
Using BiLSTM in Dependency Parsing for Vietnamese

Luong Nguyen Thi1, Linh Ha My2, Huyen Nguyen Thi Minh2, Phuong Le-Hong2

1 Dalat University, Lamdong,
Vietnam

2 VNU University of Science, Hanoi,
Vietnam

halinh.hus@gmail.com, luongnt@dlu.edu.vn, {huyenntm, phuonglh}@vnu.edu.vn

Abstract. Recently, deep learning methods have
achieved good results in dependency parsing for many
natural languages. In this paper, we investigate the
use of bidirectional long short-term memory network
models for both transition-based and graph-based
dependency parsing for the Vietnamese language. We
also report our contribution in building a Vietnamese
dependency treebank whose tagset conforms to the
Universal Dependency schema. Various experiments
demonstrate the efficiency of this method, which
achieves the best parsing accuracy in comparison
to other existing approaches on the same corpus,
with unlabeled attachment score of 84.45% or labeled
attachment score of 78.56%.

Keywords. Deep learning, BiLSTM, dependency par-
sing, Vietnamese.

1 Introduction

Dependency parsing consists of graph-based and
transition-based parser (Kubler et al.,2009). Given
sentence s, a graph-based algorithm finds the
highest scoring parse tree from all possible
outputs while a transition-based algorithm builds
a parse by a sequence of actions. In recent
years, many researchers have developed deep
learning approaches with high accuracy in English,
Chinese,etc. Chen and Manning proposed a novel
way of learning a neural network classifier in a
greedy, transition-based dependency parser which
achieved USA=92.2% and LSA=89.7% on the
English Penn Treebank [1].

Dyer et al. (2015) [3] also presented stack
LSTMs, recurrent neural networks for sequences,
with push and pop operations, and used them
to implement a state-of-the-art of transition-
based dependency parser with USA=93.2% and
LSA=90.9% in English. Kiperwasser et al. (2016)
[5] presented a simple and effective scheme
for dependency parsing based on bidirectional-
LSTMs (BiLSTMs) which had USA=93.8% and
LSA=91.5% for English. Besides, Dozat and
Manning (2016) [2] have recently inherited from
Kiperwasser et al. using neural attention in a
simple graph-based dependency parser. Their
parser gained a state-of- the-art or its performance
on standard treebanks in six different languages,
achieving 95.7% UAS and 94.1% LAS on the most
popular English PTB dataset.

Regarding Vietnamese dependency parsing,
there have been many contributions to parsing. In
2008, Nguyễn Lê Minh et al. [12] used MST parser
on a corpus consisting of 450 sentences. Then,
in 2012, Phuong Le et al. [6] applied a lexicalized
tree-adjoining grammar parser trained on a subset
of the Vietnamese treebank. In 2013, Thi-Luong et
al. [18] used MaltParser on a Vietnamese depen-
dency treebank which is converted automatically
from a Vietnamese treebank. One year later, Dat et
al. [14] also presented a new conversion method
to automatically transform a constituent-based
Vietnamese Treebank into dependency trees.

In 2015, Phuong Le et al. [8] improved accu-
racy of Vietnamese dependency parsing, used
distributed word representations with Skip-gram

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 853–862
doi: 10.13053/CyS-22-3-3023

ISSN 2007-9737

and GloVe model for transition-based dependency
parsing. In 2016, Thi-Luong et al. [16] also used
distributed word representations with Skip-gram in
graph-based dependency parsing for Vietnamese
and Dat et al. [13] presented an empirical
study for Vietnamese dependency parsing. In
2017, Kiem Hieu [15] presented their work on
building BKTreebank, a dependency treebank for
Vietnamese.

1.1 Transition-Based Dependency Parsing

The transition system has a set of configurations
and a set of transitions which are applied to
configurating. By parsing a sentence, the system
is initialized to an initial configuration based on
the input sentence, and transitions are repeatedly
applied to this configuration. After a finite number
of transitions, the system arrives at a terminal
configuration, and a parse tree is read off the
terminal configuration. In a greedy parser, a
classifier is used to choose the transition and take
in each configuration, based on features extracted
from the configuration itself. The parsing algorithm
is presented in Algorithm 1 below.

Algorithm 1 Greedy transition-based parsing

Require: Sentence s = w1,w2, ...,xw, t1, ..., tn.
parameterized function SCOREθ(.) with para-
meters θ

Ensure: Tree of s
c←− INITIAL(s)
while not TERMINAL(c) do
t′ ←− arg maxt∈LEGAL(c)SCOREθ(Φ(c), t)
c←− t′

end while
return tree(c)

Many transition-based systems [7] are popular
such as arg-eager algorithm, arg-standard al-
gorithm. However in this work, we employ the
arc-hybrid system which is similar to these. In the
arc-hybrid system, a configuration c = (α,β,T)
consists of a stack α, a buffer β, and a set T of
dependency arcs.

Both the stack and the buffer hold integer indices
pointing to sentence elements. Given a sentence
s = w1,w2, ...,wn, the system is initialized with

an empty stack, an empty arc set, and β =
1, ...,n,ROOT , where ROOT is the special root
index. Any configuration c with an empty stack and
a buffer containing only ROOT is terminal, and the
parse tree is given by the arc set Tc of c. The
arc-hybrid system allows 3 possible transitions,
SHIFT, LEFT and RIGHT, defined as:

— SHIFT [(α, b0|β,T)] = (α|b0,β,T),
— LEFTl[(α|s1|s0, b0|β,T)] = (α|s1, b0|β,T ∪

{(b0, s0, l)}),
— RIGHl[(α|s1|s0,β,T)] = (α|s1,β,T ∪{(s1, s0, l)}).

1.2 Graph-Based Dependency Parsing

The second approach is the graph-based depen-
dency parsing algorithm introduced by McDonald
et al. [11]. In this algorithm, the weights of the
edges are calculated for building dependency
graphs of a sentence as follows:

s(i, j) = w.f(i, j),

where w is the weight of the (i, j) edge, f(i, j)
is feature of (i, j) edge. The weight of (i, j) edge
represents the ability to create a dependency
between the head (wi) and the dependence (wj).
If the arc score function is known, then the weight
of graph is:

S(G = (V ,E)) =
∑

(i,j) s(i, j).

Then, based on the weights of all edges in graph,
McDonald et al. [10] showed that this problem is
equivalent to finding the highest scoring directed
spanning tree for the graph G originating out of the
root node 0.

1.3 Long Short-Term Memory

Recurrent Neural Network. The recurrent neural
network (RNN) is a class of artificial neural network
designed for sequence labeling task. It takes input
as a sequence of vector and returns another
sequence. The simple architecture of RNN has an
input layer x, hidden layer h and output layer y.
At each time step t, the values of each layer are
computed as follows:

ht = fh(Wihxt +Whhht−1),
yt = fo(Whoht),

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 853–862
doi: 10.13053/CyS-22-3-3023

Luong Nguyen Thi, Linh Ha My, Huyen Nguyen Thi Minh, Phuong Le-Hong854

ISSN 2007-9737

where Wih,Whh and Who are the three connection
weight matrices and fh and fo that are sigmoid and
softmax are the hidden and output unit activation
functions.
Long Short-Term Memory. Long Short-Term
Memory (LSTM) was first proposed in 1997 by
Sepp Hochreiter et al. [4]. LSTM is an extended
model of RNN which is designed to combat with
these vanishing and exploding gradient problems
when learning with long-range sequences. LSTM
networks are the same as RNN, except that the
hidden layer updates are replaced by memory
cells. Figure 1 shows a LSTM cell, including i, f , o
are the input,forget and output gates, respectively.c
and c̃ denote the memory cell content. LSTM cell
calculates a hidden state st as following equations:

i = σ(U ixt +W iht−1),
f = σ(Ufxt +W fht−1),
c̃t = tanh(U cxt +W cht−1),
o = σ(Uoxt +W oht−1),
g = tanh(Ugxt +W ght−1),
ct = ct−1 � f + g � i,
ht = tanh(ct)� o.

Fig. 1. Long Short-Term Memory cell

where σ is the element-wise sigmoid function
and � is the element-wise product, i, f , o and c are
the input gate, forget gate, output gate, and cell
vector respectively. U i,Uf ,U c,Uo are connection
weight matrices between input x and gates, and
W i,W f ,W c,W o are connection weight matrices
between gates and hidden state h.
Bidirectional Long Short-Term Memory. The
original LSTM uses only previous contexts for
prediction. For many sequence labeling tasks, it is
advisable to take the contexts from two directions.

Bidirectional LSTM utilizes both the previous and
future context by processing the sequence in
two directions, and generate two independent
sequences of LSTM output vectors.

2 Approach

2.1 Universal Dependency Parsing in
Vietnamese

2.1.1 Universal Dependency

The dependency label represents the dependence
between the two words in the sentence. Each pair
of words, in different positions, will have a different
dependency label. There is a general conversion
rule to do the dependency label which is uniform
throughout the language. There are many sets of
relational labels for a language which are different
from each others.

The Universal dependencies - UD1 was develo-
ped by the Stanford University team, Marneffe et
al. [9]. This is a project developed based on the
treebank annotation for multi-language, with the
goal of facilitating the development of multilingual
parsing, cross-language learning, research and
analysis from the perspective of the type of
language. This project was developed based on
the Stanford Dependency - SD dependency labels,
also by the Stanford University team (Marneffe et
al., 2015) based on multi-lingual labels (Petrov et
al., 2012) and the magnetic word form (Zeman,
2008).

The general objective of developing Universal
dependencies is to provide a labels set and
guidelines to facilitate the construction of of similar
works for other languages and allow expansion to
a new language. The labels in SD are organized in
groups of subject, object, clauses, word definitions,
or nouns. Stanford offers nearly 50 types of English
dependencies based-on PennTreebank corpus. All
of these dependencies are twofold: between a
head word and its dependent word. Each relation
is given by three components: dependency label,
head word and dependent word.

Universal dependencies can be applied to many
different languages, which can be used to suggest

1http://universaldependencies.org/guidelines.html

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 853–862
doi: 10.13053/CyS-22-3-3023

Using BiLSTM in Dependency Parsing for Vietnamese 855

ISSN 2007-9737

improvements in dependency parsing, even for
English. This research team has developed a core
label set that has been extensively tested in a
variety of languages, meaning that this core label
set can be applied in many different languages.
It is also possible to add new labels as needed
by categorizing special linguistic relationships, or
for individual cases of one or more groups of
languages. This label set may correspond to
many different languages such as English, French,
German, Chinese This label is useful because it
can indicate a dependency for the same sentence,
in different languages.

Universal dependencies contain 40 labels that
were organized to allow principles of the UD
taxonomy such that rows correspond to functional
categories in relation to the head (core arguments
of clausal predicates, non-core dependents of
clausal predicates, and dependents of nominals)
while the columns correspond to structural
categories of the dependent (nominals, clauses,
modifier words, function words) as in table 1. All
of Universal dependencies are defined and there
are specific examples that can use to develop and
build a complete label for the others language.

2.1.2 Vietnamese Dependencies

Based on universal dependencies and Viettree-
bank, we have built Vietnamese dependencies.
This set has labels that coincide with the
labels in the UD and several new labels. The
Vietnamese dependencies set has 46 labels.
Some of the dependent labels that we have
designed specifically for Vietnamese:

— csubj: asubj (adjective subject: A adjective
subject is an adjective phrase which is the
syntactic subject of a clause. In Vietnamese,
the subject is usually a noun (or a noun
phrase), but there are some cases adjectives
be the subject:

– Xa_xa là hố bom.

Xa_xa là hố bom .

1 2 3 4 5

root

csubj:asubj

cop nn

punct

— csubj: vsubj (verb subject): This is used to
describe the phenomenon as a verb is a
subject of a sentence. In Vietnamese, the
subject is usually a noun, but there are some
cases adjective, verb, clause can do the
subject of a sentence:

– Học tập là nhiệm vụ chính →
csubj:vsubj(là, học tập)

Học_tập là nhiệm_vụ chính .

1 2 3 4 5

root

csubj:vsubj dobj amod

punct

— nc (classifier noun): This relation represents
the relationship between a classifier noun with
common nouns. The classifier noun always
stands before the common noun, for example,
“cái”, “con ” . . .

– Hai con mèo đen đang ăn cá.→ nc(mèo,
con)

Hai con mèo đang ăn cá .

1 2 3 4 5 6 7

root

num nc

nsubj

advmod dobj

punct

— vnom (verb nominal): This is used for the
relationship between a verb moninal and a
classifier noun. The classifier noun is always
before the verb. Example: “cái”, “sự”, “việc”,
. . .

– Cái ăn khan hiếm quá!→ vnom(ăn, cái)

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 853–862
doi: 10.13053/CyS-22-3-3023

Luong Nguyen Thi, Linh Ha My, Huyen Nguyen Thi Minh, Phuong Le-Hong856

ISSN 2007-9737

Table 1. Dependencies in universal Stanford Dependencies

Nominals Clauses Modifier words Function Words
Core nsubj csubj

arguments obj ccomp
iobj xcomp

Non-core nsubj csubj
arguments obl advcl advmod aux

vocative discourse
expl

dislocated
Coordination MWE Loose Special Other

conj fixed list orphan punct
cc flat parataxis goeswith root

compound reparandum dep

Cái ăn khan_hiếm quá !

1 2 3 4 5

root

vnom nsubj advmod

punct

Then, we have a comparison between the two
sets of labels under Tables 2 and 3.

2.2 BiLSTM in Dependency Parsing

2.2.1 Using BiLSTM Feature Representation

Instead of using direct feature vectors in depen-
dency parsing, we use the same method in [5].
Each of feature vectors by its BiLSTM encoding,
and uses a concatenation of a minimal set of such
BiLSTM encodings as a feature function, which
is then passed to a non-linear scoring function
(multi-layer perceptron).

Give input sentence s with n words: w1, ...,wn
and the corresponding POS tags p1, ..., pn. Each
word wi and POS pi with embedding vectors e(wi)
and e(pi) and denote x1:n is a sequence of input
vectors with:

xi = e(wi) ◦ e(pi).

The embedding are trained together with the
model. We alse denoted vi is the output of this
model. vi is computed as follows:

vi = BiLSTM(x1:n, i).

A Bidirectional LSTM composed of two LSTMs:
LSTMf and LSTMb. The LSTMf reads the se-
quence in its regular order and the LSTMb reads it
in reverse. Concretely, given a sequence of vectors
x1:n and index i, the function BiLSTMθ(x1:n, i) is
defined as:

BiLSTMθ(x1:n, i) = LSTMf (x1:i) ◦ LSTMb(xn:i),
vi = BiLSTMθ(x1:n, i).

The feature function φ is then the concatenation of
a small number of BiLSTM vectors. The resulting
feature vectors are then scored using a non-linear
function, namely a multi-layer perceptron with one
hidden layer (MLP):

MLPθ(x) = W 2. tanh(W 1.x+ b1) + b2,

where θ = W 2,W 1, b2, b1 are the model
parameters.

2.2.2 Transition-Based Dependency Parsing
uses BiLSTM Feature Representation

Given a sentence s, the transition-based parser
is initialized with configuration c. Then, a feature
function φ(c) represents the configuration c as a
vector. The feature function is the concatenated
BiLSTM vectors of the some items on the stack
and the buffer. For example, for a configuration
c = (...|s2|s1|s0, b0|...,T) the feature extractor is the

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 853–862
doi: 10.13053/CyS-22-3-3023

Using BiLSTM in Dependency Parsing for Vietnamese 857

ISSN 2007-9737

Table 2. Comparison between Vietnamese dependencies (VD) and Universal dependencies (UD), part 1

VD (2016) UD (2015) Meaning
csubj csubj Clausal subject
csubj:asubj
csubj:vsubj
acomp xcomp Adjectival complement
amod amod Adjectival modier
apredmod advmod Adjectival modier of a predicate
advmod advmod Adverbial modier
advcl advcl Adverbial clause modier
aux aux Auxiliary
auxpass auxpass Passive auxiliary
appos appos Appositional modier
cc cc Coordination
ccomp ccomp Clausal complement
conj conj Conjunct
cop cop Copula
dep dep Dependent
det det Determiner
discourse discourse Discourse element
dislocated dislocated Dislocated elements
dobj dobj Direct object
foreign foreign Foreign words
iobj iobj Indirect object
list list List
mark mark Marker
neg neg Negation modier

top 3 items on the stack and the first item on the
buffer. It is defined as:

φ(c) = vs2 ◦ vs1 ◦ vs0 ◦ vb0 ,
vi = BiLSTM(x1:n, i).

Each transition is scoring using an MLP that
is fed the BiLSTM encodings of vectors that
are gotten from the feature extractor. Each xi
is concatenation of a word and a POS vector.
SCORE assigning scores to (configuration,
transition) pairs. SCORE scores the possible
transition t = Shift,Left_Arc,Right_Arc, and
the highest scoring transition t̂ is chosen. The
transition t̂ is applied to the configuration that will
output a new configuration.

2.2.3 Graph-Based Dependency Parsing uses
BiLSTM Feature Representation

In graph-based parsing, the weights of the edges
are calculated for building dependency graphs of
s = x1:n a sentence as follows:

predict(s) = [arg maxy∈Y (s)scoreglobal(s, y)],
scoreglobal(s, y) =

∑
part∈y scorelocal(s, part),

where space Y (s) of valid dependency trees
over s.

Arc-factored parsing decomposes the score of a
tree to the sum of the score of its head-modifier
arcs (h,m):

parse(s) =
[arg maxy∈Y (s)

∑
(h,m)∈y score(φ(s,h,m))],

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 853–862
doi: 10.13053/CyS-22-3-3023

Luong Nguyen Thi, Linh Ha My, Huyen Nguyen Thi Minh, Phuong Le-Hong858

ISSN 2007-9737

Table 3. Comparison between Vietnamese dependencies (VD) and Universal dependencies (UD), part 2.

VD (2016) UD (2015) Meaning
nn compound Noun compound modier
nsubj nsubj Nominal subject
num nummod Numeric modier
number compound Element of compound number
parataxis parataxis Parataxis
pcomp mark Prepositional complement
pobj case Object of a preposition
prep nmod Prepositional modier
punct punct Punctuation
remnant remnant Remnant in ellipsis
reparandum reparandum Overridden disfluency
rcmod acl:relcl Relative clause modier
ref ref Referent
root root root
tmod nmod:tmod Temporal modier
vcomp ccomp Verb complement of a verb
vmod amod:vmod Verb modier of an NP
vocative vocative Vocative
xcomp xcomp Open clausal complement
nsubjpass nsubjpass Passive nominal subject
csubjpass csubjpass Clausal passive subject
- expl Expletive
- goeswith Goes with
nc - Classifier noun
vnom - Verb nominal

where φ(s,h,m) is the feature extractor which uses
the BiLSTM encoding of the head word and the
modifier word: φ(s,h,m) = BiLSTM(x1:n,h) ◦
BiLSTM(x1:n,m).

The final model is:

parse(s) =arg maxy∈Y (s)

∑
(h,m)∈y

score(φ(s,h,m))

=arg maxy∈Y (s)

∑
(h,m)∈y

MLP (vh ◦ vm),

vi =BiLSTM(x1:n, i).

3 Experiments

3.1 Datasets

We use the similar database in our research [8,16,
18]. Text corpus for distributed word representati-

ons: To create distributed word representations, we
use the dataset consisting of 7.3 GB of text from 2
million articles collected via the Vietnamese news
portal. The text is first normalized to lower case.
All special characters are removed except these
common symbols: the comma, the semi-colon,
the colon, the full stop and the percentage sign.
All numeral sequences are replaced with the
special token <number>, so those correlations
between a certain word and a number are correctly
recognized by the neural network or the log-bilinear
regression model.

Each word in the Vietnamese language may
consist of more than one syllable with spaces
in between, which could be regarded as multiple
words by the unsupervised models. Hence it is
necessary to replace the spaces within each word
with underscores to create full word tokens. The
tokenization process follows the method described

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 853–862
doi: 10.13053/CyS-22-3-3023

Using BiLSTM in Dependency Parsing for Vietnamese 859

ISSN 2007-9737

in [17]. After removal of special characters and
tokenization, the articles add up to 969 million word
tokens, spanning a vocabulary of 1.5 million unique
tokens. We train the unsupervised models with the
full vocabulary to obtain the representation vectors,
and then prune the collection of word vectors to
the 5.000 most frequent words, excluding special
symbols and the token <number> representing
numeral sequences.

Dependency treebank. We conduct our experi-
ments on the Vietnamese dependency treebank
dataset. This treebank is derived automatically
from the constituency-based annotation of the
VTB [18], containing 10.471 sentences (225.085
tokens). We manually check the correctness of the
conversion on a subset of the converted corpus
to come up 3.000 of universal dependency with a
training set of 2.200 sentences, a test set of 400
sentences and a dev set of 400 sentences.

3.2 Feature Sets

Feature sets in transition-based : For each parser
configuration c = (...|s2|s1|s0, b0|...,T) and
transition f(c) in the gold parse. φ(c) is the feature
vector representation if the parser configuration
c. We denoted part-of-speech tags of token w
is p(w). We use the notation tk(w) and e(w) to
denote the extracting the word and the distributed
representation of the word of token w. rm(w)
and lm(w) corresponding to the right-most and
left-most modifier of token w. We used the feature
templates for the classifier in table 4. Each feature
vtk(w) = p(w)◦tk(w) or ve = p(w)◦e(w) is a feature
template of token w.

Feature sets in graph-based : The feature-set
proposed by McDonald et al. (2005) with 18 tem-
plates for a first-order parser, while the first order
feature extractor in the actual implementation’s
code (MSTParser2) includes roughly a hundred
feature templates. In this case, feature extractor
uses merely encoding of the headword and the
modifier word with pos and word.

2http://www.seas.upenn.edu/strctlrn/MSTParser/MSTParser.html

3.3 Vietnamese Dependency Parsing Based-on
Bist-Parser

The Bist-parser is a tool, using BiLSTM feature
extractors with graph-based and transition-based
dependency parsers. This tool was developed by
Kiperwasser et al., using BiLSTM feature extractors
in Section 2.2.

We use two attachment scores, labeled atta-
chment score (LAS) and unlabelled attachment
score (UAS) to evaluate the accuracy of the de-
pendency parsing system. Attachment scores are
defined as the percentage of correct dependency
relations recovered by the parser. A dependency
relation is considered correct if both the source
word and the target word are correct (UAS), plus
the dependency type is correct (LAS).

We also estimate on the Vietnamese depen-
dency treebank [18]. The result is the highest
accuracy in Vietnamese dependency parsing as
presenting in table 6.

4 Conclusion

In this paper, we presented in detail to contribute
Vietnamese universal dependency. We also use
this data in the Bist-parser system which is based
on bidirectional LSTMs for dependency parser.
We evaluated the accuracy of the system for
Vietnamese parsing in two cases: with or without
using the distributed word representations feature
in the Bist-parser system.

The accuracy of our system is UAS=78.17%
and LAS= 74.84% when we use gloVe model
for producing distributed word representations on
Vietnamese universal dependency. This result is
the highest accuracy in comparison with the
previous researches. It increases about 5.0%, with
details increasing from 73.21% to 78.17% and from
68.32% to 74.84% for USA and LSA respectively.
This system gets state of the art performance
on Viettreebank [18] with UAS=84.45% and LAS=
78.56%.

In the future, we will integrate the CRF into
this system. We also conduct another approach to
apply this model to a constituency-based structure
in Vietnamese.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 853–862
doi: 10.13053/CyS-22-3-3023

Luong Nguyen Thi, Linh Ha My, Huyen Nguyen Thi Minh, Phuong Le-Hong860

ISSN 2007-9737

Table 4. Feature sets for use in the transition classifier

Feature set Feature templates
φ0 vtk(s0), vtk(s1), vtk(s2), vtk(b0)
φ1 ve(s0), ve(s1), ve(s2), ve(b0)
φ2 φ0, vtk(rm(s0)), vtk(lm(s0)), vtk(rm(s1)),

vtk(lm(s1)), vtk(rm(s2)), vtk(lm(s2)), vtk(lm(b0))
φ3 φ1, ve(rm(s0)), ve(lm(s0)), ve(rm(s1)), ve(lm(s1)),

ve(rm(s2)), ve(lm(s2)), ve(lm(b0))

Table 5. Accuracy of Bist-parser with feature sets on the Vietnamese universal dependency treebank

Feature set System Test
USA LSA

φ2 Transition-based 76.86% 72.38%
Graph-based 77.79% 74.08%

φ3 Transition-based 75.75% 71.13%
Graph-based 78.17% 74.84%

Phuong et al. [8] Transition-based 73.21% 63.06%
Luong et al. [16] Graph-based 73.09% 68.32%

Table 6. Accuracy of Bist-parser with feature sets on Vietnamese dependency treebank [18]

Feature set System Test
USA LSA

φ2 Transition-based 82.77% 76.02%
Graph-based 84.05% 78.35%

φ3 Transition-based 83.17% 76.70%
Graph-based 84.45% 78.56%

Luong et al. [18] Transition-based 73.03% 66.35%
Some results on the other dependency banks in Vietnamese

Kiem-Hieu [15] Graph-based 84.4% 81.4%
Dat Quoc et al. [14] Graph-based (MSTParser) 79.08% 71.66%
Dat Quoc et al. [13] Graph-based (Neural network) 80.66% 73.53%

References

1. Chen, D. & Manning, C. D. (2014). A fast and
accurate dependency parser using neural networks.
Moschitti, A., Pang, B., & Daelemans, W., editors,
EMNLP, ACL, pp. 740–750.

2. Dozat, T. & Manning, C. D. (2016). Deep biaffine
attention for neural dependency parsing. CoRR,
Vol. abs/1611.01734.

3. Dyer, C., Ballesteros, M., Ling, W., Matthews,
A., & Smith, N. A. (2015). Transition-based
dependency parsing with stack long short-term
memory. CoRR, Vol. abs/1505.08075.

4. Hochreiter, S. & Schmidhuber, J. (1997). Long
short-term memory. Neural Comput., Vol. 9, No. 8,
pp. 1735–1780.

5. Kiperwasser, E. & Goldberg, Y. (2016). Sim-
ple and accurate dependency parsing using
bidirectional lstm feature representations. CoRR,
Vol. abs/1603.04351.

6. Le-Hong, P., Nguyen, T. M. H., & Azim, R.
(2012). Vietnamese parsing with an automatically
extracted tree-adjoining grammar. Proceedings of
the IEEE International Conference in Computer
Science: Research, Innovation and Vision of the
Future, RIVF, HCMC, Vietnam.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 853–862
doi: 10.13053/CyS-22-3-3023

Using BiLSTM in Dependency Parsing for Vietnamese 861

ISSN 2007-9737

7. Le-Hong, P., Nguyen, T. M. H., Nguyen, P. T.,
& Roussanaly, A. (2010). Automated extraction
of tree adjoining grammars from a treebank for
Vietnamese. Proceedings of The Tenth International
Workshop on Tree Adjoining Grammars and Related
Formalisms (TAG+10), Yale University, New Haven,
CT, USA.

8. Le-Hong, P., Nguyen, T.-M.-H., Nguyen, T.-L.,
& Ha, M.-L. (2015). Fast Dependency Parsing
Using Distributed Word Representations. Springer
International Publishing, Cham, pp. 261–272.

9. Marneffe, M.-C. D., Dozat, T., Silveira, N.,
Haverinen, K., Ginter, F., Nivre, J., & Manning,
C. D. (2014). Universal stanford dependencies: a
cross-linguistic typology. Chair), N. C. C., Choukri,
K., Declerck, T., Loftsson, H., Maegaard, B.,
Mariani, J., Moreno, A., Odijk, J., & Piperidis,
S., editors, Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14), European Language Resources Associ-
ation (ELRA), Reykjavik, Iceland.

10. McDonald, R., Crammer, K., & Pereira, F. (2005).
Online large-margin training of dependency parsers.
Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL’05),
pp. 91–98.

11. McDonald, R. T. & Nivre, J. (2011). Analyzing
and integrating dependency parsers. Computational
Linguistics, Vol. 37, No. 1, pp. 197–230.

12. Minh, N. L., Điệp, H. T., & Kế, T. M. (2008). Nghiên
cứu luật hiệu chỉnh kết quả dùng phương pháp MST
phân tích cú pháp phụ thuộc tiếng việt. ICT-rda 8,
Hanoi, Vietnam, pp. 258–267.

13. Nguyen, D. Q., Dras, M., & Johnson, M. (2016).
An empirical study for vietnamese dependency
parsing. Proceedings of the Australasian Lan-
guage Technology Association Workshop 2016,
Melbourne, Australia, pp. 143–149.

14. Nguyen, D. Q., Nguyen, D. Q., Pham, S. B.,
Nguyen, P.-T., & Nguyen, M. L. (2014). From
Treebank Conversion to Automatic Dependency
Parsing for Vietnamese. Proceedings of 19th
International Conference on Application of Natural
Language to Information Systems, pp. 196–207.

15. Nguyen, K.-H. (2017). Bktreebank: Building
a vietnamese dependency treebank. CoRR,
Vol. abs/1710.05519.

16. Nguyen, T.-L., Ha, M.-L., Le-Hong, P., & Nguyen,
T.-M.-H. (2016). Using distributed word represen-
tations in graph-based dependency parsing for
Vietnamese. pp. 804–810.

17. Phuong, L. e., Thi Minh Huyen, N., Roussanaly,
A., & Vinh, H. T. (2008). A Hybrid Approach to Word
Segmentation of Vietnamese Texts. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 240–249.

18. T.L., N., M.L., H., V.H., N., T.M.H., N., & P,
L.-H. (2013). Building a treebank for vietnamese
dependency parsing. International Conference on
Computing and Communication Technologies, Re-
search, Innovation, and Vision for the Future, RIVF
2013, Hanoi, Vietnam, November 10-13, 2013,
IEEE, pp. 147–151.

Article received on 20/01/2018; accepted on 05/03/2018.
Corresponding author is Luong Nguyen Thi.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 853–862
doi: 10.13053/CyS-22-3-3023

Luong Nguyen Thi, Linh Ha My, Huyen Nguyen Thi Minh, Phuong Le-Hong862

ISSN 2007-9737

