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Abstract. We consider the problem of fully automatic
brain tumor segmentation in MR images containing
glioblastomas. We propose a three Dimensional
Convolutional Neural Network (3D-CNN) approach that
achieves high performance while being extremely
efficient, a balance that existing methods have struggled
to achieve. Our 3D-Brain CNN is formed directly on
raw image modalities and thus learn a characteristic
representation directly from the data. We propose a
new cascading architecture with two pathways that each
model normal details in tumors. Fully exploiting the
convolutional nature of our model also allows us to
segment a complete cerebral image in one minute. In
experiments on the 2013 and 2015 BRATS challenge
dataset; we exhibit that our approach is among the most
powerful methods in the literature, while also being very
effective.

Keywords. Brain tumor, segmentation, deep learning,
convolutional neural networks.

1 Introduction

The goal of brain tumor segmentation is to detect
the area of the brain based on texture from
information in MRI images. Segmentation methods
typically look for active tumor tissue (vascularized
or not), necrotic tissue and edema (swelling
near a tumor) by exploiting multiple magnetic
resonance imaging (MRI) modalities, such as T1,
T2, T1-Contrasted (T1C) and Flair. Recently,
Convolutional neural networks (CNNs) [25] are
a type of deep artificial neural networks widely

used in the field of computer vision. They have
been applied to many tasks, including image
classification,[25, 19, 27, 15, 12] super-resolution
[13] and semantic segmentation [26]. Recent
publications report their usage in medical image
segmentation and classification [14, 18, 33, 3, 34,
21,4,10,9, 12].

For instance, Kamnitsas et al. [10] introduce
a 3D CNN architecture designed for various
segmentation tasks involving MR images of brains.
The authors benchmark their approach on the
BRATS [17] and ISLES [16] challenges. Their
approach comprises a CNN with 3D filters and a
conditional random field smoothing the output of
the CNN. The authors propose dividing the input
images into regions in order to address the high
memory demand of 3D CNNs.

Notable in Kamnitsas is the usage of an
architecture consisting of two pathways. The first
receives the subregion of the original image that
is to be segmented, while the second receives
a larger region that is downsampled to a lower
resolution before being fed to the network.

This enables the network to still be able to learn
global features of the images. Havaei et al. [9] train
and test MRl images of brains from the BRATS and
ISLES data sets. The authors process the images
slice-by-slice using 2D convolutions.

In addition, Havaei et al. [9] use the second
part of their two-path architecture to fulfill the
functionality of a Conditional Random Fields (CRF)
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by feeding the segmentation output of the first
path to the second one. Like Kamnitsas, the first
CNN receives a larger portion of the original image
than the second, with the purpose of learning both
global context and local detail.

To conclude, the variety of CNN-based medical
image segmentation methods is largely due to
different attempts at addressing difficulties specific
to medical images.

These are chiefly the memory demands of
storing a high number of 3D feature maps, the
scarcity of available data and the high imbalance
of classes.

In dealing with the first issue, most researchers
have turned to divide images into a small number
of regions and stitching together the outputs
of different regions [3, 34, 10] and/or using
downscaled images [4].

Data augmentation is often used to address the
scarcity of data [3, 34, 21, 4, 10, 7]. As for
class imbalance, reported methods include using
weighted loss functions [34, 4]overlap metrics such
as the dice similarity [21, 7] or deep supervision
[10, 6].

Recent research has shown that deep learning
methods have performed well on supervised
machine learning and image segmentation tasks
[31, 32, 30]. The purpose of this study is to apply
deep learning methods to segment brain tumor.

In this paper, we propose a successful and
very efficient CNN architecture for brain tumor
segmentation. Two main contributions were
presented:  Combining multiple segmentation
maps created at different scales and using
element-wise summation to forward feature maps
from two stages of the network.

The remainder of this paper is structured as
follows. We present our proposed methodology
in section 2. Section 3 is devoted to exper-
imental setup. In Section 4, we present the
results achieved and compare with other existing
approaches. Conclusions are finally drawn in
Section 5.
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2 Materials and Methods

The proposed methodology, shown in Figure 1,
is applied on multimodal MRI sequences and
exploits the inherent pattern recognition capability
of CNN to classify tumor pixels. A patch based
approach is used for pixel classification, where
pre-processed images are passed through a CNN
and post-processed to obtain a segmented image
highlighting the tumor area.

The architecture proposed in Figure 2, takes as
input patches of multiple modalities and predicts
the class of center pixel in respective patches.
The BRATS dataset [17] lacks resolution in third
dimension; so, to extract 2D patches, axial view is
used.

In the first convolution layer, input is the
extracted patches from the original MR images
(size 128x128) that correspond to various anchors
used. The produced feature maps are then
taken as input by the cascading layers. A
network of six convolution layers is implemented
to learn feature maps with various kernel sizes.
Rectified linear units (RLUs) activation is used for
non-linear representation since it gives a better
representation.

To reduce the input dimensionality that is going
into the next layers, three max-pooling layers are
used. The max-pooling layer selects the max value
and discards the rest therefore summarizing the
data in a small rectangle. In this way, the irrelevant
information is discarded and the next convolution
layer only receives the summarized important data.
Pooling layers have more beneficial effects like
invariance to lightning conditions and position.

To further reduce the complexity, a maxout layer
is used, which reduces the number of feature maps
by reducing the dimensions in third axis. It is used
after convolution layer and selects two adjacent
feature maps at maximum; therefore the number
of maps produced by convolution layer is reduced
to half. This resulted in a small improvement in
performance.

The two-pathway convolution layer architecture
produces the input for the fusion step of the
network. The concatenated input is then fed to
the second part of the network and the output layer
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Fig. 2. Architecture 3D CNN for Brain segmentation with two pathways

i.e. softmax activation predicts class probabilities,
which are accounted for in the loss function.

These steps are discussed in detail in the
following subsections.

2.1 Preprocessing

The MR images when extracted from volumetric
data have artifacts due to different acquisition
techniques and systems [5]. Especially in T1 and
T1c modality, the same type of tissues has different
intensities across the dataset.

N4ITK bias field correction is applied using 3D
slicer toolkit [28, 8], to T1 and T1c modalities.
Image normalization is performed to ensure zero
mean and unit variance.

Finally, patches are normalized with respect to
mean and variance. Since fusion architecture is
used for the neural network, two types of patches

are extracted: one having 80x72x64 pixels and
the other having 40x36x32 pixels co-centric with
the fusion step.

The choice of features maps and batch size is
made empirically and it’s limited by the quality of
materials namely graphic memory, the processor
and central memory. These constraints have a bad
impact on the execution time as the run time can
last several days without convergence.

2.2 Convolutional Neural Network (CNN) for
Feature Extraction and Selection

CNN has an advantage over other classifiers
as kernels used in convolution layers have
same weights for all inputs, which detect same
characteristics that makes them invariant by
translation [24]. Usually, a non-linear activation
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function is used to convert features into class
probabilities.

Although inherently classifiers, CNNs can
address segmentation tasks by throwing them to
voxel-wise classification. The network processes
a 3D patch around each voxel of an image. It
is trained to predict whether the central voxel is
pathology or normal brain tissue, depending on the
content of the surrounding 3D patch.

During training, kernel parameters are optimized
using gradient descent, with the goal of minimizing
the error between predictions and true labels. One
of the limitations in the above framework is that
the segmentation of each voxel is done only by
processing the contents of a small patch around it.
It is intuitive that the context is more likely to lead to
better results. However, a straight-forward increase
in the size of the 3D input patch would increase the
memory requirement and computational burden.

Our proposed solution is to perform a parallel
image processing at multiple scales. Our network
architecture consists of two parallel convolutional
pathways, where both have receptive fields of the
same size. The entrance to the second path,
however, is a patch extracted from a subsampled
version of an image, thus allowing it to a larger
area around each voxel. This architectural design
is shown in Figure 2.

Another significant feature of our architecture
is its full convolutional nature, which allows its
effective application on larger parts of the image.
By supplying as input segments of an image larger
than the receiver field of the neurons of the final
layer, the network can efficiently process the larger
input and provide as output predictions for several
neighboring voxels. As a result of [7, 6] we also
use this feature during training, building our training
batches by extracting image segments larger in
size than the network’s receptive field.

2.3 Fusion Step

An earlier version of our system is shown in
Figure 2.  Our method uses a two-pathway
architecture, in which each pathway is responsible
for learning about either the local details or
the broader context of tissue appearances (for
example, whether or not he is close to the skull).
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The tracks are connected by their concatenate
feature cards immediately before the output layer.
The fusion step used the result of the two pathway
convolution layer. The result of step fusion is a
patch size 4x33x33 features. This patch is an
input of the two pathway of the final step.

2.4 Convolutional Neural Network (CNN) for
Segmentation and Classification

Finally, a prediction of the class label is made
by stacking a final output layer, which is totally
convolutional to the last convolutional hidden
layer. The number of feature cards in this layer
corresponds to the number of class tags and uses
the so-called non-linearity softmax.

3D CNN’s perform pixel classification without
taking into account the local dependencies of
labels, one can model the dependencies of labels
by taking into account estimates of wise pixel
probability of a first CNN as an additional entry to
a second 3D CNN, in formation of a new cascade
architecture. Our final network is composed of two
parallel pathway. The first pathway uses two layers
with 73 and 33 kernels. The second pathway uses
one layer with 133 kernels.

The final layer deep network exhibites signifi-
cantly more accurate segmentation performance.
Initial learning rate is set at 0.01 and is gradually
reduced during training, and also constant impulse
equal to 0.8. The training time requires for final
system convergence is about one day using an
NVIDIA Tesla K10 GPU with 8 GB of memory.
Segmentation 3D brain tumor with four modalities
requires 16 seconds.

3 Experimental Setup

3.1 Dataset

For testing and evaluating of our proposed system,
we use the main objective of the annual BRATS
challenge: segmenting tumor regions in brain MRI.
More concretely, the network is trained using the
BRATS 2013 and 2015 training set [1, 2]. They
contain four modalities i.e., T1, T1-Contrasted
(T1C), T2 and Flair. BRATS 2013 comprises of
30 training images (20 brains with high-grade (HG)



ISSN 2007-9737

A System for Brain Image Segmentation and Classification... 1621

and 10 brains with low-grade (LG) tumors) and 10
brains with high-grade tumors for testing.

The data are rather sparse and preprocessing
steps like skull stripping have been performed
to improve the data representation. In 2013
dataset, two more data subsets are provided
i.e. leaderboard and challenge data. These two
subsets comprise of 65 MR images. Manual
segmentation is available for training data only.

BRATS 2015 contains a total of 274 images, 220
were classified as high-grade gliomas (HG), while
the remaining 54 were classified as low-grade
gliomas (LG), with no inclusion of images depicting
healthy brains. The classes involved in the
segmentation task are: (1) necrosis, (2) edema, (3)
non-enhancing and (4) enhancing tumor. Several
examples are depicted in Figure 3.

All of the images have a size of 240x240x 155,
which can be cropped to a region of the size
160x144x128, while still containing the entire
brain. For some of the experiments, these cropped
images were further down sampled to a size of
80x72x64 for training and test.

3.2 Implementation Details

The algorithm is implemented in Theano with
CUDA/GPU and CuDNN acceleration library in
python. Hyper-parameters are tuned using grid
search and the parameters on which model
performed best on validation data are selected.
Parameters such as learning rate and momentum
are varied during training. Momentum is initially set
to 0.6 and is gradually increased to 0.8. Learning
rate, on the other hand, is initially set to 0.01 and
then gradually decreased to 0.1x10~3. Hence, a
dropout value of 0.5 is used in the network to avoid
over-fitting.

Segmenting brain tumor is an unbalanced
classification problem where, most of the pixels are
of healthy tissues.

Experiments have been performed on BRATS
2013 dataset that has two types of tumors, HG
and LG glioma, divided into four tumor classes.
There are 30 volumetric images in 2013 dataset
containing slices varying in the range of 150
to 220. The dataset is divided randomly into
training and testing sets with 80:20 ratios. The

dataset also contains synthetic data with low
variance in intensity values of a similar class that
is comparatively easy to classify. Therefore, only
real patient data are used for evaluating the model.
Evaluation metrics are determined for three tumor
regions namely a) the complete tumor area (all four
tumor labels), b) the core tumor area, and c) the
enhancing tumor region.

The following describes the general training
set-up used throughout the experiments: Of the
274 MRI volumes in the BRATS 2015 data set,
220 are used for training, while the remaining 54
are reserved for the validation and test sets, with
27 images each. We use the cross-validation
approach to generate our training model. The
Adam optimizer is used to optimize the network
settings.  Training takes place on an NVIDIA
Tesla k10 for 200 epochs (around 120 hours).
The trained network takes roughly 4 seconds to
segment one 80x72x64 sized image.

3.3 Evaluation Parameters

The experimental results are evaluated based
on one metric, namely dice similarity coefficient
(DSC). Dice score is calculated by overlapping
predicted labels with actual labels and the
intersection of two contributors determine the dice
score. Dice score is calculated for three categories
i.e. the whole tumor, enhancing tumor, and core
tumor and is given by (1):

2x (|JLNP|)

DSC = ,
|L| + |P|

(1)
where L and P stand for actual labels for tumor
region and predicted tumor regions respectively.

4 Results and Discussion

A comparative analysis is presented in Table 1 to
evaluate the effectiveness of the proposed model.
In fact, Table 1 details the results obtained in our
proposed model. It was found that, when each
modality is used on its own, T1C produces the best
results on every class but edema, for which Flair,
followed by T2, produces better predictions.

Using this as a starting point, the network was
then trained on Flair and T1C images together,
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Ground Truth

Fig. 3. The four images on the left show the modalities of the MRIs used as input channels for the CNN models and the
one on the right displays the truth labels on the ground, with the following color code: edema (yellow), enhanced tumor

(orange), necrosis (green), non-enhanced tumor (red) [9]

which lead to dice scores very close to the ones
achieved by a network that had access to all four
modalities as input channels. Since T2 is the
next best-performing modality, the network was
then trained on images in the Flair, T1C and T2
modalities.

Comparing the results of this run with the
performance of the network when all modalities
are available shows that, interestingly, the network
achieves a much higher dice score on necrotic
regions when the T1 modality is discarded.

This suggests that some benefit could be
achieved by training different networks on different
combinations of MRI modalities.

Table 1. Segmentation results on BRATS 2015 training
data, where Class 1: Necrosis, Class 2: Edema, Class
3: Enhancing, Class 4: Non-enhancing

Type DSC
Class1 Class2 Class3 Class4
Flair 0.21 0.82 0.31 0.39

T1 0.35 0.53 0.26 0.48
T1C 0.56 0.67 0.52 0.83
T2 0.38 0.71 0.31 0.46

The Table 2 and 3 show how our proposed
model compares to the currently published
state-of-the-art methods from BRATS 2013 and
BRATS 2015 respectively.

It is evident from these Tables that our
implemented architecture outperforms state-of-
the-art methods [9, 29, 22, 20, 23] in terms
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of dice similarity coefficient (DSC). Some of the
segmentation results generated using the trained
neural networks are shown in Figure 4 and 5.

egmentation Approach Ground Truth

Fig. 4. Model outputs for brain MRI, depicted alongside
the ground truth. Colors correspond to: necrosis (green),
non-enhanced (red) and enhanced tumor (orange) and
edema (yellow)

Figure 4 shows visual segmentation produced
by our model from BRATS 2013 and BRATS
2015 respectively. The larger receiver field in the
two-path process allows the model to have more
contextual information about the tumor and thus
provides better segmentations.

In addition, with its two pathways, the model
is flexible enough to recognize the fine details
of the tumor rather than making a very smooth
segmentation as in a one trajectory process.

By allowing a second phase of training and
learning by the true class distribution, the model
corrects most of the classification errors produced
in the first phase.
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Table 2. Segmentation results on BRATS 2013 training data compared with the state-of-the-art methods, where Class
1: Complete tumor area, Class 2: Core tumor area, Class 3: Enhancing tumor area

Method DSC

Class 1 Class 2 Class 3
Proposed 0.92 0.83 0.86
Havaei et al. [9] 0.88 0.79 0.73
Tustison et al. [29] 0.87 0.78 0.74
Pereira et al. [22] 0.88 0.83 0.77
Dvorak et al. [20] 0.72 0.66 0.67

Rao et al. [23]

Not reported

Not reported  Not reported

Table 3. Segmentation results on BRATS 2015 training
data compared with the state-of-the-art method, where
Class 1: Necrosis, Class 2: Edema, Class 3: Enhancing,
Class 4: Non-enhancing

Method DSC

Class1 Class2 Class3 Class4
Proposed 0.52 0.88 0.68 0.9
Baris et al. [11] 0.49 0.84 0.5 0.8

Based on experiments results show in Figure 5,
we conclude that our system can easy detect the
normal brain without tumor compared with ground
truth image. The dice similarity coefficient (DSC)
value is 0.98 similar in the ground truth image.

The proposed algorithm performs well in
specifying tumor region as is evident from the lack
of false positives in detections. It also detects
enhancing tumor better than most state-of-the-art
techniques and gives comparable results on
other metrics.

It is observed that the trained model faces
difficulty, predicting minority classes. But by
increasing training data, this problem can be dealt
with. Two variations of the proposed architecture
are also tested where a number of features
in the fully connected layer is varied. It has
been observed that too many features in the
fully connected layers lead to over-fitting and if
features are reduced enormously, the model does
not learn significantly leading to under fitting. It
is also observed that fully connected layers are
time-consuming compared to convolutions and

thus a trade-off between segmentation time and
accuracy is achieved in the fully connected layer.

5 Conclusion and Future Work

Brain tumor segmentation has a very important
role in diagnostic procedures. With accurate
segmentation, clinical diagnostic not only becomes
easy, but also the chances of subjects survival
increase tremendously.

In this paper, a 3D CNN architecture for brain
tumor segmentation is presented. This algorithm
incorporates both global and local features since
context is important when it comes to tumor
segmentation task. The use of max-pooling,
max-out, and drop-out complement the learning
process, improving training and testing speed by
reducing features in the fully connected layer as
well as reducing a number of parameters, which
in turn reduce the chances of over-fitting.

Evaluation results show that the proposed
network architecture is promising and performs
particularly well in detecting an enhancing tumor
as well as specifying tumor to actual tumor region
only.

Our architecture illustrates promising perfor-
mance, with capabilities for delicate segmen-
tations.  The difficulties are observed in the
segmentation of the lesions of particularly low size.

The separation of the lesions in various
categories, for example according to their size
and their treatment by different classifiers could
simplify the task for every learner and help to limit
the problem.
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egmentation Approach Ground Truth

Fig. 5. Detection of normal Brain, depicted alongside the
ground truth
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