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Abstract. Due to the increasing demands of quality 

products, efficient monitoring systems in the current 
control and operation of industrial processes are 
essentials. However, in particulate processes as cane 
sugar crystallization, accurate, inexpensive and suitable 
sensors for the online monitoring of key process 
variables are not available. In this work, an alternative 
using the image analysis of micrographs captured in 
batch cooling crystallizer is presented. The propose is 
based on a combined treatment between fractal analysis 
and conventional binarization techniques, obtaining a 
normalized fractal index (NFI) that allow the dynamic 
monitoring of crystal mean diameter, D(4,3). In order to 
evaluate the monitoring system, the crystallizer was 
operated at different cooling profiles, finding that the 
methodology proposed can be used as an alternative 
technique, inexpensive and easy to implement, for 
monitoring crystal growth. 

Keywords. Cane sugar crystallization, monitoring 

crystal growth, image fractal analysis. 

1 Introduction 

Monitoring and control of the crystallization 
process is of great interest in different chemical 
industries as pharmaceutical, food production 
industries, among others. Particularly, the cane 
sugar production is one of the most important 
industrial processes around the globe. The cane 
sugar crystallization is a solid-liquid separation, 
where the solute in a liquid phase is transferred to 
a solid phase, which leads to crystal formation. The 
quality of the final product is determined by the size 
and shape of the crystals.  

Therefore, monitoring and control of 
crystallizers is one of the biggest challenges the 
sugar industry faces. For this reason, extensive 
studies have focused on the design of strategies to 
control the crystallization process, including the  
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development of mathematical models [3, 12, 
15, 19]. 

For instance, Bohlin and Rasmuson [12] 
proposed a general mathematical model to 
describe crystals size growth, and through 
numerical simulations determined that the cooling 
profile control is not enough to control of crystal 
size. This is due to the complex kinetics of crystal 
growth, which is affected by different factors, such 
as pressure and agitation. Later on, Tahal [19] 
proposed a more complex model, which 
considered the dispersion of the crystal growth rate 
in a vacuum batch crystallizer. Experimental data 
was used to the parameter adjustment, allowing 
the prediction of crystals size growth rate. In 
addition, by means of numerical simulations, they 
proposed the implementation of a PID 
feedback controller.  

Furthermore, Quintana et al., [15] proposed a 
dynamic model to estimate the kinetic parameters 
of the sugarcane crystallization process. An 
agitation velocities range (50 to 600 min-1) and 
different cooling profiles (step, negative 
exponential, linear and cubic) were considered to 
evaluate the sugar crystals growth, finding that the 
effects these parameters have over size and 
crystals distribution. Recently, considering a 
population balance model Damour et al. [3, 4] 
proposed a multivariable control scheme for 
monitoring crystals concentration. The controller is 
adapted to a state observer, which allows 
estimating the uncertain model parameters. 

Their results were complemented using 
industrial data, ensuring that the controller allows 
the concentration monitoring, even under external 
disturbance. Despite these results, the practical 
application of mathematical models is limited since 
they do not describe in detail the existing transport 
phenomena interactions. Therefore, it is not 
possible to precisely predict the growth and 
crystals size distribution.  

Thus, in the last years, monitoring crystals 
growth by means of captured images analysis 
during the process (i.e., straight from the sugar 
crystals solution with uncrystallized mixture) has 
increased, allowing visually identify the dynamic 
advance of the crystals size.  

In this sense, De Anda et al. [9] reported the 
image acquisition using high-speed cameras and 

electronic microscopes can be coupled to a 
feedback controller for crystal size control.  

Wang et al. [21] performed the measurement of 
growth rates of β L-glutamic acid crystals using 
image techniques and on-line analysis in a batch 
crystallization. Afterwards, Velázquez-Camilo et al. 
[13] proposed the application of detrended 
fluctuation analysis (DFA) to study patterns in cane 
sugar crystals growth related to crystal mean 
diameter (D(4,3)); their results showed that the 
mass fractal dimension (Df ) exhibits positive 
correlations with D(4,3), which can be used for 
monitoring of  crystals growth. Moreover, 
Velázquez-Camilo et al. [14] analyzed the 
lacunarity index in sugarcane micrographs 
identifying patterns that allow quantifying the 
crystal mass formed (CMF). On the other hand, 
Zhang et al. [2] employed the wavelet transform to 
analyze images of NaCl crystals finding patterns to 
the evaluation the crystal distribution during 
the process. 

Previous results show that the image analysis 
is a potential tool for monitoring of crystals growth. 
However, the methodologies have not been 
standardized, also they not have been assessed at 
different crystallizer operating conditions. Then, in 
this paper an unconventional image analysis for 
monitoring sugar-cane crystal growth in a 
crystallizer batch (pilot plant scale), operated to 
different cooling temperature profiles is proposed.  

Image analysis methodology considers 
information obtained by image processing using 
binarization and fractal analysis. In order to 
evaluate the fractal descriptor performance for 
crystals monitoring, experimental tests were 
carried out under various operation conditions of 
the process. The results indicate that the fractal 
descriptor provides useful information for the 
monitoring of crystals growth through direct 
correlation between the fractal index and D(4,3). 

2 Experimental Setup 

In this section, the equipment and experimental 
operational conditions for sugarcane crystallization 
is described. 

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1147–1155
doi: 10.13053/CyS-22-4-3100

Armando Campos-Dominguez, Yessica I. Ceballos-Ceballos, Sergio A. Zamora-Castro, et al.1148

ISSN 2007-9737



2.1 Batch Crystallizer 

The experimental tests were performed in a 
stainless steel batch crystallizer (9.2 L) with 
heating-cooling jacket (4.8 L) at pilot plant scale 
(see Figure 1). 

The agitation engine can be adjusted at 
variable speed, include an optical sensor with a 
digital tachometer. The micrographs were obtained 
using a trinocular Cole-Parmer microscope with 
digital camera integrated (National Instruments 
Inc.). A Supervisory Control and Data Acquisition 
interface was developed in LabVIEW software. 

2.2 Saturated Solution 

The saturated solution for sugarcane 
crystallization was prepared at 70 °C, according to 
the solubility data obtained experimentally by 
Bolaños-Reynoso [5]: 

70
100

theoretical
C

theoretical

Brix
C

Brix






, (1) 

where °Brix is obtained by: 

°Brix = 0.0005 T2 + 0.1566 T + 63.021. (2) 

2.3 Operation Conditions 

First, the solution is heated at 70 °C, where it is 
seeded 1.85 g of crystal nucleus of 150 µm 
average size. The agitation speed is adjusted to 
250 min-1. Each experiment lasted 240 min (from 
the seeding to the batch unloading), considering 
three cooling profiles described as follow:  

– The natural temperature profile consists in 
cooling the solution from 70 °C to 40 °C, by 

 

Fig. 1. Experimental set-up of batch crystallizer at pilot plant scale and data acquisition system 
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constantly providing cooling water at 40°C to 
the jacket during all the crystallization process.  

– The lineal temperature profile leads from 70 °C 
to 40 °C by an indexed linear function (Eq. 3) 
during the operation time (240min): 

T = -0.002083t + 70. (3) 

– The cubic temperature profile is guided by a 
cubic equation (Eq. 4). The drop-in 
temperature is slow requiring 4 hours to 
change from 70°C to 40°C: 

T= -1x10-11 t3 + 6.2x10-8 t2 - 0.0009 t + 70, (4) 

where T is the temperature crystallizer in °C and t 
is the process time in seconds. For each cooling 
temperature profile, the experiments were 
performed in triplicate. 

2.4 Micrographs Acquisition 

The micrographs acquisition is performed, taking 
saturated solution samples (5 mL) at 15 min 
intervals. For each sample four images were 
captured to image resolution of 1200x1200 pixels 
in a*.png format. In Figure 2, a micrograph 
sequence for the experimental test with linear 
cooling profile is shown. 

Notice that crystals growth is not exhibited a 
regular pattern. Subsequently, the crystals are 
separated using a basket centrifuge at 4000 min-1 
for 10 min. and dried in chamber with forced 
convection at 60 °C for 36 hours, so the CMF 
is obtained. 

3 Image Processing 

3.1 D(4,3) Determination 

A standard parameter to determine crystal size is 
the crystal mean diameter, D(4,3), which 
traditionally is obtained by the calculating of 
perimeter for each crystal in an image. 

For this end, we used a Vision Assistant 2012 
of National Instruments Inc. software. Once the 
perimeters are obtained, data is exported to the 
DTC Adq-Im Ver. 1.0 software where the D(4,3) 
and its corresponding standard deviation (S(4,3)) 
were determined [5]. 

3.2 Micrographs Binarization 

The image binarization is a transformation of pixels 
to scale 0 and 1 for white and black colors, 
respectively. As an index of binarization, the pixel 
average (PA) is calculated as: 

  1 1 ,

1 N M

A i j i j
P =1- A

NM
, (5) 

where Aij are the pixel values. Consider the linear 
cooling profile, Figure 3 shows micrographs at 
t=150 min using different threshold intensities 

 

Fig. 2. Micrograph sequence of crystal growth using 

linear temperature profile, a) 0 min, b) 60 min, c) 105 
min, d) 150 min, e) 195 min and f) 240 min 

 

Fig. 3. Image binarization for linear temperature profile 
at t=150 min considering different threshold, a) 0.55, b) 
0.65, c) 0.75, and d) 0.85 
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(0.55, 0.65, 0.75, and 0.85), where for 65 % 
threshold the crystal contours in the image 
are highlighted. 

3.3 Fractal Analysis 

Image fractal analysis has been applied to a large 
diversity physical and chemical processes [1, 6, 7, 
10, 13, 18, 21], providing useful correlations that 
contribute to the characterization of such 
processes. Range rescaled (R/S) analysis is one 
of the most traditional method in engineering 
process [8, 17, 20]. The description of the two-
dimensional R/S method is described in [8]. So, for 
convenience in this work a brief description is also 
presented. First, it is necessary to transform the 
image to gray scale, assigning a numerical value 
to each pixel (i.e., 0 to 256).  

This leads to a NxM-dimensional matrix. In 

order to analyze different scales, s∈⟦0,1⟧ 
subsamples of NkxMk-dimensional (Nk=sN and 
Mk=sM) are considered. Next, for each subsample 
the re-escalated range is computed as: 

( / )SR S 

, ,
11

1 1 1 111

1
max ( ) min ( )

kk

kk

j ji i

l n S l n S
i Ni N

l n l nS j Mj M

y y y y
   

     

 
    
 

  , 
(6) 

where Sy  and S  are the average and standard 

deviation of the subsample, respectively, such as: 

The re-scaled range must be calculated in a 
sufficiently large number of subsamples of different 

sizes s. For a certain domain min max( , )s s s
, the 

statistic R/S follows a power law, such as: 

2H

S( R / S ) as , (9) 

where a is a constant and H is the scaling Hurst 

exponent, which is a measurement of the fractal 

sequence correlations. A log-log graph (R/S) as a 
function of the scale squared, generates a line with 
slope H. The interpretation of the parameter H can 
be related to the roughness of the image surface 
by fractal dimension (Df=3-H), where the closer H 
to 0, the rougher image and the closer H to 1, the 
smoother the corresponding texture [8]. 

4 Results and Discussion 

Figure 4a shows the proposed cooling profiles for 
the experimental development (i.e., natural, linear 
and cubic), where it can be observed that the 
natural profile reaches 40 °C in 120 min and it 
remains constant, whereas the linear and cubic 
profiles were programmed to reach 40 °C in 240 
min. As expected, each temperature profile 
exhibits a different crystal growth. Consider four 
images for each sample, Figure 4b shows the 
average D(4,3) as a function of time, indicating that 
in steady state a larger value is reached for the 
linear profile with respect to the cubic profile. This 
result is consistent with that reported by Quintana-
Hernandez et al. [6]. 
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Fig. 4. a) Cooling temperature profiles, and b) D(4,3) 
calculate by Vision Assistant software 
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Figure 5a shows the Miers diagram for 
sugarcane crystallization, where four zones can be 
identified: i) unstable zone; ii) first metastable zone 
or labile zone where the nucleation is the kinetic 
dominant; iii) second metastable zone where the 
crystal growth is the most important process; 
iv) unsaturated zone where is not possible the 
crystal formation.  

Experimental data corresponding to Figure 5b 
is joined in Miers diagram supporting that linear 

profile exhibit greater crystal growth than cubic 
profile; also, it is observed that natural profile leads 
to nucleus formation, which is undesirable in cane 
sugar crystallization process. Generally, D(4,3) 
parameter is used to determine the crystal growth, 
which is obtained manually.  

Specialized equipment for calculates the D(4,3) 
is available such as, microscopy, electro zone 
sensing and low angle laser light scattering, 
however these equipment’s are very expensive 
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Fig. 5. a) Miers diagram for sugar cane crystallization process for three temperature profiles, and b) average binarized 

pixels for image sequences considering different operation conditions 
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Fig. 6. R/S analysis for cane sugar images captured during crystallization process, a) linear, b) natural and c) cubic 

temperature profiles 
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and difficult to implement insitu at the industrial 
level.  

In this sense, it is necessary to develop more 
efficient methods for crystal monitoring [5,11,16]. A 
proposal can be quantifying of the number of pixels 
in the crystal images captured online during the 
crystallization process. For this, average pixels 
(PA) calculation from binarized images is proposed.  

Considering the three cooling profiles, Figure 
5b shows the average pixels calculated by means 
of micrographs captured in periods of 15 min, 
where it can be seen that PA is related to the 
crystals emergence, but it is not possible to 
distinguish if crystal presence is due to growth or 
nucleation. In addition, by adequate binarization of 
the image, the fractal analysis can provide an 
index, which can be correlated to crystal size. This 
parameter is qualitative, but can be used for 
indirect monitoring of crystals [14]. Using images at 
=60, 120, 180 and 240 min, Figure 6 shows the 
application of R/S analysis to cane sugar crystals 
images, where it is observed that scaling 
exponents exhibit dynamic variations for each 
temperature cooling profile, i.e., R/S analysis 
provide information about crystal growth. 

In Figure 7 the average fD  values for three 

experiments is presented. Notice that, although the 
fractal dimension provides information about 
crystal formation, it is not possible to determine a 
direct correlation with D(4,3). Complementing the 

obtained information, PA from the binarization, and 

fD  from the fractal analysis, a mixed parameter is 

proposed that considers the information from both 
analyses. For such, the fractal dimension and 
average pixels are normalized as 

f f f ,maxD D / D , and A A A,maxP P / P  where 

f ,maxD  and A,maxP  are the highest values. Thus, 

the normalized fractal index is obtained as 

 f ANFI D 1 P    , where [0,1]  is a 

constant value. 
Figure 8 shows the comparison between NFI 

and D(4,3), where it can be observed that for all 
cases the NFI satisfactorily adjusts the D(4,3) 
tendency.Calculating the Pearson correlation, a 
correlation degree is higher than 85% is obtained 
for all cases, which indicates that the NFI can be 
used as a parameter for indirect monitoring of 
crystals size growth in cane sugar production. 
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Fig. 7. Fractal dimension dynamic at different operation 

conditions 

 
 

Fig. 8. Normalized fractal index versus crystal mean 

diameters, a) linear, b) natural and c) cubic temperature 
profiles 
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5 Conclusions 

In this work, a combined method between R/S 
analysis and binarization images to analyze 
micrographs captured in pseudo-line for cane 
sugar crystallization process is proposed. Results 
indicate that fractal index can be used as an 
indirect monitoring variable, which allows tracking 
crystals size growth despite the cooling trajectory 
or supersaturation concentration implemented. 
Experimental tests to different operation conditions 
show direct correlations between normalized 
fractal index and D(4,3), suggesting that the 
proposed methodology can be used for controlling 
and monitoring crystal growth. 
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