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Abstract. Human serum albumin (HSA) is the most 

abundant protein in the circulatory system that shows a 
remarkable capacity to bind a wide range of drugs 
impacting their therapeutic effect. Therefore, the binding 
to HSA represents a fundamental factor to consider 
when designing and developing new drugs. Although 
biophysical techniques (e.g. spectroscopy) are 
commonly employed to measure the extent to which 
drugs bind to HSA, these methods are time consuming 
and usually extremely expensive. Hence, there is an 
urgent need to incorporate more efficient methods in an 
attempt to streamline the development of new drugs. 
Here we present the implementation of a robust and 
cost-effective computational method to the prediction of 
the binding affinity of drugs towards HSA. Our method 
incorporates the program AutoDock Vina to perform in 
silico molecular docking of a highly diverse set of drugs 
against the 3D crystal structure of HSA. The 3D structure 
of HSA was retrieved from the Protein Data Bank and 
prepared to be used as receptor in our docking 
simulations. 3D structures of drugs were generated and 
optimized using Open Babel. Our protocol using 
AutoDock Vina as the docking engine was capable of 
reproducing the binding mode of indoxyl sulfate within 
the X-ray crystal structure of HSA (RMSD < 2.0 Å). In 
addition, our protocol correlated accurately predicted 
affinity values with experimentally determined 
association constants (r2=0.61). Our computational-
based molecular docking approach incorporating 
AutoDock Vina may prove useful to the prediction of the 
binding affinities of drugs towards human serum 
albumin, and thus, could help alleviate a major 
bottleneck of the drug discovery process. 

Keywords. Computer-aided drug design, 

modeling, docking. 

1 Introduction 

A recent benchmark study has shown that bringing 
a new pharmaceutical drug product to the market 
exceeds an investment of two thousand million 
(US) dollars and takes over ten years of 
development [35]. Consequently, there is an ever-
growing effort to apply new technologies that could 
help streamline the discovery process. The 
publication of the article "Next Industrial 
Revolution:  

Designing Drugs by Computer at Merck”, in the 
early 1980s in the prestigious business magazine 
Fortune, marked the first public credit to the 
enormous potential of computers assisting the 
design of new drugs [1].  

Over the past two decades, the explosive 
advancements in high-performance computing 
[32], together with the increasing availability of 3-
dimensional structures of important 
pharmaceutical targets, have paved the way to the 
computer-aided design of drugs. 

Particularly, the now wide spread access to 
supercomputers and the development of more 
efficient algorithms have positively impacted the 
discovery and development of new drugs. 
Computer-aided drug design (CADD) uses 
computational approaches to discover, develop, 
and analyze drugs [28].  

Although CADD is an emerging discipline, its 
foundations date back to the seminal works of Emil 
Fischer (1894) [14] and Paul Ehrlich (1909) [12] 
when they proposed the lock and key model. 
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This model rationalizes the mechanism of drug 
action: a receptor structure (the lock) contains a 
region with a particular shaped pocket at which an 
appropriately shaped drug (the key) can 
interact [6]. Though a number of biomolecules 
within the human body can work as a receptor, 
protein molecules frequently play this role. In the 
same way in which a key should open only one lock 
– otherwise security may be compromised – drugs 
should be designed to act on only one receptor [1]. 
Deleterious side effects are due, at least in part, to 
the fact that the drug molecule interacts not only 
with its target receptor but also with other proteins 
not associated with the disease that it is proposed 
to treat. 

Human serum albumin (HSA), the most 
abundant protein of the circulatory 
system, represents a very typical example of a 
promiscuous protein receptor that interacts with a 
broad range of drugs impacting their efficacy and 
safety [4, 31, 26]. This protein plays a crucial role 
in regulating the osmotic pressure and in 
transporting endogenous compounds such as fatty 
acids, hormones, toxic metabolites and metals. 
Due to its high capacity of binding a wide range of 
drugs, HSA determines, to a large extent, the 
safety and pharmacokinetics profile of most drugs. 
Regardless of the method of administration (e.g. 
oral, intravenous), drugs are transported through 
the blood, where they inevitably interact with the 
human serum albumin (HSA) before reaching their 
receptors.  

Hence, drug molecules can circulate in the 
bloodstream either bound to HSA (or other plasma 
proteins) or in their unbound (free) form [26]. 
Interestingly, only unbound drug molecules can 
interact with the protein receptor to trigger their 
therapeutic effect [41]. Moreover, the distribution 
and elimination of a drug from the body depends 
on the strength with which it is bound to HSA [17]. 

Therefore, the study of the binding of drugs to 
HSA, at the molecular level, results of paramount 
importance to better outline the pharmacokinetics 
profile of drugs [23]. Molecular docking is central to 
the CADD strategies. The computational-based 
fitting of the 3D structure of a molecule (ligand) 
within the binding site of a protein receptor is called 
docking [8]. 

The docking process, in general, involves two 
independent steps: (1) the generation of the 

correct pose (conformation and orientation) of 
ligands inside the receptor (protein) binding site 
and (2) the evaluation of the affinity of binding. [8]. 

Over the last few decades, docking techniques 
have successfully been incorporated to the 
standard laboratory experiments to the discovery 
of new drugs. This strategy has importantly 
contributed to reducing both the experimental work 
and the associated costs [1]. 

Although there are currently a wide range of 
docking software alternatives, AutoDock Vina [45] 
remains one of the top choices due to its high 
reliability [7]. AutoDock Vina is an open source 
program, free for academic use, that employs the 
3D structures of the receptor and ligand to predict 
the best way of molecular interaction [45]. In the 
first stage, AutoDock Vina samples the 
conformational space to explore possible modes of 
protein–ligand interaction. Subsequently, in the 
second stage, the program uses a scoring function 
to determine the most suitable pose in terms of the 
energy of interaction [21]. 

The aim of the current study is to harness the 
significant increase, in recent years, of computing 
power, and the availability of 3D crystal structures 
of the HSA to develop a computational method that 
incorporates molecular docking, using AutoDock 
Vina, to predict the interactions of drugs with this 
plasma protein, which may potentially lead to a 
streamlined drug discovery process. 

2 Methods 

Figure 1 shows the overall methodology that was 
applied to conduct this study and some of the tools 
that were employed.  

 

Fig. 1. Overall molecular docking workflow 
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Protein-ligand docking requires as input a 
three-dimensional (3D) ligand database and the 
3D structure of the protein receptor. Affinity of 
selected drug ligands against the human serum 
albumin (HSA) receptor were investigated using 
AutoDock Vina. 

Before docking, ligand database and HSA 
receptor were prepared. Open Babel was used to 
the generation of 3D structures of ligands and to 
their optimization. HSA was prepared using, 
Scwrl4, Reduce and Gromacs. Finally, predicted 
affinity was compared with reported 
biological activity. 

2.1 Receptor Preparation  

The 3D crystal structure of human serum albumin 
(PDB ID 2BXH) [15] was retrieved from the Protein 
Data Bank [3] and subjected to an initial 
preparation phase where all water molecules and 
solutes contained in the structure were removed, 
including the ligand indoxyl sulfate, which was co-
crystallized with the protein. Subsequently, the 
structure was inspected with Scwrl4 [27] to add 
missing atoms and side chains and to optimize 
them with respect to the entire hydrogen bond 
network of the protein. Scwrl4 uses an energy 
function based on a backbone-dependent rotamer 
library to estimate the positioning of residue side 
chains. When elucidating X-ray crystal structures, 
misorienting Asp and Glu side chains and His rings 
is quite common (except at extremely high 
resolutions) because the electron density is 
symmetric around these residues. The Reduce 
[49] program, included in the MolProbity server 
[48], was used to identify the preferred orientation 
for these side chains based on van der Waals 
contacts and H-bonding. In this process, flipping 
was accepted when the program indicated “clear 
evidence for flipping.” Reduce software conducts 
surface protein analysis, employing all explicit 
hydrogen atoms and van der Waals contacts, to 
choose the most suitable side chain orientations of 
Asn, Gln, and His amino acids [49]. The protein 
was then energy minimized to obtain a stable, low 
energy conformation. The protein was minimized 
in vacuo, with no harmonic restraints, using the 
steepest descent minimizer of Gromacs 4.5.4 [18].  

 

Fig. 3 Two-dimensional chemical structures of drugs 

interacting at the drug-binding site 2 of human serum 
albumin (HAS) 
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Protonation states were assigned at pH=7.4 
using the PDB2PQR [11] software, which 

incorporates Propka [29] to the calculation of the 
pKa protein values. Then Gasteiger charges were 
added and the receptor file converted to the pdbqt 
format using the “prepare_receptor4.py” script of 
AutoDockTools [33]. Finally, the quality of the 
protein receptor was assessed using a series of 
tests for structural consistency and reliability. The 
stereochemistry of the refined structure was 
evaluated through the analyses of Ramachandran 
plots [39] using the MolProbity server [48]. The 
statistics of non-bonded residue interactions, 
which determines the amino acid environment, 
was assessed with the ERRAT program [10]. This 
tool helps discriminate between correctly and 
incorrectly determined regions of protein structures 
based on characteristic atomic interactions [10]. 

2.2 Ligand Preparation 

A total of 20 chemically and functionally highly-
diverse drug molecules (Figures 2 and 3), for which 
association constants (ka) towards HSA had been 
determined, were identified from a literature 
search [51]. 

In order to utilize these molecules in the docking 
procedure, their two-dimensional (2D) structures, 
in smile format, were retrieved from the PubChem 
database (https://pubchem.ncbi.nlm.nih.gov/). 
Smiles strings were subsequently converted to 3-
dimensional (3D) coordinates using the “gen3d” 
option of the Open Babel package [16], version 
2.4.0 (http://openbabel.org). 

Open Babel package was also used to remove 
salts and counterions, if present, to energy 
minimize and to assign protonation states (at 
pH=7.4) to ligand structures. Finally, the 
“prepare_ligand4.py” script included in 
AutoDockTools [33] was employed to assign 
Gasteiger charges and to convert ligands to the 
pdbqt format. 

2.3 Molecular Docking 

Molecular docking is a computationally-based 
procedure to the prediction of the binding mode 
and binding affinity of a ligand (drug molecule) with 
a protein (receptor) of known 3D structure.  
AutoDock Vina [45] version 1.1.2 was used to dock 
drug molecules into the drug-binding sites of the 
HSA protein.   

 

Fig. 2. Two-dimensional chemical structures of drugs 

interacting at the drug-binding site 1 of human serum 
albumin (HAS) 
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The input of the protocol includes the 3D 
structure of the protein receptor and those of the 
ligands, and a defined search conformational 
space. The output yields a set of poses (receptor-
ligand) ranked by ΔG, the predicted energy of 
binding in kcal/mol. AutoDock Vina was set to 
generate a maximum of 20 poses, through the 
num_modes command. This program performs a 
user-defined number of individual sampling runs 
through the “exhaustiveness” parameter. In each 
run, the program perturbates the ligand structure to 
sample different three-dimensional arrays of the 
drug molecule within the active site of the receptor 
followed by a local optimization, using the 
Broyden-Fletcher-Goldfarb-Shanno algorithm [37]. 

The resulting ligand conformation is either 
accepted or rejected according to a Metropolis 
criterion [45]. Subsequently, the scoring function 
evaluates multiple times each local optimization. 
The number of scoring function evaluations is 
determined heuristically, and depends on the 
number of rotatable bonds of the ligand and 
whether the receptor contains flexible amino 
acids [45]. 

The protein receptor was maintained rigid 
throughout the docking process, while drug 
molecules were allowed flexibility. The search 
space was defined to cover two distinct HSA drug-
binding sites. Binding site I was covered within a 
region with coordinates at the center along the X, 
Y and Z axis as -4.326, -4.756 and 9.449, and 
dimensions (Å) along the X, Y and Z axis were set 
to 10 Å. In the case of binding site II, the search 
space region was centered at the coordinates (X, 
Y, Z) 9.187, 3.021, -14.306. And the dimensions 
along these axes were also set to 10 Å. All other 
parameters were kept as the AutoDock Vina 
default values. 

2.4 Validation of AutoDock Vina Performance 

The performance of AutoDock Vina was evaluated 
assessing whether this program could reproduce 
accurately the experimental binding mode of ligand 
indoxyl sulfate within the X-ray crystal structure of 
Human Serum Albumin (PDB ID 2BXH) [15]. The 
root-mean-square deviation (RMSD) cut-off of 2 Å 
was used as a criterion of the correct bound 
prediction [38].  

 

Fig. 4. Stereo view of the overall structure of the refined 

model of human serum albumin (HSA). Subdomain IA 
is shown in dark blue; subdomain IB, in light blue; 
subdomain IIA, in orange; subdomain IIB, in red; 
subdomain IIIA, in yellow; subdomain IIIB, in green 

 

Fig. 5. Stereo view of the hydrophobic and hydrophilic 

potentials of the human serum albumin mapped onto a 
surface representation. Blue: area of predicted highest 
hydrophilic potential; yellow: area of predicted highest 
hydrophobic potential 

 

Fig. 6. Ramachandran plot of the refined model of 

human serum albumin (HAS). 98.9% of the residues 
were located in the most favored regions 
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Also, in a comparative study, the correlation of 
predicted affinity of binding with experimentally 

determined associations constants was evaluated 
as a measurement of the precision of the protocol. 

 

Fig. 7. Stereo view of the re-docking of indoxyl sulfate using AutoDock Vina. Top 1 pose (green), top 2 pose (light blue) 

and top 3 pose (dark blue) compared with the co-crystallised ligand indoxyl sulfate (red) viewed from the outside of the 
internal cavity of human serum albumin (HAS) 

Table 1. Interactions of co-crystallized indoxyl sulfate with human serum albumin (Ids-HSA*). For comparison, the 

interactions of the top 3 poses obtained from re-docking experiments are shown 

 
Ids-HSA* X-ray crystal structure Pose 1 Pose 2 Pose 3 

Hydrophobic 
interactions 

Ile388 ✘ ✘ ✘ 

Asn391 ✔ ✔ ✔ 

Phe403 ✔ ✘ ✘ 

Leu407 ✔ ✔ ✔ 

Arg410 ✔ ✘ ✘ 

Tyr411 ✔ ✔ ✔ 

Leu430 ✔ ✔ ✔ 

Gly434 ✔ ✔ ✔ 

Ser489 ✘ ✔ ✘ 

Hydrophilic 
interactions 

Arg410 ✔ ✘ ✘ 

Tyr411 ✔ ✘ ✔ 

Leu430 ✔ ✔ ✔ 
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Structure analysis and visualization were 
performed using PyMOL (https://pymol.org/2/) and 
lipophilic potential was calculated using VASCo, 
version 1.02 [43]. 

3 Results 

3.1 Receptor Refinement and Preparation  

Using state-of-the-art computational techniques, 
including side-chain protein optimization and 
energy minimization, we highly refined the 
structure of Human Serum Albumin (HSA) from the 
experimentally determined X-ray crystal. Figures 4 

and 5 shows that our refined structure of HSA is 
composed of a single chain that contains three α-
helical homologous domains, namely, I (residues 
1-195), II (residues 196-383), and III (residues 384-
585). Each domain is divided into subdomains A 
and B. The protein features a heart-shaped 
structure with an approximate dimension of 80 x 80 
x 30 Å. Studies conducted by Sudlow and co-
workers [44] showed the presence of two distinct 
binding sites. Binding site I is located within the 
core of subdomain IIA including all its six helices 
and also a loop-helix fragment (residues 148-154) 
contributed by subdomain IB.  

Although the pocket that defines this binding 
site contains predominantly apolar residues, two 

Table 2. Predicted affinity (free energy of binding) of drugs docked, using AutoDock Vina, into the refined model of 

human serum albumin (HSA) and experimentally determined association constants (Ka) for the interactions of these 
drugs with the protein. *: 6-methoxy-2-naphthylacetic acid 

Drug Ka (M-1) Log Ka Predicted affinity (kcal/mol) 

Azapropazone 280000 5.45 -8 

Bucolome 1500000 6.17 -7.2 

Furosemide 200000 5.30 -7.4 

Indomethacin 1400000 6.15 -7.1 

Iodipamide 9900000 6.99 -6.2 

Iophenoxic_acid 77000000 7.89 -5 

Phenylbutazone 1500000 6.18 -7.3 

Sulfisoxazole 180000 5.26 -7.3 

Tolbutamide 40000 4.60 -7.6 

Warfarin 340000 5.53 -7.9 

6-MNA* 1200000 6.08 -7 

Clofibrate 760000 5.88 -6.2 

Diazepam 1300000 6.11 -6.9 

Diclofenac 3800000 6.58 -6.6 

Diflunisal 530000 5.72 -7.7 

Etodolac 200000 5.30 -6.8 

Ibuprofen 3500000 6.54 -6.6 

Iopanoic_acid 6700000 6.83 -5.5 

Ketoprofen 2500000 6.39 -7.1 

Naproxen 1200000 6.08 -7.4 
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groups of hydrophilic residues, Tyr150, His242, 
Arg257 and Lys195, Lys199, Arg218, Arg222 are 
also displayed in this pocket. Binding site 1 
allocates a series of therapeutically important 
drugs such as warfarin, phenylbutazone, 
furosemide, among others (Figure 2).  

Drug-binding site 2 comprises the six α-helices 
of subdomain IIIA and predominantly includes a 
largely hydrophobic cleft measuring about 16 Å 
deep and 8 Å wide with a positively charged 
residue positioned near the surface (Figures 4 
and  5).  

Although topologically binding site 2 is similar to 
binding site 1, the former shows some key 
differences. Pocket of binding site 2 presents a 
smaller size, and unlike site 1, only contains a 
patch of hydrophilic residues, including Tyr411, 
Arg410, Lys414 and Ser489 (Figures 4 and 5). 

Binding sites 1 and 2 are distinguishable not 
only in terms of structural architectures but also in 
terms of hydrophobicity profile, which ultimately 
determines the different binding specificities for 
both pockets. Figure 3 shows the structures of 
some drugs that bind site 2 (e.g. diazepam, 
ibuprofen, naproxen, ketoprofen).  

3.2 Refined Structure Validation 

The quality of the refined model was assessed 
using MolProbity, a server that includes the 
generation of Ramachandran plot analysis for 
structure verification. Figure 6 shows that the 
structure possesses 98.9% residues located in the 
most favoured regions of the plot and therefore 
they are stereochemically valid.  

The non-bonded residue interactions were 
further evaluated by means of the ERRAT 
analysis. Our refined structure showed a 94.2% 
ERRAT score. High quality structures generally 
show >85% score [10]. 

The consistency of the folding pattern, the 
geometric quality of the backbone, and the non-
bonded residue interactions of the refined model 
are within the limits established for high quality 
structures. Therefore, the refined model of human 
serum albumin can be reliably used in further 
structural studies. 

3.3 Validation of the Performance of AutoDock 
Vina  

One approach to the validation of a docking 
program is to inspect whether the predicted mode 
of binding (docked conformation) of a ligand within 
the receptor is capable of reproducing the bound 
ligand in the experimental crystal structure. 
Consequently, in order to evaluate the reliability of 
AutoDock Vina, the bound ligand indoxyl sulfate 
was removed from the crystal structure of human 
albumin (PDB ID 2BXH) and re-docked.  

AutoDock Vina had the ability to reproduce the 
positioning of the ligand within the crystal structure 
of human serum albumin as shown in Figure 7. 
Molecular docking of indoxyl sulfate within the 
crystal structure of HSA resulted in an RMSD value 
of <2 Å for the top 3 predicted poses (Figure 7). 
Also, the number and the nature of the interactions 
of these poses were consistent with those of the 
co-crystallized ligand indoxyl sulfate (Table 1). 

3.4 Correlation of Predicted Affinities with 
Experimentally Determined Association 
Constants (Ka) 

Many studies have investigated the interactions of 
human serum albumin with drugs using 
spectroscopic studies such as fluorescence 
quenching [26, 51, 34, 42, 22, 36, 47, 5, 13, 30]. 
These studies have allowed the quantification of 
equilibrium binding of drugs to purified human 
serum albumin and provided an estimate of the 
constant of association (Ka). In a comparative 
analysis, we have subjected some of these drugs 
to computational docking simulations to investigate 
whether exists a potential correlation between 
predicted affinities and experimentally determined 
association constants.  

A highly diverse set of 20 drugs (Figures 2 and 
3) was prepared and all molecules docked into the 
refined model of human serum albumin using the 
docking protocol described in the methods section. 
Predicted affinities were then compared with 
reported experimentally determined association 
constants (Table 2). 

The level of correlation of predicted energy 
binding and experimentally- determined Ka yielded 
by the protocol in which AutoDock Vina was 
incorporated was high.  
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The docking protocol that set the sampling to 
exhaustiveness values of 100 resulted in a 
correlation coefficient of 0.6136 (Figure 8). 

Correlation studies showed that our protocol 
incorporating AutoDock Vina, with the parameters 
described, was capable of distinguishing 
quantitatively strong binders from weak binders, 
i.e. correlated with predicted affinity over a 1000-
fold range in Ka values (Table 2). Therefore, the 
predicted affinity could be regarded as an index of 
experimental binding affinity. 

4 Discussion 

A crucial step in the development of new and 
effective drugs is the understanding of their ability 
to bind human serum albumin (HSA), as this 
protein plays a key role in the Absorption, 
Distribution, Metabolism, Excretion, and Toxicity, 
ADMET, of drug molecules, which ultimately 
determines their biosafety and pharmacokinetics 
profile. Spectroscopic studies such as 
fluorescence quenching have successfully been 
utilized to determine the association constants of 
drug with HSA. However, these techniques are 
costly, time consuming, and, fundamentally, they 
lack the capacity of providing a mechanistic 
interpretation of the interaction at the 
molecular level. 

In recent years, the meteoric rise in computing 
power has been harnessed trying to streamline the 
drug discovery and development process by 
means of significantly reducing the need of 
chemical and biological resources, and by filtering 
or eliminating molecules with undesirable ADMET 
properties to select the most promising 
candidates [24].  

The availability of the X-ray crystal structure of 
HSA (PDB ID 2BXH) [15] allowed us to develop a 
computer protocol in an attempt to characterize, at 
the molecular level, the interactions of drugs with 
this protein. Although particularly this X-crystal 
structure of HSA deposited in the Protein Data 
Bank possessed a relatively high resolution (2.25 
Å), it is very common that atoms, side chains, or 
even whole residues are not included in the protein 
structure.  

Furthermore, atomic clashes, overall 
inconsistencies in the folding pattern, and high 

potential energies associated to their geometries 
are common problems in most X-ray structures. To 
address these issues, and previous to perform 
molecular docking simulations, we subjected the 
X-ray model of HSA to a phase of thorough 
structural refinement using the most advanced 
computational techniques (see Methods section). 
We obtained a highly refined structure that 
represented the typical geometry of the HSA and 
which has been assumed to correspond to the 
physiologically relevant state.  

The structure of HSA revealed the presence of 
three homologous domains (I, II and III), which 
consequently showed similar topology and 3D 
architecture. Each of the three domains is further 
divided into subdomains (A and B). The result of 
various internal and global geometry evaluations, 
to which the refined model of HSA was subjected, 
demonstrated its high geometric consistency and 
robustness.  

The finding that 98.9% of the residues of the 
refined HSA model were located within most 
favored areas of the Ramachandran plot 
suggested excellent stereochemical quality. Also, 
the outcome of the analysis of non-bonded residue 
interactions yielded an ERRAT score of 94.2%, 
which is well above the lower limit (85%) accepted 
for high-quality structures. Altogether, these tests 
demonstrated the high structural quality of the 
refined model of HSA. 

 

Fig. 8. Correlation between predicted affinities with 

experimentally determined association constants (Ka) 
for drug-humans serum albumin (HSA) interactions. 
Predicted affinity was estimated by docking drugs into 
the refined model of HSA using AutoDock Vina 

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1123–1135
doi: 10.13053/CyS-22-4-3085

Computational Modeling of the Interactions of Drugs with Human Serum Albumin (HSA) 1131

ISSN 2007-9737



Although many studies have successfully 
conducted docking studies in which the search 
space spans the whole protein receptor [53, 19, 
20], to reduce the computational cost, we restricted 
the search space the regions of HSA reported to 
be active in the binding of drugs.  In all molecular 
docking simulations carried out in this study, two 
search spaces were defined in such a way that 
they covered completely the regions reported to 
encompass drug-binding site 1 and drug-binding 
site 2 [15]. Accordingly, drugs were docked into 
their reported binding site. 

Firstly, we attempted to evaluate if AutoDock 
Vina predicted correctly the binding position of 
indoxyl sulfate in the experimental crystal structure 
of HSA (PDB ID 2BXH). This docking program 
predicted accurately the mode of binding of indoxyl 
sulfate within the crystal structure and, 
interestingly, the lowest energy conformations 
corresponded to the lowest RMSD values. This 
result suggested that AutoDock Vina could identify 
reliably the correct pose of a ligand within a 
receptor and thus may prove useful in molecular 
docking studies aimed at the characterization of 
the mechanism of drug-protein interaction. 

Spectroscopy fluorescence quenching studies 
have reported the affinity of a series of drugs 
towards human serum albumin in terms of their 
association constants (Ka) [51, 52]. To investigate 
if there is a correlation between predicted affinities 
(free energy of binding) computationally calculated 
and experimentally determined Ka values, a set of 
20 drugs were docked into the refined model 
of HSA. 

Our computational studies showed that 
AutoDock Vina possessed a high capacity to 
correlate predicted affinities with in vitro 
experimentally calculated association constants. 
Interestingly, this capacity augmented as the 
“exhaustiveness” parameter was increased (data 
not shown). The correlation coefficient reached a 
maximum of 0.61 when the “exhaustiveness” was 
set to 100. Similar studies (Table 3), including 
QSAR (quantitative structure-activity relationships) 
and protein–protein-docking, have suggested that 
a coefficient correlation of 0.6, or better, ensures 
structural and functional validity of models. 

The promiscuity of HSA to bind a wide range of 
drugs is a crucial feature of its biological function. 
The interaction between small molecules and 

proteins is usually characterized by the value of 
free energy of binding [26, 2]. The free energy is 
the thermodynamic quantity directly related to the 
experimentally measurable value of affinity 
constant (e.g. Ka). Therefore, these results 
suggested that predicted affinity by AutoDock Vina 
could be considered as an index of the 
experimental binding affinity (i.e. strength of non-
covalent drug-HSA interaction). 

Our findings showed consistency between 
computationally predicted molecular interactions 
with in vitro reported data, thereby confirming the 
stereochemical robustness, functional validity of 
the model and a reliable molecular docking 
protocol. Therefore, our computational protocol 
may be useful in the conduct of molecular 
modelling studies and to gain a better 
understanding of the molecular mechanism of 
interaction of HSA with drugs. 

5 Conclusions 

Despite the enormous advancements in the 
development of new drugs, bringing a new drug 
product to the market is still extremely expensive 
and time consuming. Interactions of drugs and 
drug candidates with human serum albumin have 
attracted great interest in the biomedical sciences. 
The nature and magnitude of these interactions are 
key determinants to the safety and efficacy of 
drugs and therefore they should be considered in 

Table 3. The correlation coefficient values for 

experimental and predicted binding affinities using in 
silico tools, including molecular docking and protein–
protein docking techniques 

In silico study 
reference 

Coefficient of 
correlation 

[2] 0.67 

[40] 0.72 

[9] 0.48 

[25] 0.61 

[46] 0.42 

[50] 0.56 
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the design process. Although in vitro protocols 
incorporating spectroscopic methods have 
historically been used to evaluate such 
interactions, they are economically demanding and 
also time intensive. Moreover, importantly, 
spectroscopic methods frequently lack the atomic 
resolution needed to provide a rational and 
mechanistic interpretation to the interactions at the 
molecular level. Therefore, there still remains a 
pressing need to incorporate new technologies to 
speed up the evaluation of drug-human serum 
albumin interactions, and thus to potentially 
streamline the drug discovery process. 

The computer-based method described here 
incorporated a molecular docking approach to 
investigate structural aspects of the interactions of 
human serum albumin with a diverse set of drugs. 
Using state-of-the-art computational techniques, 
an exhaustive refinement protocol was applied to 
obtain a high quality, three-dimensional structure 
of human serum albumin. The refined structure 
was used to study drug-human serum albumin 
interactions using the docking program AutoDock 
Vina. Our docking protocol, in re-docking 
experiments, was capable of reproducing 
accurately the positioning of a co-crystallized 
ligand within the binding site of the X-crystal 
structure of human serum albumin. In addition, our 
protocol was capable of correlating, with high 
accuracy, predicted affinities (free energy of 
binding) with experimentally determined 
association constants. 

We believe based on this study, that our 
computational-based approach incorporating 
AutoDock Vina may prove useful in understanding 
the interactions of human serum albumin with 
drugs. This may contribute to streamline the drug 
development process. 
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