
Feature Extraction for Token Based Word Alignment for Question
Answering Systems

Lokesh Kumar Sharma1, Namita Mittal2, Anubha Aggarwal3

1 Dept of CSE, Galgotias College of Engg and Tech, Greater Noida, UP,
India

2 Dept of CSE, Malaviya National Institute of Technology Jaipur, RJ,
India

3 Dept of CSE, Shri Mata Vaishno Devi University, Katra,
India

lokesh.gbu@gmail.com, nmittal.cse@mnit.ac.in, anubhaaggarwal95@gmail.com

Abstract. Mapping between the source words and
the target words in a set of parallel sentences are a
crucial part of Question Answering (QA) systems. If
an accurate aligner is used in QA systems then the
efficiency of these systems also gets increased. We
purpose the aligner which despite using very less lexical
resources gives very good results in terms of precision,
recall and F1. Previous aligners either uses more lexical
resources or uses very less lexical resources. Hence, we
have used POS TAG and WordNet as lexical resources.
But some words whose meaning we may not know but
these occur in a similar distribution and by observing
their distribution these words are similar. Consider
two sentences ”Lambodar is the son of Parvati” and
”Ganesha is the son of Parvati”. Here we will not find
the meaning of Lambodar and Ganesha in Wordnet but
since they have similar distributions so they should be
aligned. For these words, we used Distribution Similarity
Feature in our word aligner. This distributional similarity
helps our aligner in broader coverage of words. Previous
aligners were having recall in the range of 75-86 but this
aligner has recall in the range of 88.4-93.3. Similarly,
Exact match of previous aligners was in the range of
21-35.3 but the proposed aligner’s exact match range is
46.1-58.6. Similarly F-measure and precision have also
increased.

Keywords. Structural feature, question alignment,
feature score, alignment score.

1 Introduction

Question answering is the task of returning a
particular piece of information to the user in
response to a question. In this task, it compares
words in given question with words in a paragraph.
Basically, it tries to align question with lines in a
paragraph and based on alignment, the score is
given to each line and the line with the highest
score is returned as an answer to the question.
In short, QA systems efficiency relies on the
efficiency of Word Aligner used. In short an aligner
with good precision, recall and f-measure, the
exact-match rate is required. Chambers [2] in
2007 purposed Stanford RTE Aligner. It was a
token based aligner and used a rich set of features
for alignment scoring. But it’s recall was 75.8%,
F-measure was 79.1%, Precision was 82.7% on
RTE2 data-set. MacCartney [8] in 2008 purposed
Manli Aligner. It was the first phrase-based aligner.
It also used a feature-based scoring system. Its
recall was 85.3%, F-measure was 85.3%, the
exact-match rate was 21.3% and precision was
85.4%. It used around 5 GB of lexical resources i.e
a huge amount of lexical resources. Manli aligner
was improved by Thadani and Mc Keown [10] in
2011. They used ILP for decoding due to which

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1359–1366
doi: 10.13053/CyS-22-4-3070

ISSN 2007-9737

speed and efficiency of Manli aligner got increased.
But it’s recall was 86.2%, F-measure was 87.8%,
the exact-match rate was 33.0%, precision was
89.5%. Xuchen Yao [12] in 2013 purposed Jacana
Token-based Aligner. It used Conditional Random
Field to decide the best alignment with features
drawn from source and target sentence. It used
very less lexical resources and its results in terms
of efficiency and speed were also good. But its
best recall was 86.6%, the maximum exact-match
rate was 35.3%, best f-measure was 88.6% and
best precision was 95.4%.

In this paper, we describe a token-based
word-aligner. It uses various features for scoring
like distributional similarity feature, String-similarity
feature. Results show that when we run our
aligner on the RTE2 Dataset, our aligner gives
maximum recall of 93.3, maximum exact-rate of
58.6%, maximum F-measure of 93.8%, maximum
precision of 96.6%. This states that our aligner
is giving a state-of-art performance in terms of
efficiency and if used for a question answering
system it can increase the efficiency of Question
Answering System. But the drawback is that it’s
aligning one sentence pair per second and needs
improvement in speed.

2 Related Work

Manli Aligner [8] (Bill MacCartney et al., 2008)
was the first aligner to purpose how to align
hypothesis and premise of English sentence pair.
It was proposed by MacCartney [7] in 2008.
It used perceptron learning for this. It was
the first aligner which supported phrase based
alignment of arbitrary lengths. It used around
5 GB of lexical resources and took around 2
sec per alignment. Thadani and McKeown [10]
in 2011 optimized Manli aligner by decoding via
Integer Linear Programming(ILP). ILP lead to
an increase of Manli alignment speed. They
added extra syntactic constraints due to which
alignment precision, recall, F1 got improved. After
this came Jacana token based Aligner. It is
the first open-source aligner. Jacana aligner is
discriminatively trained monolingual word aligner.
It models a many-to-one alignment from source
to target. It uses first-order Conditional Random

1 2 3 4 5 6 7 8 9 10 11 12 13 14
"

The

Calm

&

the

Storm

"

is

the

brainchild

of

Dave

McCool

.

"The
Calm

&the Storm
"is the

of
Dave

McCool .
inventor

1

2

3

4

5
6

7

8

9

10

11

12

13

14

Common output
produced by both
aligners

different output
produced by
our aligner

Fig. 1. Figure shows comparision of output by Jacana
and proposed aligner

Field to globally decode the best alignment. Best
possible sequence decision is taken on the basis of
certain features like String Similarity Feature, POS
Tag feature, Positional Feature, WordNet Feature,
Contextual Feature, Distortion Feature. It uses
just part-of-speech tags and Wordnet as lexical
resources and gives good precision and fast results
than improved Manli Aligner (proposed by Thadani
and McKeown).

These aligners are based on supervised
methods. Some aligners used unsupervised
methods also. These include the work of Wan
and Mark [11] (2010) who extended the work of
McCallum et al. [9] (2005) and modeled alignment
as latent variables. Heilman and Smith in 2010
used tree kernels to search for the alignment that
yields the lowest tree edit distance. Other tree or
graph matching work for alignment includes that of
(Blunsom et al., 2006 [1]; John D et al., 2001 [6];
Kevin et al., 2010 [4]; Marneffe et al., 2006 [3];
Stephen Wan et al., 2006 [11]).

Fig 1 shows comparison of output produced
by our aligner and Jacana Aligner. It shows
that because of distributional similarity feature our

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1359–1366
doi: 10.13053/CyS-22-4-3070

Lokesh Kumar Sharma, Namita Mittal, Anubha Aggarwal1360

ISSN 2007-9737

aligner aligns word brainchild and inventor and of
and of which were not aligned by Jacana Aligner.
Here blocks in gray signify the alignment that is
produced by both aligners and words in red signify
the alignment output that is given by our aligner
but not Jacana Aligner. The proposed aligner is
matching the text on both lexical and syntactic
together but semantic is done separately.

3 Proposed Alignment

In this section, we describe a model for our
aligner. Our model uses feature-based alignment.
For feature-based alignment various basic and
proposed features [5] are required to extract.
These features include lexical, syntactic, semantic
and structural features. Further, these features
are used to calculate a feature form score which
is useful to measure feature based similarity. Our
aligner is highly influenced by Jacana token based
Aligner. Experiments show that for word aligner,
using distributional features and string similarity
features helps in increasing efficiency of aligner.

3.1 Model

Extract
Features

Train
File Compute

Function
Gradient

LBFGS
optimization

init
Linear Chain

CRF

crf

save
Model
File

Model file containing
weight of all features

Fig. 2. Training model

read
Model

Model
Filename

print
feature
weight

Feature
Extraction

test-
file name

Viterbi
Decoder

initial
Linear
Chain CRF

Evaluator

decoded
label

Precision
Recall

F-measure
Exact Rate

Fig. 3. Testing model

Given a source sentence s of length M, and a
target sentence t of length N, the alignment from

s to t is a sequence of target word indices a,
where ai ∈ [1,M] ∈ [0, N]. We specify that when
ai ∈ = 0, source word si is aligned to a NULL
state, i.e., deleted. This models a many-to-one
alignment from source to target: multiple source
words can be aligned to the same target word,
but not vice-versa. One-to-many alignment can
be obtained by running the aligner in the other
direction. The probability of alignment sequence
a conditioned on both s and t is shown in
equation (1):

p(a|s, t) =
exp(

∑
i,k λkfk(ai−1, ai, s, t))

Z(s, t)
. (1)

This assumes a first-order Conditional Random
Field [9]. Since the word alignment task is
evaluated over F1, instead of directly optimizing it,
we choose a much easier objective [4] and add a
cost function to the normalizing function Z(s, t) in
the denominator is shown in equation (2):

Z(s, t) =
∑
â

(exp(
∑
i,k

λkfk(ai−1, ai, s, t))+ cost(ay, â)),

(2)
where ay is the true alignment. The value of
this special function cost(ay, a) can be viewed
as the features that encourage decoding to be
consistent with true labels. It is only computed
during training in the denominator because in the
numerator cost(ay, ay) = 0. The hamming cost is
used in practice without learning the weights (i.e.,
uniform weights). The more in-consistence there
is between ay and a, the more penalized is the
decoding sequence a through the cost function.

Figure 2 and 3 shows training and testing model.
Training phase focuses on producing a model file.
The model file contains a weight for each feature.
This model file will be used in the testing phase.
In training phase firstly features are extracted from
training data-set. Then a Linear Chain CRF is
initialized. After this Compute Function Gradient
function on CRF object is called. This function
helps in assigning weight to each feature. After
this LBFGS optimization algorithm is called. This
optimizes feature weight.

Finally, the model is saved for the testing
purpose.In the testing phase model file that we
obtained during the training phase is read and

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1359–1366
doi: 10.13053/CyS-22-4-3070

Feature Extraction for Token Based Word Alignment for Question Answering Systems 1361

ISSN 2007-9737

Features

String
Similarity
Feature

Distributional
Feature

POS TAGs
Feature

Positional
Feature

Distortion
Feature

Contextual
Feature

Wordnet
Feature

Fig. 4. Features used in aligner

from that Linear Chain, CRF is initialized. Feature
weights are also printed on the output screen.
After this features are extracted from testing
data. Viterbi Decoder is used to decode the best
alignment sequence. Decoded label are given to
the evaluator and then evaluator evaluates based
on the comparison of desired output sequence
and obtained output sequence. Finally, precision,
recall, f-measure, exact match rate is printed on
the screen.

3.2 Feature Design

In fig. 4 the features that we have used in our
aligner are shown together.

Similarity Feature: These include features like
IdenticalMatch, IdenticalMatchIgnoreCase, Max-
Match. Identical Match is when two strings
are completely same. Identical Match Ignore
Case is when these condition matches: i) stem
words of two strings match or ii) if a word A’s
stem word completely contains another word B’s
stem word and index within the stem of word
A of the first occurrence of the stem of word B
should be 0. For example words like random
and randomly or makes and maker or iii) If
a word A is composed of two or more words
combined by a hyphen (-) like supporting-actress
and another word’s stem match with any of stem
of words obtained by splitting word A on basis
of hyphen. Eg words like supporting-actress and
actress or iv) If both words are composed of two
or more words combined by a hyphen(-) and they
are like supporting-actress-father and supporting
actresses.

MaxMatch is the maximum similarity va-
lue between two words if we compare them

Stanford
Dependency

Parser

Source &
Target Sentence

Typed
Dependency
List Extract

Relations

Construct PPMI
& T-Test Feature

Vector

Compute
Maximum

Similarity from
Cosine,Dice,Jaccard

return
max

Fig. 5. Distributional Similarity Overview

using methods like JaroWinkler, DiceSoren-
sen, Jaccard, normalized Levenshtein, NGRAM3,
NGRAM4, normalized common prefix, normalized
common suffix. Two words are similar by
MaxMatch only if max match value is greater than
a threshold. All these methods give a value
between 0 and 1 so MaxMatch value is also
between 0 and 1.

String Similarity Algorithm:
Algorithm 1: String Similarity Feature

Input:
srcToken: Token of source string to be compared
tgtToken: Token of target string to be compared
with
Algorithm:
begin
| srcStem=stem(srcToken)
| tgtStem=stem(tgtToken)
| if(srcStem==tgtStem)
| begin
| | addFeature(IdenticalMatchIgnoreCase,1.0)
| | if(srcToken==tgtToken)
| | begin
| | | addfeature(IdenticalMatch,1.0)
| | end
| else if(srcStem.indexOf(tgtStem)==0 or
| | tgtStem.indexOf(srcStem)== 0)
| | if(srcStem.length > 2 and
tgtStem.length>2)
| | begin
| | | addFea-
ture(IdenticalMatchIgnoreCase,1.0)
| | end
| else if(srcToken contains (”-”) or
| | tgtToken contains(”-”))
| | if(srcToken contains(”-”) and

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1359–1366
doi: 10.13053/CyS-22-4-3070

Lokesh Kumar Sharma, Namita Mittal, Anubha Aggarwal1362

ISSN 2007-9737

| | !tgtToken contains(”-”))
| | begin
| | | var splitArr=srcToken.split(”-”)
| | | if(stem of any word in splitArr
match
| | | with tgtStem)
| | | begin
| | | | addFeature(IdenticalMatch-
| | | | IgnoreCase,1.0)
| | | end
| | else if (tgtToken contains(”-”) and
| | !srcToken contains(”-”))
| | | var splitArr=tgtToken.split(”-”)
| | | if(stem of a ny word in splitArr
match
| | | with srcStem)
| | | begin
| | | | addFeature(IdenticalMatch-
| | | | IgnoreCase,1.0)
| | | end
| | else if(tgtToken contains(”-”) and
| | srcToken contains(”-”))
| | | var src splitArr=srcToken.split(”-”)
| | | var tgt splitArr=tgtToken.split(”-”)
| | | if corresponding words in
src splitArr
| | | and tgt splitArr match untill smaller(
| | | src splitArr.length-1 ,
| | | tgt splitArr.length-1)
| | | begin
| | | | addFeature(IdenticalMatch-
| | | | IgnoreCase,1.0)
| | | end
| | end
| else if(max(JaroWinkler(srcToken,tgtToken),
| DiceSorensen(srcToken,tgtToken), Jaccard
| -Metric(srcToken,tgtToken),normalized
| Levenshtein(srcToken,tgtToken),
| NGRAM3(srcToken,tgtToken),
| NGRAM4(srcToken ,tgtToken),normalized
| common prefix(srcToken,tgtToken),normalized
| common suffix(srcToken,tgtToken))>
threshold)
| | addFeature(MaxMatch,max value)
| end
| if((special match ,value) <-
| special match(srcToken,tgtToken))
| | addFeature(special match,value)

end

Distributional Feature: This feature takes care
of words that are similar in their distribution. For
example: Kalpana is the mother of Ram, Kalpana
is the mother of Shyam. Here Ram and Shyam
are distributionally related. It uses PPMI and T-test
as the measure of association and dice, Jaccard,
cosine as the measure of similarity. Figure 5 shows
an overview of this feature.

Distributional Similarity Algorithm:
Algorithm 2: Distributional Similarity

Input:
srcString: Source string to be compared
tgtString: Target string to be compared with
Algorithm:
begin
| TypedDependenciesList=Parse both strings
in
| Stanford Dependency Parser
| for each typedDependency in Typed-
| DependencyList
| begin
| | Extract GrammaticalReal-
tion,word1,word2
| | from typedDependency
| | Make a string feature = Grammatical-
| | Relation+” of ”+word1 // this string will
| | serve as feature in feature vector so
store
| | all these features.
| end
| splitsrcArr=srcString.split(string separators)
| splittgtArr=srcString.split(string separators)
| // initialFeatureVectors will contain feature-
| // vectors of src word and tgt word.
| for each word in splitsrcArr and splittgtArr
| | Make a feature vector where features
| | extracted above will serve as
components
| | of vector and their values will be count
| | of how many times word occurs in
| | relationship with feature i.e word occurs
as
| | word2 in feature+2.0.
| | if word occurs as word2 in any feture
| | | add word’s feture vector to

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1359–1366
doi: 10.13053/CyS-22-4-3070

Feature Extraction for Token Based Word Alignment for Question Answering Systems 1363

ISSN 2007-9737

| | | initialFeatureVectors
| end
| //From initialFeatureVectors contruct
| //PPMIFeatureVectors and
t-TestFeatureVectors
| //by applying PPMI and t-test formula to each
| //entry of initialFeatureVectors.
| for each srcword in splitsrcArr
| begin
| | src ppmi feature vector=
| | PPMIFeatureVectors.get(srcword)
| | src t-test feature vector=
| | t-TestFeatureVectors.get(srcword)
| | for each tgtword in splittgtArr
| | begin
| | | tgt ppmi feature vector=
| | | PPMIFeatureVectors.get(tgtword)
| | | tgt t-test feature vector=
| | | t-TestFeatureVectors.get(tgtword)
| | | maxValue=max(Cosine(src ppmi
| | | feature vector,tgt ppmi feature
| | | vector),Dice src ppmi feature
| | | vector,tgt ppmi feature vector),
| | | Jaccard(src ppmi feature vector,
| | | tgt ppmi feature vector),
| | | Cosine(src t-test feature vector,
| | | tgt t-test feature vector),
| | | Dice(src t-test feature vector,
| | | tgt t-test feature vector),
| | | Jaccard(src t-test feature vector,
| | | tgt t-test feature vector))
| | | addFeature(”DistriSim”,maxValue)
| | end
| end
end

POS Tags Feature: This feature checks whether
POS Tag of the words being compared match.
If their POS match then POS MATCH feature
is added to source word else POS NO MATCH
feature is added to source word.

Positional Feature: In this POSITION and
POSITION RELATIVE feature is added to source
word. POSITION feature has feature value as
abs(i-j) and POSITION RELATIVE feature has
feature value as abs(i/M -j/N) where M, N are the
lengths of source sentence and target sentence
respectively , i the index of source word in source

sentence and j is the index of target word in target
sentence.

Distortion Feature: Distortion Features mea-
sure how far apart the aligned target words of
two consecutive source words are: abs(am + 1 −
am−1). Special features for corner cases where the
current word starts or ends the source sentence,
or both the previous and current words are deleted
(a transition from NULL to NULL) are also taken
care of.

Contextual Feature: If a source word is getting
aligned to multiple words then the best target word
for source word is chosen through this feature. This
feature indicates whether left or right neighbors of
source word and aligned target word match or are
identical, or whether pos of right or left neighbors
match.

WordNet Feature: This feature checks whether
the words being compared satisfy any of these
relations hypernym, hyponym, synonym, derived
form, entailing, causing, members of, have
member, substances of, have substances, parts of,
have part; or whether their lemmas match. These
relations act as feature and whenever any relation
is satisfied, that relation is added as feature to
source word.

4 Dataset, Experimental Setup, and
Results

4.1 Dataset Used

To evaluate the performance of the proposed
aligner, one of the most popular publicly available
Dataset is used. This standard Dataset, known
as (Brockett, 2007) Dataset consists of 800
manually aligned premise and hypothesis pairs
from the RTE2 data set. The length of
Premises(source sentence) on an average is 29
words and of hypotheses(target sentence) is 11
words only. We take the premise as the source and
hypothesis as the target. S2T indicates that model
aligns from source to target and T2S indicates that
model aligns from target to source.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1359–1366
doi: 10.13053/CyS-22-4-3070

Lokesh Kumar Sharma, Namita Mittal, Anubha Aggarwal1364

ISSN 2007-9737

4.2 Experimental Setup

4.3 Baselines

4.3.1 Stanford RTE Aligner Baseline

The Stanford aligner(Chambers et al., 2007) uses
a simpler, token based alignment representation,
along with a richer set of features for alignment
scoring. It represents alignments as an injective
map from H tokens to P tokens. Phrase alignments
are not directly representable, although the effect
can be approximated by a pre-processing step
which collapses multi-token named entities and
certain collocations into single tokens. The
features used for alignment scoring include
not only measures of lexical similarity, but
also syntactic features intended to promote the
alignment of similar predicate-argument structures.

4.3.2 MANLI Baseline

MANLI was first developed by MacCartney et
al. (2008) and then improved by Thadani and
McKeown (2011) with faster and exact decoding
via ILP. There are four versions to be compared
here: MANLI the original version. MANLI-approx.
comparison version by Thadani and McKeown
(2011). MANLI-exact decoding via ILP solvers.
MANLI-constraint MANLI-exact with hard syntactic
constraints, mainly on common “light” words
(determiners, prepositions, etc.) attachment to
boost exact match rate. MANLI uses an alignment
representation which is intrinsically phrase-based.
(Following the usage common in MT, we use
“phrase” to mean any contiguous span of tokens,
not necessarily corresponding to a syntactic
phrase.)

4.3.3 Jacana Token Based Baseline

Jacana was developed by Yao et al. (2013a). It
was a token based aligner. It gave a state-of-art
performance (i.e produced results faster and
improved precision, recall, F1 also) on RTE2 set. In
Jacana Paper the aligner was run in two directions
s2t and t2s and then results were merged with
intersection and union.

We have compared our aligner with above-
mentioned aligner’s on the basis of P, R, F, E. P

stands for Precision, R stands for Recall, F stands
for F-measure, E stands for Exact rate match. We
have computed results i.e trained and tested our
aligner only, rest all of the values are taken from
their respective papers.

4.4 Results and Discussions

Table 1. Results on 800 pairs of test data

System P% R% F% E%
Stanford RTE 82.7 75.8 79.1 -

MANLI 85.4 85.3 85.3 21.3
MANLI-approx 87.2 86.3 86.7 24.5
MANLI-exact 87.2 86.1 86.8 24.8

MANLI-constraint 89.5 86.2 87.8 33.0
Jacana,s2t 91.8 83.4 87.4 25.9
Jacana,t2s 93.7 84.0 88.6 35.3

Jacana, s2t∩t2s 95.4 80.8 87.5 31.3
Jacana, s2t∪t2s 90.3 86.6 88.4 29.6

this-work, s2t 96.6 91.2 93.8 58.6
this-work, t2s 94.3 92.0 93.1 57.0

this-work, s2t∩t2s 89.8 93.3 91.5 46.1
this-work, s2t∪t2s 96.1 88.4 92.1 47.0

From table 1 it is clear that our aligner
produces better results than Stanford RTE, Manli,
Manli-approx, Manli-exact, Manli-constraint in
every parameter i.e P%, R%, F%, E%. If we
compare Jacana s2t and our work s2t then also
our results are better in every aspect. Similar is
for our work t2s, s2t union t2s. But if we compare
jacana work s2t intersection t2s then jacana gives
better result in Precision but our aligner gives better
recall, F, exact match rate. So overall our aligner
is giving an increase in comparison parameters.
Using Distributional Similarity with other features
in jacana led to a broader coverage of words and
also helped to align those words which were not
aligned previously by previous aligners and hence
an overall increase was measured. Values for s2t is
higher than t2s because of many-to-one property.
Suppose source sentence: Ram is the brother of
Shyam. Ram is very intelligent. target sentence:
Ram is very intelligent.

Here when we run aligner from s2t then it aligns
both source Ram to target Ram. But when we run

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1359–1366
doi: 10.13053/CyS-22-4-3070

Feature Extraction for Token Based Word Alignment for Question Answering Systems 1365

ISSN 2007-9737

aligner from t2s then it aligns target Ram to source
1st Ram but 2nd Ram is the correct answer of
alignment. This is the reason due to which results
of t2s is lower than s2t. These results shows
the value of adding the additional features in the
proposed model. The results are compared with
each addition.

5 Future Work

The proposed aligner is aligning one pair per
second. This speed is slow for applications which
use alignment again and again. So it calls for
future work on improving the speed of our aligner.
This can be done by optimizing our distributional
similarity feature algorithm by using some parallel
constructs.

6 Conclusion

We introduced this aligner which used only
WordNet and POS TAG as lexical resources
and provided good results in terms of precision,
recall, exact match,f-measure. We compared this
aligner with Stanford RTE Aligner, Manli Aligner,
Jacana-Token Based Aligner and results showed
that our aligner is better if speed is not an
issue. In terms of speed, it’s doing 1 alignment
per second. Recall has increased significantly
because of the broader coverage of words by
distributional similarity feature. Researchers can
take up this aligner and can do even more to
improve this aligner’s performance.

References

1. Blunsom, P. & Cohn., T. (2006). Discriminative
word alignment with conditional random fields.
Proceedings of ACL, ACL, pp. 65–72.

2. Chambers, N., Cer, D., Grenager, T., Hall, D.,
Kiddon, C., MacCartney, B., de Marneffe, M. C.,
Ramage, D., Yeh, E., & Manning, C. D. (2007).
Learning alignments and leveraging natural logic.
Proceedings of the ACL-07 Workshop on Textual
Entailment and Paraphrasing, ACL, pp. 10–20.

3. De Marneffe, M.-C. & Manning, C. (2008).
The stanford typed dependencies representation.

Coling: Proceedings of the workshop on Cross-
Framework and Cross-Domain Parser Evaluation,
COLING, pp. 1–8.

4. Gimpel, K. & Smith, N. A. (2010). Soft max margin
CRFs: training log-linear models with cost functions.
NAACL, ACL, pp. 733–736.

5. Kumar Sharma, L. & Mittal, N. (2017). Prominent
feature extraction for evidence gathering in question
answering. Journal of Intelligent and Fuzzy Sys-
tems, IOS Press, pp. 2923–2932.

6. Lafferty, J. D., McCallum, A., & Pereira, F. C. N.
(2001). Conditional random fields: Probabilistic
models for segmenting and labeling sequence data.
Proceedings of the Eighteenth International Confe-
rence on Machine Learning, ICML, pp. 282–289.

7. MacCartney, B., Galley, M., & Manning, C. D.
(2008). A phrase-based alignment model for
natural language inference. Proceedings of EMNLP,
EMNLP, pp. 802–811.

8. MacCartney, B. & Manning, C. (2008). Modeling
semantic containment and exclusion in natural
language inference. Proceedings of ACL, ACL,
pp. 521–528.

9. McCallum, A., Bellare, K., & Pereira, F. (2005).
A conditional random field for discriminatively -
trained finite-state string edit distance. Proceedings
of the 21st Conference on Uncertainty in Artificial
Intelligence, UAI, pp. 521–528.

10. Thadani, K. & McKeown, K. (2011). Optimal
and syntactically-informed decoding for monolingual
phrase-based alignment. Proceedings of ACL, ACL,
pp. 10–20.

11. Wan, S., Dras, M., Dale, R., & Paris, C.
(2006). Using dependency-based features to take
the para-farce out of paraphrase. Proceedings of the
Australasian Language Technology Workshop, ALT,
pp. 521–528.

12. Yao, X., Van Durme, B., CallisonBurch, C., &
Clark, P. (2013). A lightweight and high performance
monolingual word aligner. Proceedings of ACL, ACL,
pp. 10–20.

Article received on 06/12/2017; accepted on 15/02/2018.
Corresponding author is Lokesh Kumar Sharma.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1359–1366
doi: 10.13053/CyS-22-4-3070

Lokesh Kumar Sharma, Namita Mittal, Anubha Aggarwal1366

ISSN 2007-9737

