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Abstract. Renewable energy is intermittent by nature
and to integrate this energy into the Grid while assuring
safety and stability the accurate forecasting of the
renewable energy generation is critical. Wind Energy
prediction is based on the ability to forecast wind. There
are many methods for wind forecasting based on the
statistical properties of the wind time series and in the
integration of meteorological information, these methods
are being used commercially around the world. But
one family of new methods for wind power forecasting
is surging based on Machine Learning Deep Learning
techniques. This paper analyzes the characteristics
of the Wind Speed time series data and performs a
literature review of recently published works of wind
power forecasting using Machine Learning approaches
(neural and deep learning networks), which have been
published in the last few years.

Keywords. Wind power forecast, wind speed forecast,
short-term prediction, machine learning, deep learning,
neural networks.

1 Introduction

Wind power generation has become a critical
contributor to the electrical supply systems in
many countries around the world. We can cite
some nations with high wind penetration in their
electricity generation mix (as a percentage of total
production in 2016) like Denmark (36,8%), Ireland
(27%), Portugal (24,7%), Spain (19%) or Germany
(16%) [39]. This penetration, already relevant, will
see a steep increase in the next few years due
to the renewable push that will happen when the

Paris climate agreements [37] are implemented in
national policies.

IT is clear that renewable generation will be the
primary source in the decarbonized future, at 100%
or close to that number, and the load balancing in
the Grid will have to cope with the intermittency and
load characteristics of this generation sources. It is
clear that the future will be renewable.

In this context, developing more reliable
techniques for the integration of wind power
is critical for the electrical Grid stability, and
forecasting the energy generation output is a key
task. Wind energy forecasting has not only value
for its contribution to the system stability as it
has a strong potential for savings in the overall
system. But it has also been established that a
small increase of 10% in the quality of prediction
would be able to generate savings of 140 million
US$ in the United States alone [20].

Many methods have been designed for wind
prediction, which belongs to two main groups: me-
teorological methods based on weather prediction
and methods (also categorized as statistical)
based exclusively on Time Series data.

Wind time series are complex and difficult to
forecast, and many methods have been tried, from
the easy and accurate short-term persistence, or
some adaptations of this method [28], or the whole
family of linear time series models (AR, ARMA,
ARIMA, etc.), some non-linear statistical methods,
and finally the Artificial Intelligence (AI) methods.
In this paper, the focus will be in the last category,
analysing the use of AI methods, with an emphasis

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1085–1098
doi: 10.13053/CyS-22-4-3081

ISSN 2007-9737



in machine learning first in neural networks and
second in the nascent deep learning approaches.

2 Wind Energy Generation Forecasting
Task

Energy in the turbines is generated from the kinetic
energy of wind. The action of wind moves the
blades and generates a rotational effect which
produces electricity (by the Faraday law). In the
field wind turbines are usually grouped in wind
parks that can range from a few turbines up to
hundreds to leverage areas where the wind is
steady and strong over the whole year. The power
generated by a wind turbine (see equation (1)) is
directly dependent on the swept area of the Blade
(A), or on the Air density (ρ), but mainly on the
airspeed (v), (cubic in the formula), and finally Time
(t) is linearly dependent in the Energy (E) Formula,
where Power does not depend on time:

KineticEnergy =
1

2
ρAtv3; (Power =

E

t
). (1)

Fig. 1. Energy Generated in the Sotavento wind park
(from observation data)

In figure 1 a graphical representation of the
transformation of wind speed into power can be
observed. The red-coloured points are tuples
of energy generated with wind speed (in 10 min
periods). In this graph, the points concentrated
along the original theoretical power curve (each
turbine has its own). Additionally, it can be seen
the existence of two relevant points: (a) the cut-in

which defines the speed at which the turbine starts
generating energy and, (b) the cut-off which is
the threshold where there is no additional power
generated (it is quite usual that this point triggers
safety mechanisms to avoid the blades to be
damaged by strong winds).

There is some discussion about if it is better to
forecast wind speed or power generated, with no
consensus on this issue. Some sources like the
Anemos report [10] show a preference in power
forecasting based on a filtering effect that will
be caused by using the power function from the
wind. Generally, it is recommended to develop
a power function for every real turbine from real
observations [34]. This can help to reduce the error
since it is estimated that the differences between
the wind power function calculated experimentally
by the company maker and the real turbine can be
as high as 20% [3]. Whatever the objective is (wind
or power), in the end, the ability to understand and
learn the wind patterns is critical to obtain good
forecasts.

Other techniques add post-processing procedu-
res to the wind forecast data like Kalman Filters
that smooth the data in the transformation from
wind to power. This approach is well defined in the
literature as well and found in many experiments,
like [25].

Looking at the characteristics of the Power curve
(see example in Fig. 1), the wind speed forecasting
errors can be amplified in the high-slope, and
the errors in the cut-in and cut-off areas are
dampened. In this sense, the recommendation is
to use power forecasting and use specific power
curves for the turbines or even develop aggregate
models for wind parks, and this will lead to more
accurate results [40].

In the commercial applications, the final ob-
jective is to find the best possible power prediction,
using all the tools available, and to perform this,
independently of the approach, it is required to
discover the internal patterns of the wind for a
particular geographic location.

Even in approaches with complex
post-processing transformations or statistical
inference, some insight of the mechanics of the
wind generation and how this forecast transforms
into energy is required. We can segment the
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forecasting problem into two: the forecasting of
wind and the transformation of wind speed into
power.

The power conversion function ties wind and
Power, and this work analyzes how different
forecasting models based on Machine Learning
approaches can learn the inner structure of the
wind time series to increase the performance of the
forecasting exercise.

3 Nature of Wind Time Series

Wind turbines are provided with hundreds of
sensors that offer information in real time,
generating a stream of data to be analyzed,
like the energy generated, or the performance
of the internal engines and mechanisms and
meteorological data about the environment (wind
speed, temperature, pressure, etc.). Different
applications analyze all this data, and one of them
is the prediction of the energy output.

For this task, the information of the sensors
is converted into time series with readings every
5 to 10 minutes. Typically, a wind time series
will be a set of observations of several years
long containing several variables (wind speed,
temperature, humidity, pressure, wind direction,
density, etc.). In Fig. 2, it can be seen the wind
speed dimension of a turbine over six years of data.

Wind is a natural phenomenon that is created
by various forces applied to the atmosphere at
the same time, namely: the pressure gradient
force, the frictional force, the Coriolis force and the
gravitational force. For the energy forecast task in
wind turbines, only winds close to the surface are
studied, and those are impacted by the frictional
force, which will depend on the specific orography
of the site [16]. It is well-known that wind may
vary in two locations not far away. It can be seen
in a wind park the different speed of the blades
in similar turbines or some turbines idle (no wind)
while some others are turning, this is an empirical
test of the wind variation due to orography factors.

But not only orography is relevant for the
wind formation. The earth science has already
stated that wind is the combination of periodical
phenomena like day/night or summer/winter, a
result of low/ high-pressure variations and all of

them combined with temperature, air density and
pressure. The combination of all these factors is
of high complexity and the result, over time, is the
wind as we know it.

For this reason, it is quite usual that in a wind
time series all these factors are overlapped (a
storm in summer at night from the north), and
extracting each factor is of high complexity (if
possible at all).

A wind time series will be a time-stamped
sequence of several measures that can be related
to wind. The dimensions are usually (some or
most of them); wind power (MW ), wind direction
(degrees), air pressure (Pa), wind speed (m/s),
temperature (C or K), air density (kg/m3), relative
humidity (%). All these observations can be
generated at different heights (floor, hub height,
half height). As the wind at 100 meters high (hub
turbine height) is the one that moves the blades, it
is probably the measure with the highest relevance,
while wind direction is important to understand how
the dominant winds might impact wind patterns and
intensity. In Fig. 3 a summary of one-year data
from the Sotavento wind park is shown in the wind
rose, the dominance of E/NE and W/SW winds is
clear on this site.

3.1 Non-Stationarity of Wind Time Series

Stationarity in a time series is understood as the
property where the statistical characteristics such
as mean, variance, autocorrelation, etc. are all
constant over time, or repeat over time in some
sequences (seasonal, day/night,...).

There are several tests widely used to analyze
the stationarity of a time series. The Dick-Füller
(ADF) test (and its evolution the augmented ADF)
are the most common [6]. The ADF looks for a
unit root in a time series sample. A unit root is
a statistical feature that determines randomness in
the series. The ADF Tests sets up a hypothesis
that there is a unit root. The more negative is the
result, the higher the rejection of the hypothesis,
and the probability of the time series being non-
stationary increases.

In Table 1 an example of ADF test is
shown where the negative ADF shows clear
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Fig. 2. Wind speed time series in site located in Techado, vertical axis wind speed in m/s, horizontal axis time, New
Mexico. NREL Dataset [7]

Table 1. ADF test on two NREL dataset sites (using ADF
statsmodel)

Offshore New Orleans Edgeley North Dakota
turbine: 3007 turbine: 112500
latitude: 28.580738 latitude 46.292343
longitude -90.734619 longitude -98.736877
ADF Statistic: -31.418378 ADF Statistic: -44.676385
p-value: 0.000000 p-value: 0.000000
Critical Values: Critical Values:

1%: -3.430 1%: -3.430
5%: -2.862 5%: -2.862
10%: -2.567 10%: -2.567

non-stationarity in two sample turbines in the NREL
dataset.

When this test is applied to a time series, if
the result is positive it will show stationarity, but
if the result is negative then the hypothesis of
non-stationarity is confirmed and then the series
is considered as non-stationary. Wind time series

are most of the time non-stationary, but in some
locations (steady winds or very clear seasonal
trends) it can lead to some stationarity results.

3.2 Non-Linearity of Wind Time Series

Linearity is another relevant property to be found in
the wind time series. Linearity will allow the use of
linear forecasting methods and non-linearity needs
of more complex methods (non-linear) have to be
used to obtain accurate predictions.

The validation of linearity in a time series is not
an easy and straightforward task. The surrogate
data method, described by Theiler in [36] is a
powerful tool to validate linearity. This test applied
to wind time series shows that linearity can be
found in some wind datasets but not in all of them,
and correlations are found in differenced data [8].
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Fig. 3. Wind direction dimension in one year of time
series measurements in the Sotavento Park located in
Galicia, Spain 2016 [5]

If the wind is nonlinear, how can linear models
be used for forecasting? The answer lies in the fact
that the wind series contains structures that might
be linear.

The best forecasting methods will extract this
information (learn) the shape of these internal
structures to produce more accurate results.

4 Review Methodology

The possibility to use Machine Learning (ML) to
analyze historical and new data, to support the
physical control operations, and allow decision
making based on information extracted from data
is having an immense impact in many fields. In
particular, the first of these algorithms in wind
forecasting started as early as 1990, but its use
was not widespread due to lack of conclusive
results and the high computing cost. With the
recent developments in Deep Learning (DL) new
approaches based on deeper architectures are
appearing in the literature, and this new interest is
generating some experiments that show a good fit
for the task.

Fig. 4. Topology of the different Neural Network
architectures

In this article will review the state-of-the-art of
NN and DL applied to wind time series, focusing
especially on the most recent developments in the
area.

To classify these architectures is a complex
task (see Fig. 4) as there are many variations
and refinements on top of the primary network
categories. To obtain some clarity an effort to
classify the approaches in 3 main classes has been
made, being those: n-layers Perceptron (MLP),
Convolutional networks (CNN) and Recurrent
Networks (RNN).

4.1 Perceptron with n-layers (MLP)

The most straightforward architecture of Neural
Network has been called Perceptron or Feed
Forward Network (see Fig. 4). In this architecture,
each layer of the network only has forward
connections with the subsequent layer. The
Perceptron definition was described in the seminal
book from Minsky and Papert Perceptrons [26], but
its first implementations come from some years
earlier. The basis of the Perceptron is to mimic
(loosely) the behavior of the natural neuron and its
connections. A signal or data goes into the input
layer, then is treated by the hidden layers and the
result is made available at the output.

The goal of an MLP network is to approximate
some function f∗, when there are multiple layers,

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1085–1098
doi: 10.13053/CyS-22-4-3081

Wind Energy Forecasting with Neural Networks: A Literature Review 1089

ISSN 2007-9737



each layer is a function of the function:

f(x) = f (3)(f (2)(f (1)(x))),

in this three-layer example each function is a layer
in the network (one, two, three). This number
defines the depth of the model, being the last layer
of the output layer.

Neural Networks have on each neuron an
activation function that acts on the inputs received
and generates an output, plus a backpropagation
algorithm that optimizes the weights on each
connection in a process to find the optimal
combination for the output. Neural networks are
non-linear, and this characteristic allows them to
produce better results than linear models on wind
data time series.

4.2 Convolutional Networks (CNN)

These networks (see Fig. 4) are specialized
in processing matrix data (like images, or time
series). The name comes from the convolution
operation which is a known operation in Calculus
which is seen as an integral transformation (see
equation (2)):

(f ∗ g)(t) =
∫
f(α)g(t− α)dα, (2)

or for finite matrices the use of Summation instead
of integrals:

(f ∗ g)(t) =
∑
m

f(α)g(t− α)dα. (3)

Convolutional networks can work in large image
matrices and extract features from small areas of
the matrix, areas that could have relevant features
for the task. For instance, in a classification task of
birds, the most relevant feature will be the beak and
the pixels around the beak will be the convoluted
feature of the main image.

In time series, the convolutional networks would
be able to identify short intervals of the time
series that could bring relevant information to the
prediction task. It could be that some patterns in
the wind series are relevant for the future behavior
of wind.

4.3 Recurrent Networks (RNN)

Recurrent networks (see Fig. 4) are designed
to process sequential data, and the most
important idea on this construction is sharing
parameters between the different layers and
neurons, generating cycles in the graph sequence
of the network. In this sense, RNN can have
memory and use information that is far away in
time. An example of RNN is the Long Short-Term
Memory (LSTM) which combine convolution over a
sequence, being the output of a function of a small
part of the input sequence.

In an RNN each output is a function of the
previous elements. In a way, RNN work in cycles
as the values in a specific step will influence its
value in future steps. RNN come with many
refinements, like recursive, Elman, Bi-directional
and many more. RNN networks have the potential
to learn from patterns in the time series to predict
the future, and this learning, thanks to the ability
to use history in the process, can be used for
forecasting purposes.

CNN and RNN have potential features that could
help to predict future from learning from the past.
The challenge of this application has to do with
the internal structure of wind time series. We
know they are non-linear and non-stationary, but
is in the time series some hidden pattern that tells
the behavior of this meteorological phenomena in
the future? Is deep learning able to discover this
pattern? Which is the most efficient deep learning
architecture to use this patterns in the wind speed
forecast task?

5 Review of Experiments

A set of relevant works have been selected from
the literature and analyzed and presented in
tabular form in Table 3.
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5.1 Architectures based on Multi-Layered
Perceptrons (or Neural Networks)

Liu in [23] explores several ML architectures
(k-NN, REP-tree, M50 trees, Fast forward ANN,
RBF networks and Deep Neural Networks) in
7 datasets, which integrate observations with
meteorological data from Meteo Models. It
uses seven features, temperature, dew point,
relative humidity, wind direction, wind speed,
station pressure, and wind power and creates an
additional measure for wind speed cube. The
DNN architectures are tested with several hidden
layers (up to 4) with 300 neurons, but increasing
number of layers does not improve results of the
experiment. The conclusions show that the best
model is SVM with somehow promising results
from the ANN and DNN (but with worse RMSE
consistently); however, the DNN architectures
show better behavior with longer time scale
predictions.

Tao in [35] develops a DBF (deep belief)
architecture with 3 layers with 100, 200 and 300
nodes. Data from a wind station in Mongolia
is used, sampled every 10 minutes, to perform
several experiments with three months training to
generate 24h forecasts. Using MSE and MAE
obtain an error measure that shows stability from
6 to 24h which demonstrates that the architecture
has potential to capture some of the hidden
patterns of the wind series.

Pormousavi in [12] develops a Neural Network
architecture integrated with a Markov Chain
probabilistic engine to establish forecasts in very
short-term (seconds). To forecast at this short
has the objective to identify turbulences and wind
changes for the turbine control and has some
specific challenges as it has to compete with
the persistence accuracy. In this work obtains
reasonable results with an ANN with two layers.

Ranganayaki in [30] describes an ANN ensem-
ble architecture that obtains accurate results. It
integrates several data elements like: temperature,
wind direction, wind speed and relative humidity.
The ANN architectures tested are: MLP, Madaline,
Backpropagation and a Probabilistic Network
model which are applied to a 2-year dataset
with observations from a real wind farm in India.

The research develops a criterion to fix the
number of hidden neurons and obtains a sensible
improvement from other methods measured in
MSE.

Sapronova in [32] presents a DL approach that
outperforms linear extrapolation and shallow ANN
networks for short-term predictions (up to 30 min).
The DL architecture is not specified in detail, and
one of the conclusions of the experiment is that
using NWP data does not improve the overall
results for the prediction time frames (30 min).

Shi in [33] develops a hybrid approach with
NN and SVM or ARIMA architectures. The idea
behind this design lies in developing models that
can identify the linear components (ARIMA-SVM)
and the non-linear components (NN) from a time
series. The experiment is conducted in several
times ahead (1 to 7 steps) and the performance
of the hybrid methods show little improvement
over the isolated approach (less than 3%). The
conclusion is that a hybrid methodology is a viable
option, but it does not always generate better
performance than the non-NN methods.

Liu in [22] using data sampled every half an
hour from a Chinese wind farm in Qinghai (20
days) develops several hybrid models, ARIMA,
Wavelet (signal decomposition) and ANN with
several training algorithms. He concludes that
the hybrid algorithms have better performance
than the isolated ARIMA or Persistence, and the
best training algorithm is the BFGS Quasi–Newton
Back Propagation. However, the improvements
calculated in terms of MAE, MSE and MAPE are
not spectacular. In similar approach Khandelwal
in [13] applies a wavelet transformation on the
time series to decompose the linear and non-linear
components of the data, to apply ARIMA methods
to the linear set and ANN to the non-linear. With
this approach obtains better results than with the
single standard approach.

Li in [21] compares several ANN architectures
(linear, backpropagation and radial basis) using
data observations in North Dakota (US). He
evaluates the results in MAE, RMSE and MAPE.
He concludes that there is not a superior
architecture as the results depend on the data.
With better tuning of the models’ differences of
20% is obtained.
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The authors propose post-processing methodo-
logy to apply to the forecast results to decrease the
model differences.

Other approaches integrate Solar and Wind
data, like Hossain in [11] which develops an
NN architecture for Hybrid forecasting (wind and
solar). The model includes eleven climatological
observations, which include the main dimensions
like wind speed and direction, relative humidity
and rain amount, barometric pressure and gust
information between them. The output would
be a 3 hour ahead forecasting. The data is
from the Australian town of Rockhampton as the
observations come from a tower in the town.
This work shows the importance of integrating
exogenous variables in the prediction that improves
the learning quality of the network.

5.2 Architectures based on Convolutional
Networks

Dı́az in [4] uses three years of NWP wind data (8
parameters) from a model sampled every 3 hours
and compares the results to real production data
from one site (Sotavento Wind Park in Galicia,
Spain) and for the whole Country wind energy
production (Spain). Three DL architectures are
tested and compared with a Gaussian SVR model
and a Neural Network with just one hidden layer.
The architectures prove an MLP2 architecture with
two hidden layers of 250/300 units, a standard
CNN with the first layer with 2x6 filters and two
fully connected layers of 200 and 400 units, the
last architecture is a LeNet-5 network with two
initial convolutional layers and two fully connected
200 unit layers. Results are measured with
MAE and results obtained are around 5% from
the SVR algorithm. The forecasts horizon (time)
is not specified, the conclusions are promising
about the architectures, but some concerns
about computational cost and improvement of the
parameter setting in future works are made in the
document.

Wang in [38] proposes a CNN approach that
beats shallow ANN, persistence and regression.
Data are from a wind park in Sangchuan Island,
with a length of one year. The time series is
decomposed in different frequencies, and each

one of them has its own CNN architecture.
Results are post-processed into a time-series
forecast, beating the other methods from 10%
in the shortest term to 100% in the 4-hour
time frame. An interesting conclusion is a
remarkable seasonal (winter, summer, spring,
autumn) difference between the error results (up
to 6x difference).

5.3 Architectures based on Recurrent
Networks

Ghaderi in [9] develops an LTSM and an RNN
architecture using spatial information (data from
neighbours), they use data from 57 meteo stations
obtained from the Airport Meteorological control
in the East coast of the US. With this data they
Develop RNN and LSTM architectures, obtaining
good results for short-term forecasts. One
interesting conclusion is the good performance
of the DNN architectures on the site located in
Nantucket (this site has stable wind regimes as it
is by the sea). The DL methods beat any other
method and accomplish to obtain a good forecast
based on the observations from the 57 meteo sites.

Cao in [2] uses data from a meteorological
tower in the Texas university that generates a
time series with a 15-minute sampling of wind
speed data at five different altitudes. Develops
an RNN architecture and compares it with two
ARIMA algorithms. The experiments are measured
in MAPE, MAE and MSPE. From the experiments
two significant findings are obtained, one is that
using wind speed measured at different heights
improves the ARIMA models sensibly up to 40%
(in MAE), second the much better performance
of the RNN architecture, over 100% improvement
from the ARIMA algorithms, showing that the RNN
network acquires the internal patterns of wind,
integrating the covariate information of the different
heights.

Liu in [24] develops a methodology to forecast
the power generated by a wind power plant
(wind park composed of several turbines). The
procedure is based on a two-step methodology
with two NN architectures, first probabilistic NN
screens the data and identifies which of the
turbines are excellent representatives of the plant,
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this representative data feeds an RNN network in a
second step and in this step the total power of the
plant is obtained. The errors from this approach
are calculated from 10 minutes ahead to 60 min
ahead and range between 7.8% to 9.58% RMSE.

Olafoe in [29] develops an RNN architecture for
one hour ahead of wind power prediction, and
the test data come from real weather observations
in the wind site (Slangkop, South Africa). Using
sampled data at 1s, mean data at 1h is generated
in a dataset composed by five elements (the speed
at 50m, gust, pressure, temperature and humidity),
this data feed an RNN with two layers. The relevant
point is that the training is fitted using the power of
the turbine, as it is adjusted to obtain the minimum
MSE between the theoretical power based in the
power curve of the turbine and the results from
the algorithm, this generates training based on the
power output. The results for one-hour prediction
ahead (power) are 0.156 RMSE or 0.009 MAE.

Balluff in [1] develops a RNN architecture
for mid-term (24h) prediction. Based on an
exercise performed on NWP data for off-shore
points concludes that this architecture has a lot of
potentials but requires a high degree of fine-tuning.
It does not develop error comparison but observes
good learning potential in the RNN architecture.

Khodayar in [14] tests an NN with stacked
architecture on a subset of the NREL dataset. The
architecture combines an RNN approach with a
Stacking of encoding and decoding layers. The
results of this construct improve a standard ANN
by more than 20% up to 3 hours.

6 Comparison of Results

The task of comparing the methods is complex
due to several factors which are; differences in the
time series datasets as they come from different
and unrelated wind parks and turbines, different
error measures which make the comparison hard,
alternative horizon forecast, differences that have
to be taken into account when performing a
comparison.

The singularity of the wind time series (non-
linearity and non-stationarity) define the nature of
the forecasting exercises, and one initial conclusion
that is found is the dependency of the best

algorithm on the data. Depending on the site,
one algorithm might behave better than others, (as
locations can be challenging to forecast or almost
linear and then much easier to predict).

The wind time series may contain linearity at
some extent, and for this reason, some approaches
try to separate the effect of non-linearity with
signal decomposition algorithms and posteriorly
applying linear and non-linear techniques to the
different sets of information. This approach obtains
good results (consistently better) but with some
questions about the cost versus the performance
improvements.

From the works analyzed, MLP seems an
interesting approach, which obtains better results
than with the linear methods (ARIMA, SVM) but
only marginally, and within some specific sets of
data (with linear time series) it could outperform
traditional linear methods.

The CNN and LSTM approaches are much more
promising. However, there is a concise list of
experiments available at this point. Both classes
of algorithms are developed using exogenous
variables (temperature, humidity, pressure, wind
at other heights, ...) as with these variables the
learning process can extract information about the
time series. The CNN and RNN approaches beat
the MLP approaches in the same experiments,
with some remarkable performance improvements
in some cases.

Another improvement point would be to use
standard error measurements, based on the same
methodology, for instance; RMSE and R2 might be
a better choice than MAPE or MAE to express the
results. And another useful practice, which is not
always followed, is to compare the obtained results
with a naive method or persistence, this practice
will help the reviewer to asses the results of the
experiments by comparison.

One last concern is the lack of availability of wind
datasets for researchers [15], making very difficult
to compare results as the time series used in
different experiments might have different forecast
complexity as the results depend on the specific
data. It could be advisable, to reach higher quality
in the comparisons, to develop standard datasets
(large enough) that could be used in research to
have more accurate and balanced comparisons.
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7 Conclusions

The European Parliament established that, at
least, 35% of the total energy consumed (and
thereof produced) in the European Union would be
from renewable resources by 2030. Some coun-
tries are developing even more aggressive targets
(Germany for instance plans for 55% renewable by
2030). In this framework wind-generated power is
essential in achieving these targets. As stated by
[19] ”Good forecasting tools are urgently needed
under the relevant issues associated with the
integration of wind energy into the power system”.
We strongly believe that the use of Deep Learning
techniques is key in the design of optimal systems
to forecast wind energy production.

The integration of wind-generated energy into
the Grid requires this forecast to be performed
at the highest possible accuracy, but wind speed
forecasting is challenging, due to the time series
non-linearity and non-stationarity nature which
increases the difficulty of the task.

Wind time series show as well as significant
variability depending on the geographical position,
as the winds can be linear or chaotic depending on
the local conditions of the site.

There are many approaches for forecasting,
statistical, regression algorithms, non-linear al-
gorithms and many more, and one family of
algorithms are based on Artificial Intelligence
approaches and specifically in Neural Networks.
In the literature, many examples of the use of this
techniques can be found, and some of the most
relevant are shown here.

The methods have been classified into three
groups: traditional ANN methods, CNN and RNN.

While the ANN methods seem to have a
significant dependency in the data to be forecast
and there are different methodologies to improve
its performance, they offer little improvements in
accuracy over sophisticated linear models com-
bined with signal transformations and statistical
analysis. However, in the limited experiences using
CNN and RNN approaches the improvements
obtained are relevant, which shows that these DL
methods have great potential in learning the inner
complexities of the wind time series.
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Table 3. Review summary of methods (MLP:Multilayer Perceptron, CNN:Convolutional Network, RNN: Recurrent Neural
Network)

Type Author Data Architectures Results Comments

MLP (Liu 2016) [23] 7 farms with real +
meteo data DNN, SVM, ANN Best, MAE 6h = 12

Rolling structure of
algorithms

MLP (Tao 2014) [35] wind turbine Mongolia
10 minutes

DBF 3 layers
100/200/300
neurons

Stable results 6-24
hours ahead

Better performance for
mid-term forecast

MLP (Pormousavi
2008) [12]

Several sets wind
speed 2.5s

2 layers ANN
integrated with
Markov

15% improvement
MAPE with MC

Prob. approach for very
short term prediction

MLP (Hossain 2012)
[11]

Rockhampton Solar
and wind data

ANN with 11
variables non-qualified results

Integration Solar/Wind, use
of exogenous vars

MLP (Ranganayaki
2016) [30]

Two year data
observations from 2
wind park sits (India)

ANN ensemble (4
variants)

2-10x improv. over
previous exp. in
MSE for short term

Methodology for the
calculation of hidden nodes

MLP (Sapronova
2016) [32] NA 2.5s ANN , DL

architecture

20/25% improv. over
ANN (MAE or
RMSE)

Very short term prediction,
architecture not specified in
detail

MLP (Shi 2012) [33] NREL North Dakota 1
to 7 steps

ANN ARIMA SVM
hybrid

Only 3%
improvement hybrid
over single method

Hybrid does not always
generate better
performance

MLP (Liu 2013) [22] 25 days data Wind
Farm Qinghai China

ANN Wavelet
ARIMA hybrid

Wavelet + ANN
(BFGS) best model

Hybrid is marginally better
but more costly

MLP (Li 2010) [21] North Dakota sites, 1
year hourly sampled

3 ANN
architectures

Best model depends
on data

There is not a best model

CNN (Diaz 2015) [4] Meteo Data, 1 farm and
Areas in Spain CNN and NN MAE 5% than SVR

algorithm

Exp. algorithms with
promising results.

CNN (Wang 2017)
[38]

one year data from 2
wind farms in China

CNN DL
Architecture

20% up to 600%
improvement in
some time frames

Decomposition of time
series in signals of different
frequency

RNN (Ghaderi 2017)
[9] 57 locations meteo data RNN and LSTM

architectures RNN best results

Arch. obtain good results in
one site from the others,
learning geo-spatial
correlation

RNN (Cao 2012) [2] Meteo Texas U. 5
heights 15 min RNN and arima RNN better than

arima

Covariate usage of wind at
5 heights

RNN (Liu 2012) [24] 250 Turbine Wind Farm
in Colorado (US)

10min to 60 min
7.8% to 9.58%
RMSE

Probabilistic NN
feeds RNN

Power results with RNN
from selected
representatives

RNN (Olafoe 2014)
[29]

Weather obs. Slangkop
and power data

2 RNN
architectures
(Power)

RMSE 0.156% 1h
ahead

Train RNN on Power
expected from power curve,
with good results

RNN (Balluff 2015)
[1]

NWP data from
offshore sites RNN Improvement but not

measured

Concludes RNN as the right
architecture for wind
prediction

RNN (Khodayar
2017) [14]

NREL data from points
in Idaho, US

RNN and ANN
architecture with
encoding/
decoding layers

20% RMSE
improvement on 3
hours from standard
RNN

RNN recommended
approach with stacking,
using rough set theory on
the neurons
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As the deep learning approaches mature it
should be expected that new experiences will
appear showing a better fit to the wind forecast
problem and better ability to adapt to the
differences that are found between wind time
series from different sites.

The process to compare the efficiency and
potential of different approaches is sometimes an
impossible task as the variability of the experiments
in error description, dataset employed, the horizon
of the forecast and other factors make impossible
to obtain an unbiased comparison. However,
it is clear that every approach reviewed shows
strengths for the experiments designed.

A final point to be made for the wind forecasting
field would be to mention the need to develop stan-
dardized datasets that will easily allow interpreting
the results from the different approaches. In other
areas of knowledge standardized datasets have
been developed that will enable the comparison
of alternative approaches, it is worth mentioning
some of the most relevant datasets like the
handwritten character recognition dataset [18], the
House numbers dataset [27] or the faces dataset
for face recognition [17]. Our view is that using a
dataset like the NREL Wind dataset would allow a
better comparison of the different approaches and
a better understanding of the new developments in
the field.

There is one relevant dataset in the field,
the NREL wind dataset [7], a synthetic dataset
created from NWP Meteorological data, with more
than 126,000 sites in the US. As of now, there
is a relevant project going on in Europe;the
project INDECIS [31] which is an European effort
(Grant 690462) that is developing a comprehensive
dataset created from real observations coming
from tall towers around the world. The dataset is
being regularized and cleaned in order to become
a source of choice for experiments that require
wind data.

Wind-generated energy forecasting and analysis
that today still requires many human hours and
thousands of algorithms adapted to each situation.
These efforts will be reduced by an enormous
factor in the future by the intensive use of ML
tools, and the goal is to build artificial intelligence

systems that being stable, progressive and reliable
enhance this situation in our benefit.

Acknowledgements

The authors would like to thank the Barcelona
Supercomputing Center for the usage of their
resources, and to the United States National
Renewable Laboratory (NREL) for the use of its
Wind Datasets.

References

1. Balluff, S., Bendfeld, J., & Krauter, S. (2015).
Short term wind and energy prediction for offshore
wind farms using neural networks. 2015 Int. Conf.
on Renewable Energy Research and Applications
(ICRERA), pp. 379–382.

2. Cao, Q., Ewing, B. T., & Thompson, M. A.
(2012). Forecasting wind speed with recurrent
neural networks. European Journal of Operational
Research, Vol. 221, No. 1, pp. 148 – 154.

3. Costello, R., Mccoy, D., O’Donnel, P., Dutton,
G., & Kariniotakis, G. (2002). Potential benefits of
wind forecasting and the application of more-care in
Ireland. Med power 2002, Athènes, Greece.
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