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Abstract. This paper presents fuzzy differential
equations in the context of teaching uncertainty in
engineering and science. Moreover, the Cauchy problem
is discussed as case of study to understand the
importance of fuzzy differential equations as a natural
way to model uncertainty in dynamical systems. The
specific case of study reported in this paper is the
Malthusian population dynamic model, which is solved
by students both via analytical as well as computational
approaches as a result of applying problem-based
learning teaching principles, and allowing to introduce
the importance of uncertainty.
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1 Introduction

Nowadays, there are few phenomena that are
completely described by a mathematical model
considering uncertainty. Moreover, there are
very few phenomena that are described by fuzzy
differential equations.

Differential equations play an important role
in modeling the real world. Today, differential
equations represent a fundamental mathematical
tool for the study of systems that change over
time, and are used in most areas of science and
engineering. Hence, it is important for engineering

and science students to be able to model problems
using differential equations and solve them, thus
allowing to analyze the behavior of their underlying
dynamics.

Generally, the description of a phenomenon is
completed with certainty over all its parameters,
including initial conditions. So, a phenomenon
is usually modeled by differential equations and
predetermined initial conditions.

When a real world system is modeled by a set
of differential equations the simplifications about
the phenomenon to model – e.g., linearization,
assumptions, etc. – make it necessary to
abstract some dynamics present in the given real
world system. In these cases, the resulting
mathematical models do not describe completely
the phenomenon under study. The difference
between the dynamics of a real world system and
its model can be considered as a certain kind
of uncertainty. Most tools to model (represent)
uncertainty in mathematical models come from
probability theory. However, there exist other
approaches, such as fuzzy differential equations,
that so far do not have a wide diffusion to
engineering and science students.

In order to apply fuzzy differential equations
as a modeling tool for dynamical systems, some
authors have extended the concept of derivatives
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in the fuzzy context, all based on the notion of fuzzy
sets introduced by Zadeh in [28].

This allows to define differential equation in
the fuzzy context, which has been studied in a
theoretical way by some authors like Puri and
Ralescu in [23], Kaleva et al. in [13, 14, 15, 16] and
Nieto et al. in [22]. The concept of a generalized
fuzzy derivative is studied in Chalco-Cano et al. [5]
and Bede et al. in [18]. Other relevant results on
fuzzy differential equations have been reported in
[3, 7, 9, 17].

Fuzzy differential equations currently have
several applications. For instance, Barros et al. in
[2] refer to demographic modeling problems and life
expectancy, and Ahmad et al. in [1], use theoretical
predator-prey population models.

A fundamental problem in the process of the
derivation of mathematical models is the immense
quantity and quality of knowledge that has to
be included, such that it be as representative
as possible of the real system. Indeed, there
exists a trade-off between model complexity and
how close model dynamics will be from the
real ones. Frequently in engineering courses,
the studied cases are not extended to explore
the solutions considering different mathematical
models of the same phenomena or including any
type of uncertainties. The aim of this paper is to
provide a first approach to fill this gap through using
fuzzy differential equations.

On the other hand, problem-based learning
(PBL), has been one of most widely used teaching
methods in higher education over the last years.
PBL consists in proposing a problem to students,
for which they must generate solutions supported
by their previous knowledge. It is important to note
that most of times, most of students need to build
new knowledge to solve the proposed problem,
and is precisely this knowledge generation process
the main core of PBL.

Problem-based learning, is defined in [25], as
an instructional (and curricular), learner-centered
approach that empowers learners to conduct
research, integrate theory and practice, and apply
knowledge and skills to develop a viable solution
to a defined problem. Research on PBL has
centered on the student learning process, the
student’s roles, the tutor’s roles, the case study

problem design and the use of technology [11], in
the learning process.

However, there exists an issue that to date is
not considered, the uncertainty about the found
solution for a given problem, which depends on the
quality and/or quantity of the student’s knowledge
to solve a proposed problem.

The PBL is sustained in different theoretical
schools on the human learning, and attends on the
constructivist learning theory. In agreement with
this position, the three basic principles of PBL are:

— The understanding with regard to a situation
of the reality arising from the interactions with
the environment.

— The cognitive conflict on having faced every
new situation stimulating the learning.

— The knowledge developed by means of the
recognition and acceptance of the social
processes and of the evaluation of the
different individual interpretations of the same
phenomenon.

The PBL approach has been successfully used
to teach electrical and electronics engineering
courses. Experiences in several fields such as
circuit analysis [8], heat transfer [21], and analog
electronics [19] have been reported.

This manuscript reports fuzzy differential equa-
tions as an option to teach uncertainty in
engineering and sciences. The case of study
reported in this paper is to teach the Cauchy
problem, in particular, in the still open problem
of population dynamics [20], specifically about the
classic Malthusian demography model, to induce
the need of studying about uncertainty in the fuzzy
context.

A second purpose of this manuscript is to
introduce the strategy of PBL and its benefits
to help science and engineering students to be
familiar with the fundamental concepts of fuzzy
set theory and to understand fuzzy differential
equations as a modeling tool for dynamical
systems affected by uncertainties. Moreover, the
results reported in this paper allow to predict that
the same approach can be considered in other
kinds of problems such as time series forecasting,
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considering the confidence limit as a nested
succession with vanishing limit diameter [24].

After this introduction, the remainder of the
paper is organized as follows. The educational
methodology is addressed in Section 2. The
required basic mathematical concepts are pre-
sented in Section 3. Results applying PBL are
reported in Section 4, considering these results as
a platform to build the concept of uncertainty and
fuzzy differential equations to deal with. Finally,
Section 5, summarizes the conclusions made by
the authors.

2 Educational Methodology

PBL is an educational methodology that involves
the students in a direct way both in the learning
process and in knowledge construction.

D. Sonmez and H. Lee in [27], claim that PBL is a
methodological active strategy that challenges the
students to generate knowledge from the search
for solutions across carefully raised problems.

One of the important aspects of PBL is that
during the process of searching for solutions
of a problem, the students need to search for
information in an autodidactic approach, and it is
during this process when they becomes generators
of their own knowledge.

A good problem to use in PBL must capture
student’s attention and motivate them in getting
deepen understanding of the concepts that they
have been introduced to [12].

The conventional learning process is inverted
when PBL is applied. While in the traditional
way the information is first exposed and later
applied to solve a problem, in the case of PBL the
problem is first presented, then learning needs are
identified, the necessary information is identified,
and, finally, students return to the problem to
propose a solution [11]. Thus, the student has
to play a leading role while the teacher performs
a directive and supervisory role in the learning
process. Contradictorily to what is presumed, the
new role taken by the teachers is more complex
and requires greater skills than the ones required
for a traditional learning system [10].

For example, to understand fuzzy differential
equations, certain mathematical knowledge about
algebra, linear algebra, differential and integral
calculus, differential equations, etc., is required.

The methodology to use PBL, in its general form,
can be as follows:

— Choose a problem to solve,

— Deliver the problem to the students,

— Expose and discuss the problem,

— The students identify which knowledge they
need to solve the problem, and which they
must learn,

— The students compile the different possible
solutions and methods to solve the problem,

— Perform feedback and auto-evaluation, and
finally

— Present the conclusions.

The example problem designed and considered
for this paper is as follows: A population of bacteria
is ruled by the Malthus’ law. Let P (t) be the
quantity of population in an instant t, and let the
population speed change be proportional to the
quantity of individuals P (t) present at this instant
in time. Suppose that the initial population is P0,
and after 5 hours the population has diminished
to e−10P0, where e is the Euler constant. Now,
suppose that the initial population cannot be
measured with accuracy in a certain time. Instead,
let us suppose that the initial population P (0) = P0

differs in the closed interval [1, 3] × 106. In such
a way, the population grows and decreases linearly
in the interval, and suppose that there a consensus
exists which states that the population of bacteria
is around to 2× 106.

The set of different solutions obtained by
students following analytical or computational
methods, or any other method, can be represented
solutions affected by uncertainty, which leads us
to think in a fuzzy model, and to represent the
problem via differential equations in the fuzzy
context.

In this educational environment, following PBL,
all the solutions that the students will find will give a
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motivation to consider a fuzzy model, in particular,
a fuzzy differential equation model.

For engineering and science students the
thorough knowledge about dynamical systems is
important, which are the fundamental elements
to understand the content of the last stage in an
engineering and science educational program.

3 Basic Mathematical Concepts

This section introduces basic definitions and
results required for the understanding of this paper.

3.1 Malthus’ Dynamic Population Model

A Cauchy problem expressed as a first-order
ordinary differential equation, is defined as:{

x′(t) = f(t,x(t))
x(t0) = x0

, (1)

where f(t) is a function defined in a domain D ⊂
R2.

A common Cauchy problem is the population
model of Malthus. The basic idea behind the
Malthusian model is the assumption that the rate
at which the population grows at a certain time is
proportional to the total population at that time.

In other words, if more people exist at a given
time t, then more people will also exist in the future
[29], i.e., for every t̄ > t. In mathematical terms,
if P (t) denotes the total population at time t, then
this assumption can be expressed as [4]:

dP (t)

dt
= kP (t), (2)

where k ∈ R is a constant of proportionality.

3.2 Fuzzy Mathematics

According to Zadeh [28], a fuzzy set is a
generalization of a classical set, and is defined as:

Definition 3.1. Let X be a nonempty set. A fuzzy
set A in X is characterized by its membership
function uA : X → [0, 1]. Then uA(x) is interpreted
as the degree of membership of a element x in the
fuzzy set uA for each x ∈ X.

It is clear that A is completely determined by the
set of tuples A = {(x,uA(x)) : x ∈ X}.

From the definition of fuzzy sets, it is clear
that a very important element of a fuzzy set is
the membership function, and related with the
membership function the concept of α-level defined
as:

Definition 3.2. For any fuzzy set with membership
function u, u : R → [0, 1]. The α-level of u is the
set [u]α = {x ∈ R : u(x) ≥ α}, with 0 < α ≤ 1.
For α = 0 the support of u is defined as: [u]0 =
cl{x ∈ R : u(x) > 0}, where cl denotes the closure
of a subset.

The above definitions are fundamental in fuzzy
mathematics, and are complemented with the
definition of a fuzzy number:

Definition 3.3. For any fuzzy set [14]A with
membership function u : R → [0, 1], u is called a
fuzzy number if u satisfies the following properties:

(i) u is normal, i.e. there exists x∗ ∈ R such that
u(x∗) = 1,

(ii) u is fuzzy convex,

(iii) u is upper semicontinuous,

(iv) [u]0 is compact.

Since X = R, Definition 3.3 can be rewritten as:

Definition 3.4. For any fuzzy set A with
membership function u : R → [0, 1], then u
is a fuzzy number if it u satisfies the following
properties:

(i) u is normal, that is, there exists x∗ ∈ R such
that u(x∗) = 1,
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(ii) [u]α is a closed interval ∀α ∈ [0, 1],

(iii) [u]0 is compact.

Let F be the space of the all fuzzy numbers on
R. This space has been studied by many authors
(see, e.g., [6], [16], [22], [26]).

For a fuzzy number u, its α-levels are closed
intervals in R and denoted by:

[u]α = [uαL,uαR]. (3)

Such intervals are the basis for the statement of a
H-difference, defined by Puri and Ralescu [23] as:

Definition 3.5. Let u, v ∈ F . If there exists w ∈
F such that u = v ⊕ w, then w is called the H-
difference of u and v and it is denoted by u	 v.

To this end, the necessary concepts to operate
with fuzzy numbers has been established. There
exists a variety of fuzzy numbers well defined
in literature, as an example the definition of a
triangular fuzzy number is as follows:

Definition 3.6. A fuzzy number A is called a
triangular fuzzy number if its membership function
µ(x) has the following form:

µ(x) =


0 x < a,
x−a
b−a a ≤ x ≤ b,
c−x
c−b b ≤ x ≤ c,
0 x > c.

(4)

An example of a triangular fuzzy number can be
seen in Fig. 1. The α-levels are [A]α = [a + α(b −
a), c− α(c− b)], for any α ∈ (0, 1].

Once the definitions on fuzzy numbers are
stated, it is necessary to introduce the concept of
differentiability in the context of fuzzy mathematics:

Definition 3.7. Let F : T → F and t0 ∈ T . The
function F is said to be differentiable at t0 if:
(I) an element F ′(t0) ∈ F exists such that, for all
h > 0 sufficiently near 0, there are F (t0+h)	F (t0),
F (t0)	 F (t0 − h) and the limits:

lim
h→0+

F (t0 + h)	 F (t0)

h
= lim
h→0+

F (t0)	 F (t0 − h)

h
,

are equal to F ′(t0),
or (II) there is an element F ′(t0) ∈ F such that, for

Fig. 1. Triangular fuzzy number, support [a,c]

all h < 0 sufficiently near 0, there are F (t0 + h) 	
F (t0), F (t0)	 F (t0 − h) and the limits:

lim
h→0−

F (t0 + h)	 F (t0)

h
= lim
h→0−

F (t0)	 F (t0 − h)

h
,

are equal to F ′(t0).

From this definition of differentiability, the
following theorem completes the necessary basic
concepts about fuzzy mathematics.

Theorem 3.1. Let F : T → F and [F (t)]α =
[FαL (t),FαR(t)], for each α ∈ [0, 1].Then
(i) if F is differentiable in the first form (I), then
FαL (t),FαR(t) are differentiable functions and:

[F ′(t)]α = [(FαL (t))′, (FαR(t))′], (5)

(ii) if F is differentiable in the second form (II), then
FαL (t),FαR(t) are differentiable functions and:

[F ′(t)]α = [(FαR(t))′, (FαL (t))′]. (6)

Proof. (i) If h > 0 and α ∈ [0, 1], then [F (t + h) 	
F (t)]α = [FαL (t + h) 	 FαL (t),FαR(t + h) 	 FαR(t)],
multiplying by 1

h , we have:[
FαL (t+ h)	 FαL (t)

h
,
FαR(t+ h)	 FαR(t)

h

]
, (7)

passing to the limit, using definition (3.7),
[F ′(t)]α = [(FαR(t))′, (FαL (t))′].
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Similarly with [F (t)	 F (t+ h)]α

(ii) If h < 0 and α ∈ [0, 1], then [F (t+ h)	F (t)]α =
[FαL (t+ h)	 FαL (t),FαR(t+ h)	 FαR(t)], multiplying
by 1

h , we have:[
FαR(t+ h)	 FαR(t)

h
,
FαL (t+ h)	 FαL (t)

h

]
, (8)

passing to the limit, using definition (3.7),
[F ′(t)]α = [(FαR(t))′, (FαL (t))′], similarly with [F (t)	
F (t+ h)]α.

Note that if F is differentiable in the first form (I),
then it is not differentiable in the second form (II)
and vice versa.

4 Results

To evaluate the hypothesis stated in this paper,
the example problem presented in Section 2, was
presented in three different academic periods in a
differential equations class. Each time the student
group included heterogeneously electronics, bio-
medical, nanotechnology, civil, electromechanical,
chemical and biochemical engineering students,
most of them at the fourth semester of their
academic program, giving a total of 150 students.

This intervention was on the Tecnológico Naci-
onal de México - Instituto Tecnológico de Tijuana
higher education institution. The rest of this section
is organized as follows: a characteristic analytical
solution found by students is reported in Section
4.1, then, a characteristic numerical-computational
solution found by students is reported in Section
4.2, and finally, the differential equation modelling
approach built on students findings is reported in
Section 4.3.

Every time the teacher instruction was to solve
the problem stated in Section 2, considering Fig.
2 as initial population. It is evident that it is not
trivial to determine how many individuals are in
the picture, that is, there exists a fair amount of
uncertainty about the initial population, but they
know that it may be in the closed interval [1, 3]×106.

Fig. 2. Initial population for the case of study. [Image
by PhD. Rosa R. Mouriño Pérez; Bacterium: E. coli
DH5-alpha, differential interferation Nomarsky (DIC),
ConidiosX60: Neurospora crassa Conidia stained with
DAPI]

4.1 Analytical Solution Reported by Students

Basically about a half (more precisely: 72), of
the students understood that model (1), represents
the problem in hand, and that this model can be
rewritten as: {

x′(t) = −kx(t),
x(0) = C,

(9)

to represent the Malthusian model.
Most of the students found the crisp (real)

solution:
x(t) = Ce−kt, (10)

and considering a initial value taken from Fig. 2, 70
different solutions were reported. That is, most of
the students count or guess different quantities of
individuals from Fig. 2.

Considering these initial populations, particular
solutions for (10) were reported as:

x(t) = 2e−kt × 106, (11)

for: x(0) = 2× 106.
Note that there were 70 different solutions in the

form of (11).
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4.2 Numerical-Computational Solution
Reported by Students

About 70 students (basically the other half), could
not find an analytical solution like the one reported
in Section 4.1. That is, most of them (49), could
identify that model (1), represented the problem
at hand, but only 40 of them could find the
general solution (10). However, they could not
find a particular solution such as (11). These
students took a different approach, as they chose
to explore a numerical-computational solution for
(9, Eq:GeneralAnalitycalSolutions). Some of them
implemented code in a software like Matlab or a
visual blocks model in Simulink like the one shown
in Fig. 3. This time 40 different solutions were
obtained like the one shown in Fig. 4.

Fig. 3. Typical Simulink model reported by students

Fig. 4. Typical solution reported by students

4.3 Fuzzy Differential Equation Approach

From Sections 4.1 and 4.2 it is clear that 132
students (i.e., 88%) of the students found a solution
for the proposed problem. Moreover, 130 different
solutions were found. It is important to note that
the 130 different solutions were all correct, as the

students considered different ways to count the
initial population from Fig. 2. But, it is also
important to note that 18 students (12%) have not
found a solution for the proposed problem.

At this stage, all students were understanding
that uncertainty is an important concept to consider
in problem solving. So, to this end students
were sensitized and focused to learn about fuzzy
differential equations, and the following solution
was presented.

Model (9), can be considered as the fuzzy
differential equation:{

x′(t) = −kx(t),
k ≥ 0,x(0) = X0,

(12)

where the initial condition X0 is a symmetric
triangular fuzzy number with support [−a, a], where
−a and a correspond to the extreme values of the
shape depicted in Fig 1, denoted:

[x(t)]α = [uα(t), vα(t)]. (13)

If x′(t) is considered in the first form of Theorem
3.1, the fuzzy differential equation is transformed
into the following system:{

u′α(t) = −kvα(t), uα(0) = −a(1− α),
v′α(t) = −kuα(t), vα(0) = a(1− α).

(14)

First, find the eigenvalues and eigenvectors of
the coefficients matrix. The eigenvalues are λ =
±k, and the corresponding eigenvector is [−1, 1]T

for λ and [1, 1]T for −λ. The general solution of the
system is: {

uα(t) = −c1eλt + c2e
−λt,

vα(t) = c1e
λt + c2e

−λt.
(15)

Now, the initial condition uα(0) = −a(1 − α) and
vα(0) = a(1−α) yields the algebraic system, whose
solution is c1 = a(1 − α) and c2 = 0. The solution
for system (15) is:{

uα(t) = −a(1− α)eλt,
vα(t) = a(1− α)eλt.

(16)

If x′(t) is considered in the second form of
Theorem 3.1, the fuzzy differential is transformed
into the following system:{

u′α(t) = −kuα(t), uα(0) = −a(1− α),
v′α(t) = −kvα(t), vα(0) = a(1− α).

(17)
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and the general solution of the system (16) is:{
uα(t) = c1e

−λt,
vα(t) = c2e

−λt.
(18)

Now, with initial condition uα(0) = −a(1−α) and
vα(0) = a(1−α), the solution of the system (17) is:{

uα(t) = −a(1− α)e−λt,
vα(t) = a(1− α)e−λt.

(19)

Considering for the specific case of study the
fuzzy differential equation (12) with k = 2, and
the initial condition X0 as the symmetric triangular
fuzzy number with support [1, 3]× 106, the problem
is stated as: {

x′(t) = −2x(t),
x(0) = X0.

(20)

It is clear that if there is no uncertainty on the
initial condition and it is the real number 2 × 106

(initial population), the crisp (real) solutions is:

x(t) = 2e−2t × 106. (21)

If x′(t) is considered in the first form, the fuzzy
differential equation (20) can be written as:

{
u′α(t) = −2vα(t)× 106, uα(0) = (1 + α)× 106,
v′α(t) = −2uα(t)× 106, vα(0) = (3− α)× 106.

(22)

Now the initial conditions uα(0) = (1 + α) × 106

and vα(0) = (3−α)×106 yield the algebraic system
whose solution is c1 = (1−α)×106 and c2 = 2×106.
The solution for system (22) is:{

uα(t) = −(1− α)e2t × 106 + 2e−2t × 106,
vα(t) = (1− α)e2t × 106 + 2e−2t × 106.

(23)

If x′(t) is considered in the second form, the
fuzzy differential is transformed into the following
system:{
u′α(t) = −2uα(t)× 106, uα(0) = (1 + α)× 106,
v′α(t) = −2vα(t)× 106, vα(0) = (3− α)× 106.

(24)

Fig. 5. Block diagram Simulink Model for the first form

Fig. 6. Block diagram Simulink Model for the second
form

Now the initial condition is given by uα(0) = (1 +
α)×106 and vα(0) = (3−α)×106. The solution for
system (24) is:{

uα(t) = (1 + α)e−2t × 106,
vα(t) = (3− α)e−2t × 106.

(25)

The above analysis concludes the analytical
solution for the fuzzy differential equations, and
from this analytical solution, students easy built a
numerical-computational solution for it. Students
easily inferred that for the first form (14), the
Simulink model of Fig. 5 is built to compute
solutions, and for the second form (17), students
built the Simulink model reported in Fig. 6.
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All solutions have to be bounded inside curves
like those reported in Figs. 7 and 8, for the first
and second form respectively. These solutions are
considering bound values for α, but if solutions are
calculated for each α, what is found is a footprint
of solutions like those reported in Figs. 9 and
10. That is, Figs. 9 and 10, consider all possible
solutions for the fuzzy differential equations.

Fig. 7. Bounded solutions for the first form

Fig. 8. Bounded solutions for the second form

Here, it is important to note that students easily
identified from Figs. 7 to 10 that applying the
concept of convergence, the desired solution is the
one given by the second form, that all solutions
are considered in Fig. 10, i.e. Fig. 11 shows 10,
but are highlighted solutions for initial conditions of
1.8× 106, 2× 106 and 2.3× 106.

As a remark, it is important to note that
the obtained results allow to predict that the

Fig. 9. Footprint of solutions for the first form

Fig. 10. Footprint of solutions for the second form

same approach can be considered in other
kinds of optimization problems such as time
series forecasting, considering the confidence
limit like a nested succession with vanishing limit
diameter [24].

5 Conclusion and Future Work

Teaching about uncertainty is an important topic
that has to be included in engineering and sciences
educational programs. Fuzzy differential equations
as reported in this paper is an excellent opportunity
to introduce this concept, the importance of
uncertainty, and finally how to model it.

Problem based learning is an alternative
educational strategy to introduce the importance
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Fig. 11. Real solutions over the footprint of solutions

of learning about uncertainty. Moreover, the same
didactic resources used to teach about certain
phenomenon can be used to improve student
skills by exploring the effects in the phenomenon
dynamics when the uncertainty is included into the
model.

As future work, it is intended to teach problems
like control engineering, time series forecasting,
economic analysis, etc. Moreover, the application
of fuzzy differential equations out of academic
environments is considered as a consequence
of promoting fuzzy differential equations to be a
widely used tool.
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