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Abstract. Paper presents an application of a 
Fractional Order Time Delay Neural Networks to 
chaos synchronization. The two main 
methodologies, on which the approach is based, 
are fractional order time-delay recurrent neural 
networks and the fractional order inverse optimal 
control for nonlinear systems. The problem of 
trajectory tracking is studied, based on the 
fractional order Lyapunov-Krasovskii and Lur’e 
theory that achieves the global asymptotic 
stability of the tracking error between a delayed 
recurrent neural network and a reference function 
is obtained. The method is illustrated for the 
synchronization, the analytic results we present a 
trajectory tracking simulation of a fractional order 
time-delay dynamical network and the Fractional 
Order Chua’s circuits 

Keywords. Trajectory tracking, fractional order 
time-delay recurrent neural network, fractional 
order Lyapunov-Krasovskii and Lur’e analysis. 

1 Introduction 

This paper analyzes the Trajectory Tracking for a 
Fractional Order Nonlinear System for a 

Fractional Order Time-Delay Neural Network, 
which are forced to follow a Fractional Order 
Reference signal generated by a nonlinear 
chaotic system. The control law that guarantees 
trajectory tracking is obtained by using the 
Fractional Order Lyapunov-Krasovskii and Lur’e 
methodology. Chaotic behavior, as a 
characteristic of a dynamical system, could be 
desirable or undesired, depending of the current 
application.  

In mixing substances, a chaotic behavior might 
improve the efficiency of the system, while in 
process which involves vibrations, chaos could 
produce critical structural failures. Consequently, 
it is important to be able to manipulate the chaotic 
nature of the system, driving a stable system to 
be chaotic or otherwise stabilize a chaotic system. 
In many applications, it is also important to 
change the chaotic nature of a system without 
losing the chaotic behavior. 

Controlling and synchronizing chaotic 
dynamical systems has recently attracted a great 
deal of attention within the engineering society, in 
which different techniques have been proposed. 
For instance, linear state space feedback, 
Lyapunov-Krasovskii function methods [1], 
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adaptive control [2]. Using the inverse optimal 
control approach, a control law [3], which allows 
reproduce chaos on a Dynamical Neural Network, 
was discussed in [4]. We further extend these 
results to the Fractional Order Time-Delay Neural 
Networks case for nonlinear system trajectory 
tracking. The proposed new scheme is composed 
of a Fractional Order delayed dynamical neural 
identifier, which builds an on-line model for the 
unknown delayed neural network, and a control 
law, which ensures that the unknown delayed 
neural network tracks the reference trajectory. 

There are several ways of defining the 
derivative and fractional integral, for example, the 
derivative of Grunwald-Letnikov given by eq. (1): 

𝑎𝐷𝑡
𝛼𝑓(𝑡) = lim

ℎ→0

1

ℎ
𝛼 ∑ (−1)𝑗

[
(𝑡−𝛼)
ℎ

]

𝑗=0

(
𝛼
𝑗 ) 𝑓(𝑡 − 𝑗ℎ) , 

(1) 

where [.] is a flooring-operator while the RL 
definition is given by eq. (2): 

𝑎𝐷𝑡
𝛼𝑓(𝑡) =

1

Γ(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝜏)

(𝑡 − 𝜏)𝛼−𝑛+1
𝑑𝜏 ,

𝑡

𝑎

 (2) 

for (𝑛 − 1 < 𝛼 < 𝑛) and Γ(𝑥) is the well-known 
Euler’s Gamma function. Similarly, the notation 
used in ordinary differential equations, we will use 
the following notation, eq. (3), when we are 
referring to the fractional order differential 
equations where, 𝛼𝑘 ∈ ℝ+ which is: 

𝑔(𝑡, 𝑥, 𝑎𝐷𝑡
𝛼1 𝑥, 𝑎𝐷𝑡

𝛼2  𝑥, … ) = 0 . (3) 

The Caputo's definition can be written as: 

𝑎𝐷𝑡
𝛼𝑓(𝑡) =

1

Γ(𝛼 − 𝑛)
∫

𝑓(𝑛)(𝜏)

(𝑡 − 𝜏)𝛼−𝑛+1
𝑑𝜏 ,

𝑡

𝑎

 

(4) 

for: (𝑛 − 1 < 𝛼 < 𝑛). 

Trajectory tracking, synchronization and 
control of linear and nonlinear systems are a very 
important problem in science and control 
engineering. In this paper, we extend these 
concepts to force the nonlinear system (Fractional 
Order Delayed Plant) to follow any linear and 
nonlinear Fractional reference signals generated 
by fractional order differential  equations. 

The applicability of the approach is illustrated 
by one example: chaos synchronization. In the 
following, we first briefly describe the dynamic of 

the fractional order Time-Delay Neural Network to 
be used. 

2 Mathematical Models 

The differential equation will be modeled by the 
neural network [5]: 

𝑎𝐷𝑡
𝛼𝑥𝑝 = A(𝑥) + W∗Γz(𝑥(𝑡 − τ) + Ωu , (5) 

𝑥, 𝑢 ∈ ℝ𝑛 , 𝐴, 𝑊 ∈ ℝ𝑛𝑥𝑛, where 𝜏 is the.fixed 
known time delay, 𝑥 is the state, 𝑢 is the input, 

𝐴 = −𝜆𝐼, with 𝜆 being a positive constant, 𝑊 is the 

state-feedback matrix, and 𝜎(∗) = tanh(∗)  is a 

Lipschitz function [6] such that  𝜎(𝑥) = 0  only at 
𝑥 = 0, with Lipschitz constant 𝐿𝜎. It is clear that 

𝑥 = 0 is an equilibrium point of this system, when 

𝑢 = 0. 

The system, to be tracked by the neural 
network, is defined as: 

𝑎𝐷𝑡
𝛼𝑥𝑟 = 𝑓(𝑥𝑟) + 𝑔(𝑥𝑟)𝑢𝑟 , 

(6) 
𝑥𝑟, 𝑢𝑟 ∈ ℝ𝑛 , 𝑓(∗) ∈ ℝ𝑛 , 𝑔(∗) ∈ ℝ𝑛𝑥𝑛, 

where 𝑎𝐷𝑡
𝛼𝑥𝑟, is the state, 𝑢𝑟 is the input, 𝑓(∗) and 

𝑔(∗) are smooth nonlinear functions of 
appropriate dimensions. 

As is clear, this is very general, and the model 
(6) can be a complex such as chaotic nonlinear 
system. 

3 Trajectory Tracking 

The objetive is to develop a control law such that 
the delayed neural network (5) tracks the 
trajectory of the dynamical system (6). We de.ne 
the tracking error as 𝑒 = 𝑥 − 𝑥𝑟, whose derivative 
with respect to time is: 

𝑎𝐷𝑡
𝛼𝑒 = 𝑎𝐷𝑡

𝛼𝑥 − 𝑎𝐷𝑡
𝛼𝑥𝑟 . (7) 

Substituting (5, 6, 7), we obtain: 

𝑎𝐷𝑡
𝛼𝑒 = 𝐴𝑥 + 𝑊𝜎[𝑥(𝑡 − 𝜏)] + 𝑢 − 𝑓(𝑥𝑟)

− 𝑔(𝑥𝑟)𝑢𝑟 , 

(8) 
𝑎𝐷𝑡

𝛼𝑒 = 𝐴𝑒 + 𝑊𝜎[𝑥(𝑡 − 𝜏)] + 𝑢 − 𝑓(𝑥𝑟)
− 𝑔(𝑥𝑟)𝑢𝑟 + 𝐴𝑥𝑟 . 

Adding and subtracting to (8) the terms 
𝑊𝜎[𝑥𝑟(𝑡 − 𝜏)] and 𝛼(𝑡), we have: 
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𝑎𝐷𝑡
𝛼𝑒 = 𝐴𝑒 + 𝑊(𝜎[𝑥(𝑡 − 𝜏)] − 𝜎[𝑥𝑟(𝑡 − 𝜏)])

+ (𝑢 − 𝛼(𝑡))

+ [𝐴𝑥𝑟 + 𝑊𝜎[𝑥𝑟(𝑡 − 𝜏)]
+ 𝛼(𝑡)] − 𝑓(𝑥𝑟) − 𝑔(𝑥𝑟)𝑢𝑟 

(9) 

where  𝛼(∗) is a function to be determined. 

For system (5) to follow model (6), the 
following solvability assumption is needed, as 
discussed in [7]: 

Assumption 1. There exist functions 𝜌(𝑡) and 

𝛼(𝑡), such that: 

𝑎𝐷𝑡
𝛼𝜌 = 𝐴𝜌(𝑡) + 𝑊𝜎[𝑥(𝑡 − 𝜏)] + 𝛼(𝑡); 𝜌(𝑡)

= 𝑥𝑟(𝑡). (10) 

It follows from (10 and 6) that: 

[𝐴𝑥𝑟 + 𝑊𝜎[𝑥𝑟(𝑡 − 𝜏)] + 𝛼(𝑡)] = 𝑎𝐷𝑡
𝛼𝑥𝑟

= 𝑓(𝑥𝑟) + 𝑔(𝑥𝑟)𝑢𝑟 , 

𝛼(𝑡) = 𝑓(𝑥𝑟) + 𝑔(𝑥𝑟)𝑢𝑟 − 𝐴𝑥𝑟 − 𝑊𝜎[𝑥𝑟(𝑡 − 𝜏)] . 

(11) 

So that (9) becomes: 

  

Fig. 1. α=1: Simulation result for master-slave synchronization between the delayed neural network and 
the Chua.s circuits. The master system is coupled to the slave system with the first state variable and 
delay (𝜏 = 15 𝑆𝑒𝑐): Three-dimensional view on the double scroll attractor generated for (a) master 
system and (b) slave system 

 

Fig. 2. Time evolution for Delayed Neural Network. Error signal (𝑥1(𝑡) − 𝑦1(𝑡)) with respect to and 
Chua’s circuits with initial condition (0.7; 0; 0) time. 
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Fig. 3. Time evolution for Delayed Neural Network. Error signal (𝑥2(𝑡) − 𝑦2(𝑡)) with respect to  
and Chua’s circuits with initial condition (0.7; 0; 0) time 

 

Fig. 4. Time evolution for Delayed Neural Network. Error signal (𝑥3(𝑡) − 𝑦3(𝑡)) with respect to  
and Chua’s circuits with initial condition (0.7; 0; 0) time 

 

Fig. 5. α=0.00001: Simulation result for master-slave synchronization between the fractional order 
delayed neural network and the Chua’s circuits. The master system is coupled to the slave system with 
the first state variable and delay (𝜏 = 15 𝑆𝑒𝑐): Three-dimensional view on the double scroll attractor 
generated for (a) master system and (b) slave system 

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 537–544
doi: 10.13053/CyS-25-3-2941

J. Javier Perez D., Jose Paz Perez Padron, Atilano Martinez Huerta, Joel Perez Padron540

ISSN 2007-9737



𝑎𝐷𝑡
𝛼𝑒 = 𝐴𝑒 + 𝑊(𝜎[𝑥(𝑡 − 𝜏)] − 𝜎[𝑥𝑟(𝑡 − 𝜏)]) + (𝑢 − 𝛼(𝑡)). 

Let us define �̃� = (𝑢 − 𝛼(𝑡)), 

𝑎𝐷𝑡
𝛼𝑒 = 𝐴𝑒 + 𝑊(𝜎[𝑥(𝑡 − 𝜏)] − 𝜎[𝑥𝑟(𝑡 − 𝜏)]) + �̃� . (12) 

It is clear that 𝑒 = 0, is an equilibrium point of 

(12), when �̃� = 0. In this way, the tracking 
problem can be restated as a global asymptotic 
stabilization problem for the system (12). 

4 Tracking Error Stabilization and 
Control Design 

In order to establish the convergence of (12) to e 
= 0, which ensures the desired tracking, first, we 
propose the following Krasovskii [8] and Lur’e 
functional [9].  

This is essential for the design of a globally 
and asymptotically stabilizing control law. 
We select: 

𝑉(𝑒) = ∑ ∫ ∅(𝜏, 𝑥𝑟)𝑑𝜏
𝑒𝑖

0

𝑛

𝑖=1

+ ∫ (∅𝜎
𝑇

𝑡

𝑡−𝜏

(𝑠)𝑊𝑇𝑊∅𝜎(𝑠)𝑑𝑠. (13) 

The time derivative of (13), along the 
trajectories of (12): 

𝑎𝐷𝑡
𝛼𝑉 = ∅(𝜏, 𝑥𝑟)𝑇�̇� + ∅𝜎

𝑇(𝑡)𝑊𝑇𝑊∅𝜎(𝑡)
− ∅𝜎

𝑇(𝑡 − 𝜏)𝑊𝑇𝑊∅𝜎(𝑡 − 𝜏) , (14) 

𝑎𝐷𝑡
𝛼𝑉 = ∅(𝑒, 𝑥𝑟)𝑇𝐴𝑒 + ∅(𝑒, 𝑥𝑟)𝑇𝑊(𝜎[𝑥(𝑡 − 𝜏)]

− 𝜎[𝑥𝑟(𝑡 − 𝜏)]) + ∅(𝑒, 𝑥𝑟)𝑇�̃�
+ ∅𝜎

𝑇(𝑡)𝑊𝑇𝑊∅𝜎(𝑡)−∅𝜎
𝑇(𝑡

− 𝜏)𝑊𝑇𝑊∅𝜎(𝑡 − 𝜏). 

(15) 

We select: 

∅𝜎
𝑇(𝑡 − 𝜏) = (𝜎[𝑥(𝑡 − 𝜏)] − 𝜎[𝑥𝑟(𝑡 − 𝜏)])𝑎𝐷𝑡

𝛼𝑉
= −𝜆∅(𝑒, 𝑥𝑟)𝑇𝑒
+ ∅(𝑒, 𝑥𝑟)𝑇𝑊∅𝜎

𝑇(𝑡 − 𝜏)
+ ∅(𝑒, 𝑥𝑟)𝑇�̃�
+ ∅𝜎

𝑇(𝑡)𝑊𝑇𝑊∅𝜎(𝑡)−∅𝜎
𝑇(𝑡

− 𝜏)𝑊𝑇𝑊∅𝜎(𝑡 − 𝜏) . 

(16) 

Next, let consider the following inequality, 
proved in [10]: 

𝑋𝑇𝑌 + 𝑌𝑇𝑋 ≤ 𝑋𝑇Λ𝑋 + 𝑌𝑇Λ−1Y , (17) 

which holds for all matrices 𝑋, 𝑌 ∈ ℝ𝑛𝑥𝑘 and Λ ∈
ℝ𝑛𝑥𝑛 with Λ = ΛT > 0. Applying (17) with Λ = I to 

the term ∅(𝑒, 𝑥𝑟)𝑇𝑊∅𝜎
𝑇(𝑡 − 𝜏), we get: 

𝑎𝐷𝑡
𝛼𝑉 ≤ −𝜆∅(𝑒, 𝑥𝑟)𝑇𝑒 +

1

2
∅(𝑒, 𝑥𝑟)𝑇∅(𝑒, 𝑥𝑟)

+
1

2
∅𝜎

𝑇(𝑡 − 𝜏)𝑊𝑇𝑊∅𝜎(𝑡

− 𝜏) + ∅(𝑒, 𝑥𝑟)𝑇�̃�
+ ∅𝜎

𝑇(𝑡)𝑊𝑇𝑊∅𝜎(𝑡)−∅𝜎
𝑇(𝑡

− 𝜏)𝑊𝑇𝑊∅𝜎(𝑡 − 𝜏) . 

(18) 

By simplifying (18), we obtain: 

𝑎𝐷𝑡
𝛼𝑉 ≤ −𝜆∅(𝑒, 𝑥𝑟)𝑇𝑒 +

1

2
∅(𝑒, 𝑥𝑟)𝑇∅(𝑒, 𝑥𝑟)

−
1

2
∅𝜎

𝑇(𝑡 − 𝜏)𝑊𝑇𝑊∅𝜎(𝑡 − 𝜏)

+ ∅(𝑒, 𝑥𝑟)𝑇�̃�
+ ∅𝜎

𝑇(𝑡)𝑊𝑇𝑊∅𝜎(𝑡) . 

(19) 

Since ∅(𝑒, 𝑥𝑟) is a sector function with respect 
to 𝑒, there exist positive constants 𝑘1 and 𝑘2 such 

that 𝑘1 ∥ 𝑒 ∥2
2≤ ∅(𝑒, 𝑥𝑟)𝑇 ≤ 𝑘2 ∥ 𝑒 ∥2

2 [11]. Also, 

since ∅(𝑒, 𝑥𝑟) is Lipschitz with respect to 𝑒, there 

exist a positive constant 𝐿𝜎 such that 

∅(𝑒, 𝑥𝑟)𝑇∅(𝑒, 𝑥𝑟) ≤ 𝐿𝜎
2 ∥ 𝑒 ∥2

2. Henceforth (19) can 
be rewritten and then we have that: 

𝑎𝐷𝑡
𝛼𝑉(𝑒) ≤ − [𝜆𝑘1 −

1

2
𝐿𝜎

2 ] ∥ 𝑒 ∥2
2

−
1

2
∅𝜎

𝑇(𝑡 − 𝜏)𝑊𝑇𝑊∅𝜎(𝑡 − 𝜏)

+ +∅(𝑒, 𝑥𝑟)𝑇�̃�
+ ∅𝜎

𝑇(𝑡)𝑊𝑇𝑊∅𝜎(𝑡) . 

(20) 

By simplifying (20), we have: 

𝑎𝐷𝑡
𝛼𝑉(𝑒) ≤ − [𝜆𝑘1 −

1

2
𝐿𝜎

2 ] ∥ 𝑒 ∥2
2+ ∅(𝑒, 𝑥𝑟)𝑇�̃�

+ ∅𝜎
𝑇(𝑡)𝑊𝑇𝑊∅𝜎(𝑡) . 

(21) 

Since ∅𝜎 is Lipschitz with Lipschitz constant 𝐿𝜎  
[12], then: 

‖∅𝜎(𝑡)‖ = ‖𝜎(𝑥(𝑡)) − 𝜎(𝑥𝑟(𝑡))‖
≤ 𝐿𝜎

2 ‖𝑥(𝑡) − 𝑥𝑟(𝑡)‖
= 𝐿𝜎

2 ‖𝑒(𝑡)‖2
2 . 

(22) 

Applying to: 

∅𝜎
𝑇(𝑡)𝑊𝑇𝑊∅𝜎(𝑡), 

∅𝜎
𝑇(𝑡)𝑊𝑇𝑊∅𝜎(𝑡) ≤ ‖∅𝜎

𝑇(𝑡)𝑊𝑇𝑊∅𝜎(𝑡)‖
≤ 𝐿𝜎

2 ‖𝑊‖2
2‖𝑒(𝑡)‖2

2 . 

(23) 

With 𝐿𝜎
2  the Lipschitz constant of (23) 𝜎(∗).  

To the right hand, third term of (17), we obtain: 

𝑎𝐷𝑡
𝛼𝑉(𝑒) ≤ − [𝜆𝑘1 −

1

2
𝐿𝜎

2 ] ∥ 𝑒 ∥2
2

+ 𝐿𝜎
2 ‖𝑊‖2

2‖𝑒(𝑡)‖2
2

+ ∅(𝑒, 𝑥𝑟)𝑇�̃�. 

(24) 

Now, we suggest to use the following control 
law: 
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�̃� = −(2 + 2 ∗ 𝐿𝜎
2 ‖𝑊‖2

2)∅(𝑒, 𝑥𝑟)𝑇

= −𝛽(𝑅(𝑒))
−1

(𝐿𝑔𝑉)
𝑇

 , 
(25) 

where 𝛽 is a positive constant and(𝑅(𝑒))−1 is a 

function of  𝑒: At this point, substituting (25) into 
(24), we obtain: 

𝑎𝐷𝑡
𝛼𝑉(𝑒) ≤ −[𝜆 + 𝐿𝜎

2 + 𝐿𝜎
2 ‖𝑊‖2

2] ∥ 𝑒 ∥2
2 (26) 

Then 𝑎𝐷𝑡
𝛼𝑉(𝑒) < 0 for all 𝑒 ≠ 0. This means 

that the proposed control law (27) can globally 
and asymptotically stabilize the error system, 
therefore ensuring the tracking of (5) by (6). 

Finally, the control action driving the recurrent 
neural networks is given by: 

𝑢 = −(2 + 2 ∗ 𝐿𝜎
2 ‖𝑊‖2

2)∅(𝑒, 𝑥𝑟)𝑇 + 𝑓(𝑥𝑟)
+ 𝑔(𝑥𝑟)𝑢𝑟 − 𝐴𝑥𝑟

− 𝑊𝜎[𝑥𝑟(𝑡 − 𝜏)] . 
(27) 

 

Fig. 6. Time evolution for the Fractional Order. Error signal (𝑥1(𝑡) − 𝑦1(𝑡)) with respect to Delayed 
Neural Network and Chua’s circuits time, with initial condition (0.7; 0; 0)  

 

Fig. 7. Time evolution for the Fractional Order. Error signal (𝑥2(𝑡) − 𝑦2(𝑡)) with respect to Delayed 
Neural Network and Chua’s circuits’ time, with initial condition (0.7; 0; 0) 
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We summarize the above developed analysis 
in the following Theorem. 

Theorem 1: The control law (27) ensures that 
the Time-Delay Neural Network (5) tracks the 
reference system (6). 

5 Simulations 

In order to illustrate the applicability of the 
discussed results, we consider we consider the 
following delayed neural network: 𝑎𝐷𝑡

𝛼𝑥𝑝 =

𝐴(𝑥) + 𝑊𝜎[𝑥(𝑡 − 𝜏)] + 𝑢, where: 

𝐴 = (
−1 0 0
0 −1 0
0 0 −1

) , 

𝑊 = (
0.3 0.8 0
0.4 0.3 0
0 0 1

) , 

𝜎(𝑥(𝑡 − 𝜏) = (

tanh (𝑥1(𝑡 − 𝜏)
tanh (𝑥2(𝑡 − 𝜏)
tanh (𝑥3(𝑡 − 𝜏)

) , 

𝜏(28) = 15 . 

(28) 

The reference model to be tracked is the Chua.s 
circuits [13]. This system is described by: 

(█(𝑎𝐷_𝑡^𝛼 𝑥_𝑟 = 15.6𝑦_𝑟 − 15.6𝑥_𝑟
− 15.6〖{−1.143𝑥〗_𝑟 + ((−1.143
+ 0.714))/2 [|𝑥_𝑟 + 1| − |𝑥_𝑟
− 1|]}@@𝑎𝐷_𝑡^𝛼 𝑦_𝑟 〖
= 𝑥〗_𝑟 − 𝑦_𝑟 − 𝑧_𝑟  @𝑎𝐷_𝑡^𝛼 𝑧_𝑟
= −28𝑦_𝑟  )) 

(29) 

The experiment is performed as follow. Both 
systems, the delayed neural network and the 
Chua’s circuits, evolve independently until 𝜏 = 15 
seconds: at that time, the proposed control law 
(23) is incepted.  

Simulation results are presented in Fig. 2, 3 y 
4, for state 1, state 2 and state 3, respectively. As 
can be seen, tracking is successfully achieved. 

The experiment is performed as follow. Both 
systems, the fractional order delayed neural 
network and the Chua’s circuits, evolve 
independently until 𝜏 = 15 seconds: at that time, 
the proposed control law (23) is incepted. 
Simulation results are presented in Fig. 6, Fig. 7, 
Fig. 8, for state 1, state 2 and state 3, respectively. 
As can be seen, tracking is successfully achieved. 

6 Conclusions 

We have presented the controller design for 
trajectory tracking determined by a Fractional 
Order Time-Delay dynamical network. 

This framework is based on dynamic 
Fractional Order delayed neural networks and the 
methodology is based on Fractional Order 
Lyapunov-Krasovskii and Lur’e theory.  

The proposed Inverse Optimal Control Law is 
applied to a dynamical fractional order delayed 
neural network and the Chua’s circuits, 
respectively, being able to also stabilize in 

  

Fig. 8. Time evolution for the Fractional Order Error signal (𝑥3(𝑡) − 𝑦3(𝑡)) with respect to Delayed 
Neural Network and Chua’s circuits time, with initial condition (0.7; 0; 0) 
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asymptotic form the tracking error between two 
systems. 

The results of the simulation show clearly the 
desired tracking. In future work, we will consider 
the stochastic case for the complex dynamical 
network. 
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