
Efficiency of Phase Unwrapping and Image Filtering Algorithms
Implemented in a Fpga Applied on Holographic Interferometry

Víctor Manuel Juárez Núñez, Darwin Mayorga Cruz, Álvaro Zamudio Lara,
J. Jesús Escobedo Alatorre

Center for Research in Engineering and Applied Sciences,
Mexico

{darwin, victor.juarez}@uaem.mx

Abstract. The evaluation of efficiency of algorithms

implemented in a FPGA, which are applied on phase
unwrapping and image filtering for holographic
interferometry performing, is here presented. A phase
unwrapping linear algorithm was used in holograms
obtained by holographic interferometry using the phase-
shifting method; Fourier Transform and Bilateral filtering
processes were also applied on 1024x1024 holographic
images. Phase unwrapping operations combined with
Bilateral image filtering implemented in the FPGA were
19 times faster than using an ARM processor, and 12
times faster when Fourier image filtering is used instead.
Hardware capacities of FPGA as combined with high-
level programming can be an alternative to improve
heavy computing processes like those involved in digital
holographic microscopy, for example.

Keywords. FPGA circuits, noise filtering, phase

unwrapping, phase-shifting holography.

1 Introduction

Owing to the increasing necessity of new
technology giving solutions to several problems
arising on industrial or scientific environment in an
efficient and economical way, electronic devices
able to perform specific tasks in the shortest time
adding developing and cost advantage are more
frequently requested.

At present, FPGA (Field Programmable Gate
Arrays) have such advantages as well as their
capacity for data processing acceleration [1], being
another suitable characteristic for widely used
central processing units (CPU) or graphics
processing units (GPU). FPGA is a low cost and
reconfigurable device feasible to perform

subsequent updating, parallel processing, code
portability, high clock rate among other tasks [2].
Such devices are low and high-level
programmable [3, 4, 5] which allows the
implementation of algorithms that reduce
processing time as compared with PC based
systems. FPGA are being more demanded for
applications in communications, image and video
processing [6], digital signal processing and fields
like medicine, bioinformatics and research on
new materials.

On the other hand, OpenCL (Open Computing
Language) is an open standard, general-purpose
programming multiplatform, which consists of a
heterogenic CPU, GPU and FPGA informatics
devices collection, sometimes manufactured by
different suppliers; then OpenCL is a parallel-
programming platform that is also portable among
other advantages.

Standard OpenCL defines a datatype, data
structure and functions set in languages like C and
C++; OpenCL is an API (application programming
interface), the code is executed in an OpenCL
“Device” which is not the same device as the CPU
“Host”. It means it uses a processor that
coordinates kernel executions (C code functions-
Host side), and one or more devices able to
execute the OpenCL C code (Device side).

In this work, the evaluation of a FPGA
DE1_SoC as an image-processing hardware tool
is presented; being OpenCL a C99 language-
programming version [7], it was used as a high-
level programming tool in order to accelerate the
processing time for filtering application during
holographic interferometry registering.

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 39–46
doi: 10.13053/CyS-23-1-3140

ISSN 2007-9737

2 FPGA-OpenCL Tools

2.1 Hardware-Software

A FPGA that supports OpenCL was used as
hardware; it is equipped with a Hard Processor
System (HPS), which is an ARM Cortex-A9 Dual-
Core at 800 MHz, 3GB DDR3 SDRAM memory;
additionally contains a FPGA Cyclone V SoC from
Altera family with 4,450 kb of embedded memory,
85K logical programmable elements, 64 MB off-
chip SDRAM, and VGA among other elements.
The software consists of OpenCL for application of
image filtering and for device performance
improving. The execution of an OpenCL is realized
in two different ways: on one hand the Kernel
program is executed in one or more OpenCL
devices (Device), and on the other hand a
manager program is executed in the Host (Host-
program) being in this case the ARM processor of
the motherboard. Host program was written in C
code (programming language used in this work)
and is the serial part of an application, responsible
for data managing and algorithm flux controlling;
the Kernel is the parallel part of the application to
be accelerated on a device, as is done on a multi-
core CPU, GPU or FPGA [6].

2.2 Filters

Sometimes during image acquisition process, the
quality of stored images needs to be improve
because of factors inherent to the process like
mistakes on sensors, imperfections on optical
lenses or bad focusing among others.

That is why is convenient to highlight some of
the graphic information and so a pre-processing,
which consists of an optimization of the image
before the definitive processing, becomes
necessary. Image improvement ways may be
divided in two big categories: spatial domain
methods and frequency domain methods.

The term “spatial domain” refers to the same
image plane and is based on direct manipulation of
pixels of the image; the spatial filtering is used for
noise suppressing or image smoothing.

Frequency domain techniques are based on
Fourier Transform modification of an image; a
Bilateral Filter is an advanced one that preserves
the borders of the image: the value of a pixel is

calculated on a weighted average of neighborhood
pixels with similar values. On more uniform
regions, neighborhood pixels are similar among
them and the filter acts eliminating small
differences given by noise; when the central pixel
is located in a dark-bright zone border, the filter
replaces its value for the bright-pixels average,
discarding the dark ones. In other words, when
fixes in a dark pixel, the dark are averaged and the
bright ones are discarded. Such procedure allows
keeping the borders.

One of the most elemental ways to remove
noise is by a Gaussian convolution, which is the
fundamental concept for a Bilateral Filter; an image
filtered by Gaussian convolution is given by:

𝐺𝐶[𝐼]𝑝 = ∑ 𝐺𝜎(‖𝑝 − 𝑞‖)

𝑞∈𝑆

𝐼𝑞 , (1)

where 𝐺𝜎(||p−𝑞||) denotes the Gaussian Kernel:

𝐺𝜎(‖𝑝 − 𝑞‖) =
1

(2𝜋𝜎2)
𝑒𝑥𝑝

(
‖𝑝−𝑞‖2

2𝜎2)
, (2)

||p−𝑞|| is the spatial distance and 𝜎 the parameter
that defines the extension of the window that scans
the whole image to be filtered. The Bilateral Filter
may be written as:

𝐵𝐹[𝐼]𝑝 =
1

𝑊𝑝
∑ 𝐺𝜎𝑆𝑞∈𝑆 (‖𝑝 − 𝑞‖)𝐺𝜎𝑟(‖𝑝 −

𝑞‖).
(3)

Here the Wp term is a normalization factor to
assure that weighted average of pixels is equal to

1 inside the window, [𝐼] 𝑝 is the value of image at

Fig. 1. OpenCL Programming Model [6]

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 39–46
doi: 10.13053/CyS-23-1-3140

Víctor Manuel Juárez Núñez, Darwin Mayorga Cruz, Álvaro Zamudio Lara, J. Jesús Escobedo Alatorre40

ISSN 2007-9737

position p, the parameters 𝜎𝑠 and 𝜎𝑟 specify the
filtering quantity for the image.

Equation 3 represents a normalized weighted

average, where 𝐺𝜎𝑠 is a special Gaussian
weighting that diminishes the influence of distant
pixels, a Gaussian rate to low influence of q pixels
when their intensity values differ from Ip [8, 9].

The Fourier Transform is a process that picks
data samples and generates its frequency content;
the output of Fourier Transform contains all of its
input. A process known as the Inverse Fourier
Transform may be used to recover the original
signal, is a common one process used in several
fields and is wide used in many programs where
this procedure works as an equalizer, a filter, a
compressor, etc. The Fourier Transform (𝑢) for a

single variable continuous function (𝑥), is
defined as:

𝐹(𝑢) = ∫ 𝑓(𝑥)
∞

−∞
𝑒−𝑗2𝜋𝑢𝑥𝑑𝑥, (4)

where 𝑗 = √−1 and u is the frequency in radians.

Reciprocally, as (𝑢) function is given, (𝑥) function
may be obtained by means of the Inverse Fourier
Transform:

𝐹(𝑥) = ∫ 𝐹(𝑢)
∞

−∞
𝑒𝑗2𝜋𝑢𝑥𝑑𝑢. (5)

Although this formula allows to process 𝑂 digital
data, with an N finite sample number, there is a
disadvantage in this method because, as the

number of (𝑁2) points increases, the processing
time is also increased to a power of 2. For this
reason, an alternative process known as the
discrete Fourier Transform (DFT) was developed
to estimate the Fourier Transform. The Cooley-
Tukey algorithm takes advantage of the cyclic
nature of Fourier Transform and solve the problem
with (𝑁log𝑁), by dividing DFT in smaller DFT’s.
The nucleus on this Fast Fourier Transform (FFT)
consists of the “butterfly operation”; the operation

Fig. 2. Butterfly Operation [11]

Fig. 3. Fourier Transform Filter [11]

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 39–46
doi: 10.13053/CyS-23-1-3140

Efficiency of Phase Unwrapping and Image Filtering Algorithms Implemented in a Fpga Applied on... 41

ISSN 2007-9737

is realized on a pair of data samples each time,
which flux graphic is given in Fig. 2. The name of
this operation is given because each segment
looks like a butterfly.

The basic FFT algorithm is performed on one-
dimension data. To obtain the FFT of an image, a
FFT for a row and a column is taken. Then the FFT
is first calculated for each row, this is transposed
and a FFT is calculated again for such result. This
is done to get a faster access to the memory, as
the data are stored on the main row. If
transposition is not done, an alternated memory
access is produced which lows performance rate
considerably as the image size increases. Once

the Fourier Transform 𝐹(𝑥,𝑦) of image 𝑓(𝑥,𝑦) is

obtained, it will be multiplied by a 𝐻(𝑢,𝑣) filter (a
mask which may be used as a high-pass or low-

pass filter); in such a way we will obtain a 𝑔(𝑥,𝑦)
function (Fig. 3) [10-11].

As a result we obtain 𝐹−1(𝑥,𝑦)=𝐹(𝑥,𝑦)∗𝐻(𝑢,𝑣),
which is the Inverse Fourier Transform calculated

for final function 𝑔(𝑥,𝑦).

2.3 Phase Unwrapping

A conventional optical holographic interferogram
can be obtained by a method commonly known as
Holographic Interferometry (HI); the interferogram
is generated by superposition of two coherent
waves, which have been dispersed from an object
previously illuminated by a coherent light beam
(i.e. a laser beam). Such an object may be
subjected for two different physical states, and two
subsequent interferograms can be obtained for
each state [12]. An interferogram carries
information about phase change between the
waves in the form of dark and bright fringes. The

interference phase Δ𝜑 is usually calculated from
three or more interferograms with a phase-shift
among them. Determination of the phase is the key
of HI because any information about the physical
change to be measured (mechanical thickness or
deformation, pressure, temperature, density, etc.)

is contained into Δ𝜑.
For this purpose, a standard algorithm

developed for conventional HI or similar methods
(like Electronic Speckle Pattern Interferometry) can
be applied:

𝐼(𝑥, 𝑦) = 𝐴(𝑥, 𝑦) + 𝐵(𝑥, 𝑦) cos(∆𝜑), (6)

which is the general formula for the optical
interference pattern intensity I(x,y). Next step

consists on determination of phase Δ𝜑. For 4

different captures (i.e. images) with a common 𝜋/2
phase-shift from each other (externally induced
during the process), corresponding interference
intensities are:

𝐼1(𝑥, 𝑦) = 𝐴(𝑥, 𝑦) + 𝐵(𝑥, 𝑦) cos(∆𝜑),

(7)
𝐼2(𝑥, 𝑦) = 𝐴(𝑥, 𝑦) + 𝐵(𝑥, 𝑦) cos(∆𝜑 + 𝛼),

𝐼3(𝑥, 𝑦) = 𝐴(𝑥, 𝑦) + 𝐵(𝑥, 𝑦) cos(∆𝜑 + 2𝛼),
𝐼4(𝑥, 𝑦) = 𝐴(𝑥, 𝑦) + 𝐵(𝑥, 𝑦) cos(∆𝜑 + 3𝛼).

From these registers, the corresponding phase
is calculated as:

∆𝜑 = 𝑎𝑟𝑐 𝑡𝑎𝑛 (
𝐼2−𝐼4

𝐼3−𝐼1
). (8)

At this point one detail must be considered
which is the fact that, for periodic functions as sines
or cosines, the calculated phase distribution is not
defined for 2π additive integers as can be seen in
next example:

cos(∆𝜑) = cos(∆𝜑 + 2𝜋𝑛) ; 𝑛 ∈ 𝑍, (9)

which means that every phase distribution
calculated with inverse trigonometric functions like
arc tan, contains 2π jumps in such positions where

extreme Δ𝜑 values of −𝜋 or 𝜋 can be obtained; then

Fig. 4. Phase unwrapping; a) wrapped phase or

interference phase in 2π modules (2(x)); b) step

function (jump(x)); c) unwrapped interference phase

(2(x)+jump(x))

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 39–46
doi: 10.13053/CyS-23-1-3140

Víctor Manuel Juárez Núñez, Darwin Mayorga Cruz, Álvaro Zamudio Lara, J. Jesús Escobedo Alatorre42

ISSN 2007-9737

calculated phase along a line taken on its
corresponding image will look similar to a saw-
tooth function (Fig. 4a).

Any method introduced for these 2π phase
jumps correction is denominated demodulation,

continuity or more commonly, phase unwrapping
[12]; the correction of such 2π jumps must
introduced a continuous phase distribution. Phase
unwrapping is a special topic on optical
interferometry and related methods and then

Fig. 5. Interferometric holograms with 2 phase-shifts.

b)

Fig. 6. a) Wrapped phase; b) unwrapped phase with unwrap mistakes

Fig. 7. Wrapped and unwrapped phase using OpenCL Bilateral Filter

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 39–46
doi: 10.13053/CyS-23-1-3140

Efficiency of Phase Unwrapping and Image Filtering Algorithms Implemented in a Fpga Applied on... 43

ISSN 2007-9737

several different unwrapping algorithms have been
developed for such purpose.

Here we will only refer to the so called path-
dependent unwrapping algorithm [12]; first a one-
dimensional interference phase distribution is
considered where difference between adjacent

pixel phase values DIFF=Δ(𝑛+1)−Δ𝜑(𝑛) is
calculated.

If DIFF< -π, all phase values from (n+1) pixel
and so forth are increased in 2π; however if
DIFF>+π, 2π is subtracted from all phase values
starting at number n+1. If any of these conditions
is valid, phase value does not change. Practical
implementation of this procedure is firstly realized
calculating a step function, which accumulates all
the 2π jumps for every pixel (Fig. 4b).

The continuous phase distribution is thereupon
calculated adding the step function to the
unwrapped phase distribution (Fig. 4c). Such a
one-dimensional unwrapping scheme may be
transferred for two-dimensions; one possibility is
firstly to unwrap a row of the two-dimensional with
the algorithm previously described. The pixels of
this unwrap row can be considered now as starting

points for subsequent columns unwrapping, that is,
unwrapping begins by rows, an inverse operation
on these values is applied, columns will become
files and finally unwrapping will be applied on these
last values. The unwrapping procedure is always
the same for all metrology methods that generates
saw-tooth images [12].

3 Results

Although HI holograms can be processed to obtain
the interference phase by means of the phase-shift
method, sometimes resulting interference phase
images were noisy due to several factors during
their capture, and so two filtering methods,
Bilateral Filter [9] and Fourier Transform [11] were
applied on 1024x1024 pixels images, which is the
first goal of our work.

As a first step we are presenting results obtain
by filtering; we have four images obtained by HI,
each of 24 bits and 499x499 pixels that were
loaded on the FPGA (Fig. 5). Then the phase-shift
algorithm written in C language, which works
linearly on each row pixels, was used to obtain the

Fig. 8. RGB HI holograms images

Fig. 9. Wrapped and unwrapped phase using the Fourier Transform Filter

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 39–46
doi: 10.13053/CyS-23-1-3140

Víctor Manuel Juárez Núñez, Darwin Mayorga Cruz, Álvaro Zamudio Lara, J. Jesús Escobedo Alatorre44

ISSN 2007-9737

wrapped and unwrapped phase which
corresponding images are shown on Fig. 6.

Now, in order to remove the mistakes clearly
shown on Fig. 6b, the Bilateral Filter algorithm that
has been proved with OpenCL, is applied for each
image obtained by HI (Fig. 5). After three iterations
and using a 5-window size and a 𝜎 sigma value of
0.0025, we obtain the unwrapped phase of Fig. 7.

In the same way, the Fourier Transform
algorithm was tested in OpenCL on four 24 bits
RGB, 1024x1024 pixels HI holograms images (Fig.
8), to obtain their corresponding wrapped and
unwrapped phase (Fig. 9). For the second goal of
our work, once the algorithms were checked, we
proceeded to evaluate unwrap time, i.e. the time
each algorithm takes to obtain an unwrapped
phase image from four test images. The phase-
shift and filtering algorithms were combined with
the filtering algorithm in order to calculate times,
accordingly with the number of iterations that can
be applied to get a suitable unwrapped phase; this

depends on the quantity of noise on each HI
holograms. The results are summarized in the
table 1.

As is exposed on the table above, we found that
for 256x256, 499x499 and 1024x1024 pixels
images with 1 and 5 computing iterations each
case, times are always fast enough for unwrapping
processes directly executed by the ARM processor
of the motherboard, without any filtering applied
but with consequent phase unwrapping mistakes.

Now when filtering procedures are introduced
for 256x256 pixels images phase unwrapping we
found how by using the Bilateral Filter programmed
with OpenCL, processing time can be improved by
a factor of 4.78 for 1 iteration and 4.6 for 5
iterations, than when Bilateral Filter programmed
in C language is used. Processing times can be
decreased when bigger images are considered:
499x499 pixels images gave time improving
factors of 9.57 for 1 iteration and 15.4 for 5
iterations using OpenCL Bilateral Filter instead of

Table 1. Quantity of noise on each HI holograms

Time (sec)

1 iteration 5 iteration

image 256x256 image 256x256

Unwrapped phase ARM 0.162 0.676

Unwrapped Phase ARM Bilateral Filter 9.818 47.409

Unwrapped Phase FPGA OpenCL Bilateral Filter 2.053 10.271

 image 499x499 image 499x499

Unwrapped Phase ARM 0.636 2.649

Unwrapped Phase ARM Bilateral Filter 36.756 182.758

Unwrapped Phase FPGA OpenCL Bilateral Filter 3.838 11.856

 image 1024x1024 image 1024x1024

Unwrapped phase ARM 2.6 10.841

Unwrapped Phase ARM Bilateral Filter 152.158 752.839

Unwrapped Phase FPGA OpenCL Bilateral Filter 7.702 49.369

Unwrapped Phase FPGA OpenCL Fourier Filter 11.816 NULL

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 39–46
doi: 10.13053/CyS-23-1-3140

Efficiency of Phase Unwrapping and Image Filtering Algorithms Implemented in a Fpga Applied on... 45

ISSN 2007-9737

C Bilateral Filter. Finally, for 1024x1024 pixels
images, time improving factors were improved to
19.7 for 1 iteration and 15.2 for 5 iterations using
OpenCL Bilateral Filter instead of the C Bilateral
Filter. When Fourier Transform Filter was tested,
we found that it reaches a time improving factor of
12.8 for 1 iteration with respect to the C Bilateral
Filter, but we also found that Fourier Filter is slower
than OpenCL Bilateral Filter by a factor of 1.5.

4 Conclusions

As can be seen, accordingly with rate performance
using a FPGA programmed by using OpenCL
presents a good response to the processing of
multiple floating-point data series which considers
the Bilateral Filter as same as the Fourier
Transform Filter. It have been shown that for the
case of phase unwrapping with Bilateral filtering in
Open CL, rate performance is 19.7 times faster on
FPGA with the ARM processor, and 12.8 times
faster using Fourier Transform filtering if we
consider phase unwrapping with ARM and Bilateral
filtering as a reference.

Finally, we may append that evaluation of DE1-
SoC FPGA board shown favorable results related
with processing performance as compared with the
ARM processor; additionally this procedure may be
considered as a practical tool for HI with phase-
shift and other related methods.

Acknowledgments

Víctor Manuel Juarez Nunez acknowledges the
National Council on Science and Technology
(CONACYT) for a grant scholarship.

References

1. Thoma, Y., Dassatti, A., Molla, D., & Petraglio, E.
(2015). FPGA-GPU communicating through PCIe,
Microprocessors and microsystems, Vol. 39, No. 7,

pp. 565–575, DOI: 10.1016/j.micpro.2015.02.005.

2. Dubey, R. (2009). Introduction to Embedded System

Design Using Field Programmable Gate Arrays.
Springer-Verlag.

3. Ramos-Arreguín, C. A., Moya-Morales, J. C.,
Ramos-Arreguín, J. M., Pedraza-Ortega, J. C.,
Tovar-Arriaga, S., Aceves-Fernández, M. A., &
Rangel-Magdaleno, J. J. (2012). FPGA Open
Architecture Design for a VGA Driver. Procedia
Technology, Vol. 3, pp. 324–333.

4. Hsiang-Yu, T., Ssu-Ting, L., & Sheng-De W.
(2015). An FPGA Memory Hierarchy for High-level

Synthesized OpenCL Kernels. Proceedings of the
IEEE 17th International Conference on High
Performance Computing and Communications, IEEE
Computer Society, pp. 1719–1724. DOI:

10.1109/HPCC-CSS-ICESS.2015.210.

5. Rodríguez-Valido, M., Magdaleno, C., Pérez-
Nava, E. F., Gutiérrez-Castañeda, M., Hernández-
Expósito, D., & Guerrero-Vidal. L. (2012).

Metodología de diseño en FPGA usando Xilinx
System Generator. Actas del X Congreso de
Tecnología Aplicadas en la Enseñanza de la
Electrónica TAEE’12, pp. 28–286.

6. Chen, D. & Singh, D. P. (2013). Fractal Video

Compression in OpenCL: An Evaluation of CPUs,
GPUs, and FPGAs as Acceleration Platforms. Proc.
18th Asia and South Pacific Design Automation
Conf., pp. 297–304. DOI: 10.1109/ASPDAC.
2013.6509612.

7. Gaster, B., Howes, L., Kaeli, D. R., Mistry, P., &
Schaa, D. (2012). Heterogeneous Computing with

OpenCL. Morgan Kaufmann.

8. Paris, S., Kornprobst, P., Tumblin, J., & Durand,
F. (2009). Bilateral Filtering: Theory and
Applications. Foundations and Trends in Computer
Graphics and Vision, Vol. 4, No. 1. DOI:
10.1561/0600000020.

9. Kamel, A. & Agarwal, A. (2015). Stereoscopic

Depth on an FPGA via OpenCL. Master Degree
Thesis, School of Electrical and Computer
Engineering, Cornell University, Design Project
Report.

10. Gonzalez, R. C. & Woods, R. E. (2001). Digital
Image Processing. Prentice Hall.

11. FIXSTARS (2004). https://www.fixstars.com/en/

en/opencl/book/OpenCLProgrammingBook/mersen
ne-twister.

12. Schnars, U. & Jueptner, W. (2005). Digital
Holography: digital hologram recording, numerical
reconstruction and related techniques. Springer-
Verlag, Berlin-Heidelberg.

Article received on 08/09/2018; accepted on 20/12/2018.
Corresponding author is Víctor Manuel Juárez Núñez.

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 39–46
doi: 10.13053/CyS-23-1-3140

Víctor Manuel Juárez Núñez, Darwin Mayorga Cruz, Álvaro Zamudio Lara, J. Jesús Escobedo Alatorre46

ISSN 2007-9737

