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Abstract. Pavement cracks are an increasing threat to
public safety. Automatic pavement crack segmentation
remains a very challenging problem due to crack
texture inhomogeneity, high outlier potential, large
variability of topologies, and so on. Due to this,
automatic pavement crack detection has captured the
attention of the computer vision community, and a
great quantity of algorithms for solving this task have
been proposed. In this work, we study a U-Net
network and two variants for automatic pavement crack
detection. The main contributions of this research are:
1) two U-Net based network variations for automatic
pavement crack detection, 2) a series of experiments to
demonstrate that the proposed architectures outperform
the state-of-the-art for automatic pavement crack
detection using two public and well-known challenging
datasets: CFD and AigleRN and 3) the code for this
approach.

Keywords. Automatic pavement crack detection,
pavement cracks, fully convolutional neural networks.

1 Introduction

Cracks are the more typical kind of pavement
affectations which can significantly decrease road
safety and performance. This type of pavement
deterioration is mainly caused by load traffic and
some weather conditions. Early crack detection is
a crucial step for road maintenance and therefore
for enhancing road security.

Formerly, crack detection was carried out
by manually segmenting cracked images, but
this hand-operated approach is considered tardy,
un-safe, non-objective and labor-intensive [3, 15].
In recent years, this activity has been carried out
in a faster, safer and reliable way. So automatic
pavement crack has captured the attention of the
computer vision community, proposing a great
quantity of algorithms for this task.

A variety of approaches base their operations on
setting a threshold value supposing that cracked
pixels are darker than their neighbor pixels [13, 8],
Edge detection [24] considers that a crack is a
remarcable point on the pavement. The main
disadvantage about these methods is that they
strongly depend on the illumination context and
have just a local view of the problem.

There have been many recent methods focused
on solving this problem (e.g., [1, 11, 16] used
minimal path based methods (MPBM), [4, 23, 6,
2, 17] employed Convolutional Neural Networks
(CNN), and [19] utilized tree architectures).

Automatic pavement crack segmentation re-
mains a very challenging problem due to crack
texture variety, different type of noises, also
shadows, leafs, oil and water spots, large variability
of crack forms, etc. Literature has reported many
related works addressed to automatically detecting
pavement cracks. However, most of these works
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have achieved low classification percentages, or
have used non-public datasets which complicate
establishing a comparison point between previous
and new methodologies.

For solving this problem, we employ two
well-known datasets: CFD and AigleRN, which
are used in a considerable amount of recently
published articles that propose new crack segmen-
tation techniques.

In this work, we employ U-Net architecture as
a base, which is a Fully Convolutional Neural
Networks (FCNNs) typically utilized for biomedical
images segmentation [18], and propose two
variants for automatic pavement crack detection.
The main contributions of this research are:

1. We propose two U-Net based network varia-
tions for automatic pavement crack detection.

2. We perform several experiments to demon-
strate that the proposed architectures out-
perform the state-of-the-art for automatic
pavement crack detection using two public and
well-known challenging datasets: CFD and
AigleRN.

3. We provide the code to segment cracks
which also works for other datasets,
https://github.com/RyM-CIC/Crack-
segmentation.

Remaining sections are organized as follows:
Section 2 gives specific details about FCNN and
U-Net architecture and the proposed architectures
for automatic pavement crack detection. Section
3 presents the related work used to resolve
this problematic, and the two most outstanding
researches related to ours, together with an
understandable description of each. Section
4 discusses the datasets and the experimental
results using two well-defined databases that can
be compared and tested. In Section 5, we provide
our conclusions and make some recommendations
for future work.

2 Related Work

Related researches have tested the performance
of many traditional algorithms and methodologies
for pavement crack detection. In this section, we
describe previous works that have performed crack
segmentation using different methodologies, and
two works that represents the state-of-the-art for
automatic pavement crack detection using CDF
and AigleRN datasets.

In [10, 7] the authors use the idea that affected
areas by cracks are darker than their surroundings
and this methods obtains good performances.
However, they are very susceptible to thinks
such as shadows, water spots and oil, affecting
their efficiency in real environments. With the
arrival of machine learning, new methodologies
were proposed that present a great robustness
to this type of problems, [8] uses artificial neural
network models for the automatic detection and
classification. However, this model cannot correctly
classify cracks with poor continuity.

First, Shi et al. [19] employed random
structured forests to automatically detect cracks,
CrackForest. From our point of view, this technique
is complex because it involves several procedures
and algorithms.

From the training image patches, CrackForest
starts by computing a great quantity of features
(a mean value, a standard deviation matrix, two
magnitude and eight orientation channels, gradient
and oriented gradient information, and so on) to
describe the tokens (segmentation masks). The
second step is clustering the formed tokens by
using random structured forest in order to form
a crack detector. Due to the large collected
quantity of features, the procedure gathers 32640
features. To reduce the vector dimensionality,
256 features are randomly chosen to train each
split function and then apply PCA (Principal
Component Analysis) to reduce from 256 into five
dimensions. Then, dilation and erosion operations
are performed to connect different cracks in the
image. Lastly, classification methods such as SVM
(Support Vector Machine) and kNN (k-Nearest
Neighbor) are applied to distinguish cracked pixels
from noises.
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The main disadvantage of CrackForest is that
it strongly depends on the extracted features to
describe the cracks. Nonetheless, because of the
large quantity of pavement conditions, it is very
difficult to extract representative features for all
types of pavements.

Fan et al. [4] used a CNN with structured
prediction for automatic pavement crack detection.
The network has nine layers: four convolutionals,
two max-pooling and three Fully-Connected (FC).
The proposed architecture extracts patches from
the original images to analyze pixel per pixel
individually. The network determines if the
analyzed pixel is a crack or non-crack pixel
by forming a probability map in the network
output. Despite the proposed methodology being
very robust, effective and slightly improving the
performance achieved by Shi et al. [19], it
consumes many computational resources and time
because it makes a sweep of all the pixels by
creating a patch per pixel of the image.

The main advantage about using our proposals
is that they only employ one architecture and do
not depend on other algorithms or methodologies.
Moreover, they overcome the state-of-the-art for
automatic pavement crack detection.

3 Fully Convolutional Neural Networks

3.1 Convolutional Neural Networks

Typical convolutional classification nets [12, 11, 21]
take sized inputs and produce non-spatial outputs.
The fully connected layers of these nets result
in spatial coordinates (Fig. 1). The resulting
map is equivalent to the evaluation of the original
image over all the possibilities. In order to obtain
a segmentation it is necessary that these maps
generate a h×w×d-sized output, so an adaptation
in the last layers is necessary.

Fully Connected Neural Network (FCNN) op-
erates over a input size of h×w and produces
an output of corresponding spatial dimentions (it
may be increased or reduced from the original
image). These are powerful visual models that
yield hierarchical characteristics of input images
and have shown that by themselves, trained end
to end, pixel to pixel, obtain better results than

Fig. 1. Classification network composed of input
(h×w×d), convolution, pooling and fully connected layers
to result in a probability output

classical segmentation techniques [14] and for
visual recognition problems [5, 11].

A FCNN is a combination of operators such
as convolutional layers, pooling layers, activation
functions, upsamplings and so on. Each layer
of data in FCNNs is a three-dimensional array of
h×w×d size, where h and w are spatial dimensions,
and d is the channel dimension (Fig. 2). The first
layer is the raw image which has a dimension of
h×w with d color channels.

Their classic components operate on local
input regions and depend only on relative spatial
coordinates expressed as xi,j for the data at
location (i, j) in a layer, and yi,j the next layer
connected, computed as:

yi,j = ψks({xsi+δi,sj+δj} 0 ≤ δi, δj ≤ k), (1)

where k is the kernel size, s is the stride, and ψks
determines the type of layer:

— a matrix multiplication for convolution

— a spatial max for maxpooling

— an nonlinearity for activation function.

In a convolutional network, pooling is designed to
filter noisy activations in lower layers by abstracting
activations. It helps to classify by retaining robust
activations in upper layers. However, spacial
information is lost, which may be critical for precise
localization in semantic segmentation. On the
other hand, unpooling layers perform the opposed
operation of pooling by reconstructing to the
original size of activations [22]. So it records the
locations of maximum activations selected in the

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 451–460
doi: 10.13053/CyS-23-2-3047

Fully Convolutional Networks for Automatic Pavement Crack Segmentation 453

ISSN 2007-9737



Fig. 2. Feature maps

pooling operation, and returns them to its original
pooled location (Fig. 3).

The output of an unpooling layer is an enlarged
activation map. In order to densify these
activations, a deconvolution layer with multiple
filters is used. Contrary to a convolutional layer,
which is connected with multiple input activations
within a filter window to a single activation,
deconvolutional layers associate a single input
activation to multiple outputs. Similar to a
convolutional network, hierarchical deconvolutional
layers are used to capture different levels of shape
details.

3.2 U-Net

In 2015, Olaf Ronneberger et al. [18] proposed
U-Net as a new type of FCNN which uses
information from previous convolutional layers to
segment biomedical images with high precision.

It consists of a contracting path (left side) and an
expansive path (right side). The contracting path
follows the typical architecture of a convolutional
network. It consists of the repeated application
of two 3×3 convolutions (unpadded convolutions),
each followed by a rectified linear unit (ReLU)
and a 2×2 max pooling operation with stride 2
for downsampling. At each downsampling step it
double the number of feature channels.

Every step in the expansive path consists of
an upsampling of the feature map followed by a
2×2 convolution (“up-convolution”) that halves the
number of feature channels, a concatenation with
the correspondingly cropped feature map from the

contracting path, and two 3×3 convolutions, each
followed by a ReLU. The cropping is necessary due
to the loss of border pixels in every convolution.
At the final layer a 1×1 convolution is used to map
each 64- component feature vector to the desired
number of classes.

In addition to presenting a better performance
than the state-of-the-art algorithms for segmenting
biomedical images, it is fast and can be
implemented with least training data.

In this paper, we use U-Net (named as
U-Net-A). And we propose two variant of U-Net-A:
U-Net-B and U-Net-C, by changing the architecture
depth for automatic pavement crack segmentation.
U-Net-A has 23 convolutional layers, U-Net-B has
11 and U-Net-C has 7 as shown in Fig. 4.

The purpose of modifying the architecture of the
U-Net is to verify if architectures with less depth
can obtain similar or better results than the original
and thus reduce the processing time, which is very
important in embedded systems, or in real time
systems.

All U-Net architectures consist of convolutions
of 3×3, 2×2,1×1, max pooling of 2×2 and steps of
concatenation. RGB (red/green/blue) images of
480×320×3 pixels are used as network inputs.

Internal convolution layers use ’ReLu’ function as
an activation function defined as:

ReLu = max(0,x). (2)

The last convolutional output layer uses ’Softmax’
function (Equation 3) to output the image of size
equal to the entry where the cracks are segmented:

SoftMax(x)j =
exp(x)j∑K
k=1 exp(xk)

. (3)

4 Experiments

In this section, we evaluate and analyze the
performance of the U-Net-A variants: U-Net-B
and U-Net-C for automatic pavement crack
segmentation with two challenging and well-known
datasets.

We also compare our results with other
works that represent the state-of-the-art in the
segmentation of cracks, using the same metrics,
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Fig. 3. In upsampling methods, unpooling returns the original size of the filter filled with zeros in empty spaces recorded
in max locations, deconvolution copy the same value in a region

the same databases and implement a variant
of VGG16 by using the weights obtained in
the training with ImageNet also adapting a
series of deconvolutions to its final layers that
allow obtaining a binary image representing the
segmentations.

All experiments were conducted on a desktop
machine with Intel-7i-2600 processor, 8G RAM
and a GTX 980i GPU using libraries of Tensorflow
and Keras, ’Binary cross entropy’ is used
as a loss function, and an ADAM optimizer
[9], with a number of epochs of 300 for all
cases. The source code can be found in
[https://github.com/RyM-CIC/Crack-segmentation].

4.1 Datasets

In literature, we find a big variety of algo-
rithms and procedures for automatic pavement
crack detection. Nevertheless, most employ
non-public datasets, which complicate establishing
a comparison point between previous and new
methodologies. For this reason, we used two
well-known datasets: CFD and AigleRN.

CFD [19] is a common benchmark composed
of 118 RGB cracked images with a 320x480 pixel
size. These images were collected by using an
iPhone 5 in Beijing, China. Each image has
a hand labeled ground truth, and some typical
perturbations such as different illumination types,
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Fig. 4. Fully convolutional neural network architectures

water and oil stains and some shade types. For
experiments, we employed 100 images for training
and the rest for testing.

The other used dataset was AigleRN [1].
This consists of a challenging benchmark of 38
gray-scale images with a 991x462 pixel size taken
from different French cracked pavements with
intense crack texture inhomogeneity. This dataset
is utilized to test the trained FCNNs.

Training and testing images did not have any
kind of pre-processing and ground true labels were
converted into RGB images with binary values.

4.2 Evaluation Procedure and Metrics

In order to evaluate the performance of the
proposed architectures and compare it with other
published articles that have worked with these
datasets, we calculate the F1-score. F1-score is
defined as the armonic mean between precision
and recall, defined as:

Pr =
TP

TP + FP
, (4)

Re =
TP

TP + FN
, (5)

F1 =
2PrRe

Pr +Re
, (6)

where Pr is the precision of the architectures,
TP is the correct segmentation of a pixel as
part of the cracked pavement, FP is a positive
false segmentation of a pixel as a part of cracked
pavement and FN is a false negative, Re is
the recall and F1 is a harmonic mean between
precision and recall. For all experiments, we
consider true positive pixels those which are no
more than five pixels away from the ground true
label pixels.
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4.3 Results and Discussion

For training the FCNNs, 100 images of the CFD
dataset with their respective manual segmented
labels were used. For testing, 18 images of CFD
and AigleRN dataset were utilized, to guarantee
that the models do not present overfitting and can
be used in databases different from the one used
as training, and even so they can segment the
cracks in different types of pavements.

Fig. 5. Crack in pavement and manual segmentation

Table 1 shows the results obtained after training
all the FCNNs.

In order to corroborate the F1-score in U-Net
based CNNs, we performed a series of training
test, obtaining the mean and standard deviation.

Results from the dataset CFD demonstrate that
proposed FCNNs have an average precision higher
than 95% and a best performance of 97.31% in
U-Net-B, which means that the segmentation is
mostly correct having less false positives. The
U-Net-B recall presents the highest result with
94.28% and U-Net-C shows 82.42% which means
that U-Net-C has a significant percentage of false
negatives. F1 score shows that U-Net-B presents
the best performance by segmenting the major part
of the cracks correctly.

FCNNs require more training time as more
convolutional layers are added. Similarly, the
time to process an image increases up to 0.162
seconds in U-Net-A.

As can be seen, U-Net-C has a poor perfor-
mance compared to the other two architectures,
with a 1% lower precision than U-Net-A and
U-Net-B, and up to 12% of less recall. So, this
architecture is disregarded as a possibility of use
in future comparisons.

Fig. 6. Segmentation cracks with the different FCNNs.
U-Net-B segments cracks without reducing the crack
thinness and U-Net-C cannot recognize thin cracks

After measuring the FCNNs performance with
the same dataset used for training, we compare
the proposed FCNNs with related works that use
the same datasets, Table 2, shows different results
using the CFD dataset as a training dataset, and
CFD and AigleRN as the testing dataset.

We implement a modification to VGG16 [20],
which is a well-known architecture for the treatment
of images and their classification in order to
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Table 1. Summary of performance details of the different neural network structures

Net Time Results (CFD Dataset)
Training Test Precision Recall F1

U-Net-A 153.3 min 0.162 s 96.93% ± 0.96 93.45% ± 1.30 95.00% ± 0.55
U-Net-B 93.3 min 0.066 s 97.31% ± 0.28 94.28% ± 0.51 95.75% ± 0.22
U-Net-C 80 min 0.046 s 95.77% ± 0.64 82.42% ± 0.90 87.66% ± 0.76

Table 2. Performance summary in pavement cracks with different approaches

Method Training/Test Pr Re F1
U-Net-A CFD/CFD 96.93% 93.45% 95%
U-Net-B CFD/CFD 97.31% 94.28% 95.75%
Canny CFD/CFD 43.77% 73.07% 45.70%

Local thresholding CFD/CFD 77.27% 82.74% 74.18%
CrackForest CFD/CFD 95.75% 95.62% 95.68%
Fan et al. [4] CFD/CFD 91.19% 94.81% 92.44%

VGG16 Modfied CFD/CFD 92.78% 87.09% 89.26%

U-Net-A CFD/AigleRN 94.98% 65.81% 75.61%
U-Net-B CFD/AigleRN 93.51% 82.90% 87.33%
Canny CFD/AigleRN 19.89% 67.53% 28.81%

Local thresholding CFD/AigleRN 53.29% 93.45% 66.70%
CrackForest CFD/AigleRN 87.43% 85.52% 86.46%
Fan et al. [4] CFD/AigleRN 64.88% 88.19% 71.82%

VGG16 Modified CFD/AigleRN 91.24% 51.92% 64.34%

observe their behavior in the binary segmentation,
for which the architecture was modified by
replacing the last output layers by convolutional
layers that return a binarized image of equal size
to the input image that represents the cracks in the
pavement.

Results show that U-Net-B has the best
performance when CFD is employed to train and
test with a 95.75% of correct segmentation.

Analogous when AigleRN dataset is used
to test results change, U-Net-A presents the
best precision rate with a 94.98% and Local
thresholding obtains the best recall percentage
with 93.45% which means this algorithm is able
to segment the major part of the pavement cracks.
Furthermore, even when U-Net-B does not present
the best precision or recall results, it maintains a
higher F1 score, showing it can segment the cracks
in the pavement better.

FCNNs results are shown in Figure 6 where
cracks are represented in red color.

It is shown that U-Net-B obtains clearer
segmentations of wide cracks. Moreover, it
can identify thin cracks without continuity, and
distinguishes between cracks, shadows and oil
spots. U-Net-A has a worst performance than
U-Net-B because it identifies some noises (oil
spots and shadows) as cracks reducing the recall.
And U-Net-C just identifies main cracks and cannot
segment continuous lines.

5 Conclusions and Future Work

In this paper, we study FCNNs with three different
depths to perform automatic pavement crack
detection. Also, we compare our results with
the algorithms that represent the-state-of-the-art
for this task. The following are some significant
findings:
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Fig. 7. Visualization process of the U-Net-B model of the
internal layers for the segmentation of cracks

— It has been shown that modified U-Net
models can be successfully applied for solv-
ing automatic pavement crack segmentation
problems proving a better performance than
state-of-the-art methods.

— We proposed a FCNN based on U-Net,
U-Net-B which improve the performance of
previous works in segmentation of cracks in
pavement, with a F1-score of 95.75% in the
same dataset and a 87.33% with images from
the other dataset, which is able to discriminate
cracks from noises, and is faster than other
architectures, using only 0.066 seconds to
process an image.

— Analyzing different FCNNs types have shown
that these perform better when they are
trained and tested with the same dataset. Only
deep architectures achieve good generaliza-
tion when trained and tested with different
datasets.

All these points show that we have presented three
models able to automatically segment pavement
cracks with a high F1-score and achieve good
generalization by distinguishing among different
types of outliers.

U-Net-B has a compact structure with a short
processing time, which is composed of series of
3 convolutional layers followed by a maxpooling
layer to reduce the size of the original image
75%. This is followed by a series of convolutions
and upsampling layers, concatenated with their
correspondent in the encoder part.

As shown in Fig.7 the internal layers of U-Net-B
process the raw image highlighting the cracks over
the background to finally obtain a binary image.

Future work will focus on the analysis of
binary images segmentation where these have
much less region on interest to the rest of the
image. This disproportion hinders the correct crack
segmentation by reducing the crack continuity. As
a consequence, the neural network achieves lower
precision in the segmentation process.
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