, and chsize
is defined as follows:

chsize(p[e]) =1,

chsize(e1 + e2) = max (chsize(e1), chsize(e2)) ,

chsize(e1 · e2) =chsize(e1&e2),

=chsize(e1) + chsize(e2).

Intuitively, chsize computes the number of
children to be interleaved.

As an example consider the expression p[qr&st].
This can be expressed in terms of µTLIC
as follows:

F (p[qr&st]) :=p ∧ [F (qr) = 1] ∧ [F (st) = 1],

∧ [> = chsize(qr&st)],

=:p ∧ [(q ∧ µx.〈→〉(r ∨ x))= 1],

∧ [(s ∧ µx.〈→〉(t ∨ x))= 1] ∧ [>=4].

Note that concatenation order is preserved, that is,
q goes always first than r, and s goes first than t.
However, none other order restriction is imposed,
hence, p, q, r, s may occur interleaved, as long as
we know there are only 4 children.

From Theorem 8 and Definition 17, it is now
easy to see we can efficiently reason on regular
expressions with interleaving in terms of the
satisfiability of µTLIC formulas.

Theorem 9 (Reasoning on regular trees with
interleaving). Given any two regular tree
expressions e1 and e2 with interleaving, we
have that for any tree T and valuations V and V ′

the following holds:

— [[e1]]V = ∅, if and only if, [[F (e1)]]
T
V ′ = ∅,

— [[e1]]V ⊆ [[e2]]V , if and only if,
[[F (e1) ∧ ¬F (e2)]]

T
V ′ = ∅; and

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Everardo Bárcenas, Edgard Benítez Guerrero, Jesús Lavalle, Guillermo Molero Castillo296

ISSN 2007-9737

— F (ei) has linear size with respect to ei (i =
1, 2).

Proof. For the first item, the proof goes by
induction on the structure of e1. All cases are
identical as in Theorem 8. We only show here the
case of interleaving, that is, when e1 has the form
e′1&e′2. Recall that:

F (e′1&e′2) := (F (e′1) = 1) ∧ (F (e′2) = 1) ,

∧ (> = chsize(e′1&e′2)) .

Now, it is proved by induction that F (e′i) is the
translation of e′i (i = 1, 2), that is, [[e′i]]V = ∅, if and
only if, [[F (e′i)]]

T
V ′ = ∅. Consider e′i is of the form

p[e], then:
F (p[e]) := p ∧ F ↓(e).

The argument in this case also goes as the
correspoding case of Theorem 8. Consider now
this case:

F (e′i,1 · e′i,2) := F (e′i,1) ∧ µx.〈→〉(F (e′i,2) ∨ x).

Which is is immediate since F (e′i,j) (for j = 1, 2)
corresponds by induction to the translation of e′i,j .
The case for e′i,1 + e′i,2 also goes straightforward
by induction.

Now, F (e′i) = 1 then states F (e′i) occurs as
a child only once. Nevertheless, there is no
children order restriction. Since the number of
children to be interleaved is constant, then > =
chsize(e′1&e′2) fix the number of children to be
interleaved. Therefore:

[[e′1&e′2]]V 6= ∅, if and only if, [[F (e′1&e′2)]]V 6= ∅.

The second item is analogous. And the third
one is straightforward by noticing F does not
introduce duplications.

4.3 Counting

Counting operators in regular languages restrict
the occurrences of expressions with respect to
natural numbers. For instance, p[2,5] denotes the
finite concatenation of at least 2 p’s and at most 5,
this can be expressed as follows:

pp+ ppp+ pppp+ ppppp.

As one may easily notice, this counting operators
do not provided more expressive power, however,
they are exponentially more succinct [19], that
is, expressing p[a,b], where a and b are natural
numbers encoded in binary, results in an
exponentially larger regular expression (without
counting constructors).

One may think that counting restrictions in
regular languages may be easily expressed by
counting formulas in µTLIC, however, recall that
counting formulas do not impose any occurrence
order, whereas counting restrictions in regular
languages do, expressions must be consecutively
concatenated. In contrast with counting regular
expressions in [4, 5], where there is no
order preservation, here we show that counting
Presburger formulas may impose order restrictions
on counting regular expressions, as in [28, 19].
Furthermore, in the current work, we consider a
more general form of the counting than [28, 19],
because counting expressions may no exhibit an
upper bound.

Definition 18 (Counting regular tree expressions).
Counting regular tree expressions are defined
as follows:

p
[
e′

[a,b]
]

,

where e′ is a regular expression without recursion
at top level, that is, e′ := p[e] | e′ · e′ | e′ + e′, where
e is a regular expression without restrictions, a is
a natural number encoded in binary, and b is also
a natural number greater than a encoded in binary
or∞.

Intuitively, e[a,b] stands for the successive
concatenation of e, such that it occurs at least a
times and at most b times. If b is ∞, then there is
no upper bound.

This can be see as a generalization of the
Kleene star, which can be expressed by e[0,∞]. It
is then worth to notice that although the general
recursion operator is not allowed to occur inside
the top level of the counting operator, other forms
of recursion, as seen above with the Kleene star
can be used. It is also important to note that with
this subtle extension, allowing no upper bound,
counting expressions become exponentially more

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Presburger Constraints in Trees 297

ISSN 2007-9737

concise. This can be seen when expressing e[a,∞],
which can be encoded as e[a,a]e?. The exponential
gain becomes more evident when this duplication
of e occurs in expresions with nested counting.

Definition 19 (Translation of counting). We
translate the counting operator as follows:

F
(
p
[
e′

[a,b]
])

:= p ∧ (a ≤ > ≤ b) ∧ (> = F (e′)) ,

where e′ is a regular expression without recursion
at top level.

Consider as an example the following
expression: q

[
p[2,5]

]
. This can be expressed

in terms of µTLIC formulas as follows:

q ∧ (2 ≤ > ≤ b) ∧ (> = p).

This formula means that q nodes have at least 2 p
children, but no more than 5.

From Theorem 8 and Definition 19 we clearly
can imply reasoning on regular expressions
with counting and interleaving in terms of the
satisfiability of µTLIC formulas. One may have
noticed that the translation of counting regular
tree expressions is not linear when considering
the resulting counting formula as syntactic sugar.
We then consider µTLIC extended in the obvious
way with the additional counting operators. In
Section 3, we present a satisfiability algorithm
for µTLIC that can be easily extended with the
syntactic sugar operator for counting.

Theorem 10 (Reasoning on regular trees with
interleaving and counting). Given any two regular
tree expressions e1 and e2 with interleaving and
counting operators, we have that for any tree T and
valuations V and V ′ the following holds:

— [[e1]]V = ∅, if and only if, [[F (e)]]
T
V ′ = ∅;

— [[e1]]V ⊆ [[e2]]V , if and only if,
[[F (e1) ∧ ¬F (e2)]]

T
V ′ = ∅; and

— F (ei) has linear size with respect to ei (i =
1, 2).

Proof. For the first item, the proof goes by
induction on the structure of e1. All cases are
identical as in Theorem 8. The case of interleaving
was shown in Theorem 9. Here, we only show
the case of counting:

[[
p
[
e′

[a,b]
]]]

V
= ∅, if and

only if, [[p ∧ (a ≤ > ≤ b) ∧ (> = F (e′))]]
T
V ′ = ∅. It is

shown by induction that F (e′) corresponds to the
translation of e′:

[[e′]]V = ∅, if and only if, [[F (e′)]]
T
V ′ = ∅.

This was already showed in the proof of
Theorem 9. Then, it follows that > = F (e′) restricts
all children to match F (e′). a ≤ > ≤ b in addition
constrain the number of children to be at least a but
no more than b.

The second item is analogous. And the third
one is straightforward by noticing F does not
introduce duplications.

5 Regular Counting Paths

XPath is a query language for semi-structured
data (XML), its navigation core is known as
regular paths, and it corresponds to the First
Order Logic with two variables FO2 [26]. We
now introduce an extension of regular paths,
considered in the specification of XPath [36],
consisting of Presburger arithmetical constraints
on children paths, that is, regular paths expressing
children relations. We also give a new EXPTIME
bound for reasoning on this counting extension of
regular paths.

Definition 20 (Counting paths syntax). We
inductively define regular paths expressions with
Presburger constraints by the following grammar:

α := ↓|→|↑|←|↓?|↑?,
% :=> | α | p | α : p | %/% | %[β],

β :=κ > b | % | β ∨ β | ¬β,

κ :=a% | κ+ κ,

ρ :=% | /ρ | ρ ∪ ρ | ρ ∩ ρ | ρ \ ρ,

where p is a proposition and a and b are integers
encoded in binary, b is non-negative.

In order to ensure decidability, path expressions
occuring in the scope of a counting operator > are

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Everardo Bárcenas, Edgard Benítez Guerrero, Jesús Lavalle, Guillermo Molero Castillo298

ISSN 2007-9737

restricted to children, that is, they are expression of
the forms: ↓, ↓: p, ↓ [β], or ↓: p[β].

We now give a formal description of
the interpretation of regular paths with
Presburger constraints.

Definition 21 (Counting paths semantics). Given
a tree structure T , regular paths with Presburger
constraints are interpreted as follows:

[[>]]
T

=N ×N ,

[[p]]
T

={(n,n) | p ∈ L(n)},

[[α]]
T

={(n1,n2) | n1
α→ n2},

[[α : p]]
T

={(n1,n2) ∈ [[α]]
T | p ∈ L(n2)},

[[%1/%2]]
T

= [[%1]]
T ◦ [[%2]]

T
,

[[%[β]]]
T

={(n1,n2) ∈ [[%]]
T | n2 ∈ [[[β]]]

T },

[[/%]]
T

={(r,n) ∈ [[%]]
T | r is the root},

[[ρ1 ∪ ρ2]]
T

= [[ρ1]]
T ∪ [[ρ2]]

T
,

[[ρ1 ∩ ρ2]]
T

= [[ρ1]]
T ∩ [[ρ2]]

T
,

[[ρ1 \ ρ2]]
T

= [[ρ1]]
T \ [[ρ2]]

T
,

where n1
α→ n2 holds, if and only if, n1 is related

to n2 through α in T , and the interpretation of
qualifiers (β) is the following.

[[[κ > b]]]
T

=
{
n | ||κ||Tn > b

}
,

||aζ||Tn =a ∗
∣∣∣{n1 | (n,n1) ∈ [[ζ]]

T
}∣∣∣ ,

||κ1 + κ2||Tn = ||κ1||Tn + ||κ2||Tn ,

[[[%]]]
T

={n1 | (n1,n2) ∈ [[%]]
T },

[[[¬β]]]
T

=N \ [[[β]]]
T

,

[[[β1 ∨ β2]]]
T

= [[[β1]]]
T ∪ [[[β2]]]

T
.

Intuitively, regular paths are interpreted over tree
structures as pairs of nodes. The left nodes,
known as the context, represent from where the
path is evaluated, and the right nodes, denote
the selection of the path. Axis relation ↓, as
in µTLIC, stands for the children relation, → for
the following sibling relation, ↑ for parents, ← for
previous siblings, ↓? for descendants, and ↑? for
ancestors.

So basic paths α : p denotes pair of nodes, such
that the right node of the pair is labeled by p and it
is related with the left node of the pair by α. So for
instance, ↓?: p stands for the pairs of nodes, such
that the right node of the pairs is the descendant
of the left node of the pair. %/% stands for the
compositions of paths. For example, ↓: p/ ↓?: q
intuitively navigates first to the children named p,
and from there to the q descendants. %[β] denotes
the pair of nodes of % that satisfies β, which
is a Boolean expression composed by regular
paths and Presburger children paths. Consider for
instance the path ↓: p[↓?: q], in contrast with the
previous example, this expressions denotes the p
children having at least one descendant named q.
In Presburger expressions κ > b, path occurring in
κ are children paths. For example, ↓: p[↓: q− ↓:
r > 0] denotes the p children with more q children
than r children. Another example is ↓: p[↓: q > 5],
which denotes the p children with more than 5 q
children. We also use the following syntactic sugar
for qualifiers:

β1 ∧ β2 :=¬(¬β1 ∨ ¬β2),

(κ ≤ b) :=¬(κ > b),

(κ = k) :=(κ ≥ k) ∧ (κ > b− 1),

a1%1#a2%2 :=(a1%+ (−a2)%2#0),

where # stands for <,≤,≥, =. /ρ stands for the
pair of nodes denoted by ρ, such that the left node
of the pairs is the root. Union, intersection and
difference of paths are expressed as ρ ∪ ρ′, ρ ∩ ρ′,
ρ \ ρ′, respectively.

Regular paths can be linearly translated in
terms of µ-calculus [4]. Consider for instance
the following expression: ↓: p[↓?: q]. This path,
evaluated from any node (context), selects the p
children with at least one q descendant. Nodes
selected by this path can be expressed by the
following formula:

(p ∧ 〈↑〉>) ∧ µx.〈↓〉(q ∨ x).

Arithmetical constraints on children path can be
expressed by µTLIC counting expressions. For
example, ↓: p[↓: q > b] selects the p nodes with
at least b+ 1 children named q. This can be easily
written in terms of µTLIC formulas as follows:

(p ∧ 〈↑〉>) ∧ (q > b).

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Presburger Constraints in Trees 299

ISSN 2007-9737

As another example consider ↓: p[↓: q =↓: r], which
selects the p children with the same number of
children named q and r. In terms of µTLIC, we
then write:

(p ∧ 〈↑〉>) ∧ (q = r),

When characterizing regular paths in terms of
µTLIC formulas, we can denote the context from
where paths are evaluated by some other formula.
We usually denote this context formula by C.

Definition 22 (Translation of counting paths).
We define the translation of regular paths with
Presburger constraints, with respect to a context
formula C, as follows:

F (↓,C) :=〈↑〉C,

F (→,C) :=〈←〉C,

F (↑,C) :=〈↓〉C,

F (←,C) :=〈→〉C,

F (↓?,C) :=µx.〈↑〉(C ∨ x),

F (↑?,C) :=µx.〈↓〉(C ∨ x),

F (α : p,C) :=F (α,C) ∧ p,
F (%1/%2,C) :=F (%2,F (%1,C)),

F (%[β],C) :=F (%,C) ∧ F ′(β,>),

F (/%,C) :=F (%,C ∧ ¬(〈↑〉> ∧ 〈←〉>)),

F (ρ1 ∩ ρ2,C) :=F (ρ1,C) ∧ F (ρ2,C),

F (ρ1 ∪ ρ2,C) :=F (ρ1,C) ∨ F (ρ2,C),

F (ρ1 \ ρ2,C) :=F (ρ1,C)∧¬F (ρ2,C),

where the translation of qualifiers F ′ is defined
as follows.

F ′(κ > b,C) :=F ′(κ) > b,

F ′(a%,C) :=aF ′′(%),

F ′(κ1 + κ2,C) :=F ′(κ1) + F ′(κ2),

F ′(α,C) :=F (α,C),

F ′(α : p,C) :=F (α : p,C),

F ′(%1/%2,C) :=F ′(%1,F ′(%2,C)),

F ′(%[β],C) :=F ′(%,F ′(β,>) ∧ C),

F ′(¬β,C) :=¬F ′(β,C),

F ′(β1 ∨ β2,C) :=F ′(β1,C) ∨ F ′(β2,C),

where α is the dual of α, that is, ↓ =↑, → =←,
↓? =↑?, and α = α, and F ′′ translates children
paths as follows:

F ′′(↓) := >, F ′′(↓: p) := p,

F ′′(↓ [β]) := F ′(β,>), F ′′(↓: p[β]) := p ∧ F ′(β,>).

From this translation, it is then clear that µTLIC
can be used as a query reasoning framework for
regular paths with Presburger constraints.

Theorem 11 (Counting paths reasoning). For any
regular path query with Presburger constraints ρ1
and ρ2, any formula C, any tree structure T , and
any valuation V , the following holds:

— [[F (ρ1,C)]]
T
V ={

n | (n′,n) ∈ [[ρ1]]
T

,n′ ∈ [[C]]
T
V

}
;

— [[ρ1]]
T ⊆ [[ρ2]]

T if and only if
[[F (ρ1,>) ∧ ¬F (ρ2,>)]]

T
V = ∅; and

— F (ρi) has linear size with respect to ρi (i =
1, 2).

Proof. The proof of the first item goes by induction
on the structure of the input query. Base cases
are immediate, as well as most inductive ones. We
will only consider then the case when the input
query has the following form: %[κ > b]. We
then use another induction on the structure of κ.
Consider then the case %[a ↓: p > b]. According to
Definition 22, we obtain the following:

F (%[↓: p > b,C]) := F (%,C) ∧ (ap > b).

Now, by induction, we know that for any tree T and
valuation V , it is the case that:

[[F (%,C)]]
T
V =

{
n | (n′,n) ∈ [[%]]

T
,n′ ∈ [[C]]

T
V

}
.

Since ap > b holds in nodes with more than b
children, it is then easy to see that:

[[F (%[↓: p > b],C)]]
T
V =

{
n | (n′,n) ∈ [[%[a ↓: p > b]]]

T

n′ ∈ [[C]]
T
V

}
.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Everardo Bárcenas, Edgard Benítez Guerrero, Jesús Lavalle, Guillermo Molero Castillo300

ISSN 2007-9737

Other base cases for κ are analogous. Consider
now the following input query %[κ1 − κ2 > b]. This
is translated as follows:

F (%,C) ∧ F ′(κ1) + F ′(κ2) > b.

As in the base cases, by structural induction
on paths, we know that % exactly corresponds
to its translation. By structural induction on
children paths, we then obtain that κ1 and κ2 also
correspond to their respective translation. It is then
clear to infer the following:

[[F (%[κ1+κ2 >b],C)]]
T
V =

{
n | n′ ∈ [[C]]

T
V

(n′,n) ∈ [[%[κ1+κ2 >b]]]
T
}

.

The second item is an immediate consequence
of the first one.

Regarding the third item, since the translation
does not introduce duplications (Definition 22), the
proof goes straightforward by structural induction.

Corollary 1 (Query reasoning in the presence of
schemas). Given any two regular tree expressions
e1 and e2 with interleaving and counting operators,
any regular paths with Presburger constraints %1
and %2, and any formula C, we have that for any
tree T and valuation V the following holds:

— A query ρ1 is empty in the presence of
a regular tree (schema) e1, if and only if,
[[F (%1,C) ∧ F (e1)]]

T
V = ∅;

— a query ρ1 in the presence of a regular tree
(schema) e1 is contained in a query ρ2 in the
presence of a regular tree e2, if and only if,

[[(F (%1,C)∧F (e1))∧¬ (F (%2,C)∧F (e2))]]
T
V =∅;

and

— F (ei) and F (%i,C) have linear size with
respect to ei, %i (i = 1, 2), and C.

6 Conclusions

We introduced a modal logic for trees with a
fixed point, inverse programs, and Presburger
constraints (µTLIC). This logic can been seen as
the fully enriched µ-calculus for trees extended with
Presburger constraints.

Regular tree languages (XML schemas) can be
linearly captured by the logic. We introduced
extensions of regular trees with interleaving and
counting operators. These extensions can also be
linearly characterized by µTLIC. Moreover, regular
path queries (XPath) with Presburger constraints
on children paths are also linearly translated in
terms of µTLIC formulas.

Since the logic is closed under negation, it
can be used as a XML reasoning framework for
counting extensions of XPath and XML schemas.
We showed that the logic is decidable in single
exponential time, even if the Presbuger constraints
are encoded in binary.

This result implies new EXPTIME bounds
on XPath counting fragments and regular tree
extensions with interleaving and counting.

In [6, 3], decidable classes of ranked trees
with counting and (dis)equality constraints are
studied. As a further research perspective, we are
interested in the relation of counting and equality
constraints on unranked trees. We believe efficient
decidability algorithms may be extracted from the
modal logic approach.

In another setting, arithmetical constraints on
trees have been also successfully used in the
verification of balanced tree structures such as AVL
or red-black trees [25, 21].

We believe another field of application for the
logic presented in the current work is in the
verification of balanced tree structures. We also
believe the logic can be used as an expressive
framework in context-aware systems [7, 23], where
counting constraints play a key role when modeling
location/distance variables.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Presburger Constraints in Trees 301

ISSN 2007-9737

References

1. Aminof, B., Murano, A., & Rubin, S. (2018). CTL*
with graded path modalities. Inf. Comput., 262(Part),
1–21.

2. Areces, C., Hoffmann, G., & Denis, A. (2010).
Modal logics with counting. In Dawar, A.
& de Queiroz, R. J. G. B., editors, Logic,
Language, Information and Computation, WoLLIC
2010, volume 6188 of Lecture Notes in Computer
Science. Springer, 98–109.

3. Bárcenas, E., Benı́tez-Guerrero, E., & Lavalle, J.
(2016). On regular paths with counting and data
tests. Electr. Notes Theor. Comput. Sci., 328, 3–16.

4. Bárcenas, E., Genevès, P., Layaı̈da, N., &
Schmitt, A. (2011). Query reasoning on trees with
types, interleaving, and counting. In Walsh, T.,
editor, IJCAI. IJCAI/AAAI, 718–723.

5. Bárcenas, E. & Lavalle, J. (2014). Global numerical
constraints on trees. Logical Methods in Computer
Science, 10(2).

6. Barguñó, L., Creus, C., Godoy, G., Jacquemard,
F., & Vacher, C. (2013). Decidable classes of tree
automata mixing local and global constraints modulo
flat theories. Logical Methods in Computer Science,
9(2).

7. Bettini, C., Brdiczka, O., Henricksen, K.,
Indulska, J., Nicklas, D., Ranganathan, A., &
Riboni, D. (2010). A survey of context modelling
and reasoning techniques. Pervasive and Mobile
Computing, 6(2), 161–180.

8. Bianco, A., Mogavero, F., & Murano, A. (2012).
Graded computation tree logic. ACM Trans. Comput.
Log., 13(3), 25.

9. Bonatti, P. A., Lutz, C., Murano, A., & Vardi,
M. Y. (2006). The complexity of enriched mu-calculi.
In Bugliesi, M., Preneel, B., Sassone, V., &
Wegener, I., editors, ICALP, volume 4052 of Lecture
Notes in Computer Science. Springer, 540–551.

10. Bonatti, P. A., Lutz, C., Murano, A., & Vardi,
M. Y. (2008). The complexity of enriched mu-calculi.
Logical Methods in Computer Science, 4(3).

11. Bonatti, P. A. & Peron, A. (2004). On the
undecidability of logics with converse, nominals,
recursion and counting. Artif. Intell., 158(1), 75–96.

12. Calvanese, D., Giacomo, G. D., Lenzerini, M.,
& Vardi, M. Y. (2010). Node selection query
languages for trees. In Fox, M. & Poole, D., editors,
AAAI. AAAI Press.

13. Charatonik, W. & Witkowski, P. (2013).
Two-variable logic with counting and trees. In
28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS. IEEE Computer Society,
73–82.

14. Charatonik, W. & Witkowski, P. (2016).
Two-variable logic with counting and trees. ACM
Trans. Comput. Log., 17(4), 31:1–31:27.

15. Colazzo, D., Ghelli, G., Pardini, L., & Sartiani,
C. (2013). Efficient asymmetric inclusion of regular
expressions with interleaving and counting for XML
type-checking. Theor. Comput. Sci., 492, 88–116.

16. Demri, S. & Lugiez, D. (2010). Complexity of modal
logics with Presburger constraints. J. Applied Logic,
8(3), 233–252.

17. Droste, M. & Vogler, H. (2011). Weighted logics
for unranked tree automata. Theory of Computing
Systems, 48(1), 23–47.

18. Fischer, M. J. & Ladner, R. E. (1977). Propositional
modal logic of programs (extended abstract). In
Hopcroft, J. E., Friedman, E. P., & Harrison,
M. A., editors, Proceedings of the 9th Annual
ACM Symposium on Theory of Computing. ACM,
286–294.

19. Gelade, W. (2010). Succinctness of regular
expressions with interleaving, intersection and
counting. Theor. Comput. Sci., 411(31-33),
2987–2998.

20. Genevès, P., Layaı̈da, N., Schmitt, A., & Gesbert,
N. (2015). Efficiently deciding µ-calculus with
converse over finite trees. ACM Trans. Comput.
Log., 16(2), 16.

21. Habermehl, P., Iosif, R., & Vojnar, T. (2010).
Automata-based verification of programs with tree
updates. Acta Inf., 47(1), 1–31.

22. Hosoya, H., Vouillon, J., & Pierce, B. C. (2005).
Regular expression types for XML. ACM Trans.
Program. Lang. Syst., 27(1), 46–90.

23. Limón, Y., Bárcenas, E., Benı́tez-Guerrero, E.,
& Molero, G. (2018). On the consistency of
context-aware systems. Journal of Intelligent and
Fuzzy Systems, 34(5), 3373–3383.

24. Malvone, V., Mogavero, F., Murano, A., &
Sorrentino, L. (2018). Reasoning about graded
strategy quantifiers. Inf. Comput., 259(3), 390–411.

25. Manna, Z., Sipma, H. B., & Zhang, T. (2007).
Verifying balanced trees. In Artëmov, S. N.
& Nerode, A., editors, LFCS, volume 4514 of
Lecture Notes in Computer Science. Springer. ISBN
978-3-540-72732-3, 363–378.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Everardo Bárcenas, Edgard Benítez Guerrero, Jesús Lavalle, Guillermo Molero Castillo302

ISSN 2007-9737

26. Marx, M. (2005). Conditional XPath. ACM Trans.
Database Syst., 30(4), 929–959.

27. Mayer, A. J. & Stockmeyer, L. J. (1994). Word
problems-this time with interleaving. Inf. Comput.,
115(2), 293–311.

28. Meyer, A. R. & Stockmeyer, L. J. (1972). The
equivalence problem for regular expressions with
squaring requires exponential space. In 13th Annual
Symposium on Switching and Automata Theory.
IEEE Computer Society, 125–129.

29. Murata, M., Lee, D., Mani, M., & Kawaguchi, K.
(2005). Taxonomy of XML schema languages using
formal language theory. ACM Trans. Internet Techn.,
5(4), 660–704.

30. Papadimitriou, C. H. (1981). On the complexity of
integer programming. J. ACM, 28(4), 765–768.

31. Seidl, H., Schwentick, T., & Muscholl, A. (2003).
Numerical document queries. In Neven, F., Beeri,
C., & Milo, T., editors, PODS. ACM. ISBN
1-58113-670-6, 155–166.

32. Seidl, H., Schwentick, T., & Muscholl, A. (2008).
Counting in trees. In Flum, J., Grädel, E., & Wilke,
T., editors, Logic and Automata, volume 2 of Texts
in Logic and Games. Amsterdam University Press,
575–612.

33. Seidl, H., Schwentick, T., Muscholl, A., &
Habermehl, P. (2004). Counting in trees for free. In
Dı́az, J., Karhumäki, J., Lepistö, A., & Sannella,

D., editors, ICALP, volume 3142 of Lecture Notes in
Computer Science. Springer, 1136–1149.

34. Sorrentino, L., Rubin, S., & Murano, A. (2018).
Graded CTL* over finite paths. In Aldini, A. &
Bernardo, M., editors, Proceedings of the 19th
Italian Conference on Theoretical Computer
Science, volume 2243 of CEUR Workshop
Proceedings. CEUR-WS.org, 152–161.

35. Tarski, A. (1955). A lattice-theoretical fixpoint
theorem and its applications. Pacific J. Math., 5(2),
285–309.

36. ten Cate, B. & Marx, M. (2009). Axiomatizing the
logical core of XPath 2.0. Theory Comput. Syst.,
44(4), 561–589.

37. Tobies, S. (2001). Complexity results and practical
algorithms for logics in knowledge representation.
Ph.D. thesis, RWTH Aachen University, Germany.

38. Venema, Y. (2012). Lecture Notes on the modal
µ-calculus. The University of Amsterdam.

39. Zawidzki, M., Schmidt, R. A., & Tishkovsky,
D. (2013). Satisfiability problem for modal logic
with global counting operators coded in binary is
NExpTime-complete. Inf. Process. Lett., 113(1-2),
34–38.

Article received on 27/04/2018; accepted on 29/10/2019.
Corresponding author is Everardo Bárcenas.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 281–303
doi: 10.13053/CyS-24-1-2940

Presburger Constraints in Trees 303

ISSN 2007-9737

