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Abstract. The paper describes the application of the 

code mixed index in Indian social media texts and 
comparing the complexity to identify language at word 
level using BLSTM neural model. In Natural Language 
Processing one of the imperative and relatively less 
mature areas is a transliteration. During transliteration, 
issues like language identification, script specification, 
missing sounds arise in code mixed data. Social media 
platforms are now widely used by people to express their 
opinion or interest. The language used by the users in 
social media nowadays is Code-mixed text, i.e., mixing 
of two or more languages. In code-mixed data, one 
language will be written using another language script. 
So to process such code-mixed text, identification of 
language used in each word is important for language 
processing. The major contribution of the work is to 
propose a technique for identifying the language of 
Hindi-English code-mixed data used in three social 
media platforms namely, Facebook, Twitter, and 
WhatsApp. We propose a deep learning framework 
based on cBoW and Skip gram model for language 
identification in code mixed data. Popular word 
embedding features were used for the representation of 
each word. Many researches have been recently done 
in the field of language identification, but word level 
language identification in the transliterated environment 
is a current research issue in code mixed data. We have 
implemented a deep learning model based on BLSTM 
that predicts the origin of the word from language 
perspective in the sequence based on the specific words 
that have come before it in the sequence. The 
multichannel neural networks combining CNN and 
BLSTM for word level language identification of code-
mixed data where English and Hindi roman 
transliteration has been used. Combining this with a 

cBoW and Skip gram for evaluation. The proposed 
system BLSTM context capture module gives better 
accuracy for word embedding model as compared to 
character embedding evaluated on our two testing sets. 
The problem is modeled collectively with the deep-
learning design. We tend to gift an in-depth empirical 
analysis of the proposed methodology against standard 
approaches for language identification. 

Keywords. Language identification, transliteration, 

character embedding, word embedding, NLP, 
machine learning. 

1 Introduction 

Humans use natural language as their medium for 
communication. Natural Language Processing 
(NLP), is an area of Artificial Intelligence where we 
train the machine to understand and process the 
text to make human-computer interactions more 
efficient. Applications of NLP lies under several 
fields like machine translation, text processing, 
entity extraction and so on [1]. A large amount of 
data is now available on the Web as text. With the 
emergence of several social media platforms and 
the availability of a large amount of text data in 
them, NLP plays a great role in understanding and 
generating data today. The social media platforms 
are used widely today by people to discuss the 
interests, hobbies, reviews on products, movies 
and so on. 
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In earlier days, the language used in such 
platforms was purely English. Today mixing 
multiple languages together is a popular trend. 
These kinds of languages are called code-
mixed language. 

A large amount of textual data is available on 
the web. With the emergence of several social 
media platforms and the availability of a large 
amount of text data in them, NLP plays a great role 
in understanding and generating data today. The 
social media platforms are used widely today by 
people to discuss the interests, hobbies, reviews 
on products, movies and so on. In earlier days, the 
language used in such platforms was purely 
English. Today combining different languages 
together is a common phenomenon. These kinds 
of languages are called code-mixed language. An 
example of Hindi-English code-mixed text is 
described in the below sentences: 

Sentence 1: GLA University ka course structure 
kaisa hai: 

NE/OOV   E   H   E   E   H   H 

Sentence 2: Aray Friend, ek super idea hai mere 
paas: 

H   E   H   E   E   H   H   H 

Here Hindi words are labeled as H and English 
word are labeled as E and Named entity as NE. We 
can observe from the example that the Hindi 
words, tagged as H, were written in Roman Script 
instead of Unicode characters. The above example 
has been cited to give an idea of code mixed data. 

The paper presents a novel architecture, which 
captures information at both word level and context 
level to output the final tag for language 
identification in context to the word belongs to 
which language. For word level, we have used a 
multichannel neural network (MNN) inspired by the 
recent works of computer vision. Such networks 
have also shown promising results in NLP tasks 
like sentence classification [2]. For context capture, 
we used Bi-LSTM-CRF. The context module was 
tested more rigorously as in quite a few of the 
previous work, this information has been sidelined 
or ignored. We have experimented on Hindi-
English (H-E) code mixed data. Hindi is the most 
popular spoken language of India. 

Here Hindi words are written in Roman 
transliterated form using the English alphabet. 

For processing monolingual text, the primary 
step would be Part-Of-Speech (POS), tagging of 
the text. However, in the case of social media text, 
the primary feature to be considered is the 
identification of the language particularly for code-
mixed text [3]. The language identification for code-
mixed text proposed in this paper is implemented 
using word embedding models. The term word 
embedding refers to the vector representation of 
the given data capturing the semantic relation 
between the words in the data. The work is a 
generalized approach because this system can be 
extended for other NLP applications since only 
word embedding features are considered. The 
work involves features obtained from two 
embedding models, word-based embedding and 
character-based embedding. A comparison of the 
performance of the two models with the addition of 
contextual information is performed in this paper. 
The machine learning [4] based classification is 
used for training and testing the system. 

Framework for discovering user intend based 
on Hindi roman transliteration by identifying the 
word level language identification was addressed 
here. The remaining section of the paper is 
organized as follows: An overview of the related 
works on language identification in the multilingual 
domain is discussed in section 2. A discussion on 
the methodology proposed considering word 
embedding and character embedding method is 
discussed in section 3.The dataset description is 
stated in section 4. Section 5 describes the 
experimental evaluation and results obtained. 
Section 6, analyses the inferences obtained from 
the work done and a pointer towards the 
future work. 

2 Related Research 

In this section, some of the recent techniques 
regarding to the language transliteration and 
identification is listed and reviewed as follows: 
code-switching and mixing is a current research 
area in the field of language tagging. Language 
Identification (LID), is a primary task in many text 
processing applications and hence several 
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research is going on this area especially with the 
code-mixed data. King and Abney [5] used semi-
supervised methods for building a word level 
language identifier. Nguyen and Dogru [6] used 
CRF model limited to bigrams for identifying the 
language. Logistic regression along with a module, 
which gives code-switching probability was used 
by Vyas et al. [7]. Das and Gamback [8] used 
various features like a dictionary, n-gram, edit 
distance and word context for identifying the origin 
of the word. 

A shared task on Mixed Script Information 
Retrieval (MSIR) 2015 was conducted in which a 
subtask includes language identification of 8 code-
mixed Indian Languages, Telugu, Tamil, Marathi, 
Bangla, Gujarati, Hindi, Kannada, and Malayalam, 
each mixed with English [9].  

The MSIR language identification task was 
implemented by using machine learning based 
SVM classifier and obtained an accuracy of 76% 
[16]. Word level language identification was 
performed for English-Hindi using supervised 
methods in [10]. Naive Bayes classifier was used 
to identify the language of Hindi-English data and 
an accuracy of 77% was obtained [11]. 

Language Identification is also performed as a 
primary step to several other applications. [12], 
implemented a sentiment analysis system which 
utilized MSIR 2015 English-Tamil, English-Telugu, 
English-Hindi, and English-Bengali code-mixed 
dataset. Another emotion detection system was 
developed for Hindi-English data with machine 
learning based and Teaching Learning Based 
Optimization (TLBO), techniques [13]. Part-of-
Speech tagging was done for English-Bengali-
Hindi corpus including the language identification 
step in [14]. 

Since the code-mixed script is the common 
trend in the social media text today, many kinds of 
research are going on for the information extraction 
from such text. An analysis of the behavior of code-
mixed Hindi-English Facebook dataset was done 
in [15]. POS Tagging technique was performed on 
code-mixed social media text in Indian 
languages  [16].  

A shared task was organized for entity 
extraction on code-mixed Hindi-English and Tamil-
English social media text [17]. Entity extraction for 
code-mixed Hindi-English and Tamil-English 

dataset was performed with embedding 
models [18]. 

Sapkal et al. [19] have given the approach by 
the use of SMS, which is meant for communicating 
with others in minimal words. The regional 
language messages are printed using English 
alphabets due to the lack of regional keywords. 
This SMS language may fluctuate, which leads to 
miscommunication. The focus was on 
transliterating short form to full form. Zubiaga et al. 
[20] had mentioned language identification, as the 
mission of defining the language of a given text. On 
the other hand, certain issues like quantifying the 
individuality of similar languages in multilingualism 
document and analyzing the language of short 
texts are still unresolved. The below section 
describes the proposed methodology to overcome 
the research gap identified in the area of 
transliterated code mixed data. Alekseev et al. [29] 
consider word embedding as an efficient feature 
and proposed entity extraction for user profiling 
using word-embedding features. 

3 Proposed Methodology for 

Language Identification 

The code mixed data include the combination of 
the native script (familiar language) and the non- 
native script (unfamiliar language). Due to this 
combination, a massive number of complications 
arises while dealing with this mixed code. 
Language Identification is the main and the 
foremost problem identified in the mixed code data 
since every user will not be clear about every 
language recognized in the globe. The language 
identification arises when the text is written in 
different languages. This incorporates problems 
such as the script specifications, which is the 
possibility of different scripts between the source 
and target languages. 

The proposed system is comprised of two 
modules. The first one is a multichannel neural 
network trained at the word level, while the second 
one is a simple bidirectional LSTM trained at the 
context level. The second module takes the input 
from the first module along with some other 
features to produce the language tag.  

The proposed architecture illustrated in Figure 
2 is inspired by [30, 31, 21] where the recent deep 
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neural architectures developed for image 
classification tasks. 

The proposed model uses a very similar 
concept for learning the language at the word level. 

This is because the architecture allows the network 
to capture representations of different types, which 
can be really helpful for NLP tasks for identifying 
the origin of a word in context to the language used 

 

Fig. 1. Framework for word origin detection 

 

Fig. 2. Methodology of the proposed system 
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in code mixed data. The network we developed 
has 4 channels, the first three enters into a 
Convolution 1D (Conv1D) network [22], while the 
fourth one enters into a Long Short Term Memory 

(LSTM) network [23]. 

In this work, two systems were developed 
based on word-based embedding features and 
character-based context features. 

For the character-based system, the same 
procedure as that of word-based is done except 
that the vectors are character vectors. The 
methodology of the proposed system is illustrated 
in Figure 2. 

For the embedding to capture the word 
representation more effectively, additional data 
apart from the train and test data must be provided 
to the embedding model. The additional data used 
here is also a code-mixed Hindi-English social 
media data collected from other shared tasks. 

The input for the word embedding will be the 
train data and the additionally collected dataset. 
The embedding model generates the vector of 
each vocabulary (unique), words present in the 
data. Along with extracting the feature vectors of 
the train data, its context information is 
also extracted. 

The incorporation of the immediate left and right 
context features with the features of the current 
word is called 3-gram context appending. 5-gram 
features were also extracted, which is the 
extraction of features from two neighboring words 
before and after the current word. So if the 
vocabulary size of the training data is |V |, and the 
embedding feature size generated is 100 for each 
word, then after context appending with 3-gram 

features, a matrix of size |V| x 300 is obtained. 5-
gram appending will result in a matrix of size |V| 
x 500. 

The test data was also given to the embedding 
models. The data were then appended with the 3-
gram and 5-gram context information. These are 
then fed to a machine learning based classifier, to 
train and test the system. 

3.1 Word-Based Embedding Model 

The word-based embedding model is used to find 
the feature vectors that are useful in predicting the 
neighboring tokens in a context. The feature vector 
for this model is generated using Skip-gram 
architecture of popular Word2vec package 
proposed by Mikolov et al. [24]. Apart from the skip-
gram model, another architecture continuous Bag 
of Words (cBoW), is also present [24]. 

Word2vec is a predictive model that is used to 
produce word embeddings from raw text. It exists 
in two forms, the continuous Bag-of-Words model 
(cBoW) and the Skip-Gram model. Algorithmically, 
these two are similar, except that cBoW forecasts 
target words from source context words, whereas 
the skip-gram forecasts source context-words from 
the target words.  

This gives the flexibility to use skip gram when 
we are having a large dataset and one can use 
cBoW for the smaller dataset. We focused on the 
skip-gram model for language identification at word 
level in the multilingual domain to answer (word 
belongs to which language) in the rest of this 
paper. The illustration of Skip-gram model is 
shown in Figure 3. 

Here the input token is T0, which is fed to a log-
linear classifier to predict the neighboring words. 
T−2, T−1, T1 and T2 are the words that are before 
and after the current word.  

When the data is given to the Skip-gram model, 
it maximizes the average log probability, given by 
L, which is formulated as in Equation 1. In the 
equation, N is the total number of words in the train 
data and x is the context size. p is the softmax 
probability which is given using Equation 2: 

𝐿 =
1

𝑁
∑ ∑ 𝑙𝑜𝑔𝑃(𝑇𝑛 + 𝑖|𝑇𝑛)−𝑥≤𝑖≤𝑥

𝑁

𝑛=1
 , (1) 

 

Fig. 3. Skip gram model 
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P(Tj|Tk) =
exp⁡(V′Tj(VTk)⁡)

∑ exp⁡(V′Tj(VTk))
w
w=1

⁡, (2) 

where w is the vocabulary size, p(Tj |Tk), is the 
probability of occurrence of the next word. V' is the 
output vector representation. The dataset along 
with the additional dataset collected was given to 
the skip-gram model.  

The vector sizes to be generated were fixed as 
100. The skip-gram model generates a vector of 
size 1 × 100 for each vocabulary word available in 
the dataset.  

From this, the vectors for the training data were 
extracted. The context appending features were 
then extracted from this file. The final training file 
for the classifier will consist of the tokens in the 
train data, their language tag and the 3-gram and 
5-gram context feature vectors extracted.  

Thus, three training files are generated with |V| 
x 101, |V| x 301 and |V| x 501 dimension. The test 
data with its corresponding context appended 
vectors are fed to the classifier for testing 
the  system. 

3.2 Character-Based Embedding Model 

The procedure for character embedding is the 
same as that of skip-gram based word embedding. 

Each token in the train data gets splitted into 
characters and fed to the system. This will 
generate a vector for each character. The vector 
size to be generated was fixed as 100. The vectors 
generated for each character is used to create 
vectors for each token as per equation 3: 

⁡𝑌 = 𝑥 + 𝑆ℎ(𝑊, 𝐶𝑡−𝑘,….𝐶𝑡+𝑘,𝐶). (3) 

In regard to above, equation softmax 
parameters are denoted by x and S where h is the 
embedding features of character and word. C is the 
character vectors and W is the word vectors. ct−k,... 
ct+k, are the characters in the train data. 

The figure 4 suggests that the word PAANI gets 
splitted into characters and given to the system to 
produce an embedding feature vector. The vectors 
are generated for each character in the word. 
These are then transformed to produce the 
character-based embedding vector of the word 
PAANI using Equation 3. The vectors for each 
token are then used to extract the context feature 
vectors. The feature vector with context features is 
appended along with the language tag and is fed 
to the classifier for training the system. The similar 
procedure is done for the test file. The vectors 
generated from character embedding model is 
then transformed as a context matrix for the test 
data. This context matrix with the test words is fed 
to the classifier for testing the system. 

3.3 Design Consideration and Proposed 
Algorithm 

‒ Each document must consist of words from 
two languages. 

‒ All the documents must be in a single script. 
The chosen script, in this case, is 
ROMAN Script. 

‒ In the Indian scenario, code-mixing is 
applicable between English and other 
Indian languages. 

‒ The language used in the proposal is English 
and Hindi, where Hindi is represented using 
Roman, not Devanagari. 

If the Hindi words are written in Devanagari 
script, it is then a simpler task to identify the 
language. This becomes non-trivial tasks to 

 

Fig. 4. Embedding Model 
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identify the language as both Hindi and English are 
written using the same character set. 

Algorithm 1. Proposed Algorithm for Language 

Identification 

Input: Code Mixed Data  

Output: Language of the input word. 

Algorithm steps 

1. Input term from Test Document 

               Let D=W1, W2….Wn be a document    

               where 

                 W is are the words 

2. Letter of the words{a-z}  

3. // word level tagging task based on vectors 

3.1 Lb(W i) chosen from Language L 

                Where L= {LE,LH,LO) 

//Check the frequencies of character in W i and   

   W j. 

3.2 Generate Vectors for characters 
for Wi and W j 

3.3 Apply Similarity metrics 

 
𝑆𝑖𝑚(𝑋, 𝑌) =

∑ 𝑋𝑖𝑛
𝑖=1 𝑌𝑖

√∑ 𝑋𝑖𝑛
𝑖=1

2
√∑ 𝑌𝑖2𝑛

𝑖=1

 

4. Label the word E- English or H-Hindi. 

5. Check the Conf_Score of the classifier for 
Language Lj on input W i as 0 ≤ Conf_Score ≤ 1 

Where Conf_Score is similarity metrics 

sim(Wx,Wy) x and y can be word in string  

sim(x,y) ∈[0,1] for Normalization 

sim(x,y) = 1 : exact match 

sim(x,y) = 0 : “completely different“ x and y. 

0 < sim(x,y) < 1 :approximate similarity 

Threshold value =1 for exact match 

 1 matches LE 

< 1 matches LH OR Lo Based on List condition LoW 

    If LE matches LoW  

     L=Lo 

6. Classify the Word as E, H or O. 

4 Dataset Descriptions 

The dataset used for this work is obtained from 
POS Tagging task for Hindi-English code-mixed 
social media text conducted by ICON 2016 [25]. 

The dataset contains the text of three social 
media platforms namely Facebook, Twitter and 
WhatsApp. The train data provided contains the 
tokens of the dataset with its corresponding 
language tag and POS tag. 

The dataset used here for language 
identification is Indian language corpora used in 
the FIRE2014 (Forum for IR Evaluation) shared 
task on transliterated search. Data used for training 
the classifier consists of bilingual documents 
containing English and Hindi words in Romanized 
script for Bollywood Song Lyrics.  

Complete database of songs consists of 63,000 
documents in form of text file. (Dataset of FIRE 
MSIR). The below table shows the sample dataset 
showing various transliterated variations for non-
English word and a second sample for mixed script 
data having words as English and transliterated 
Hindi words. 

Table1. Dataset ICON 2016 [25] 

Data 

No. of Sentences No. of Tokens 

Trainin
g data 

Testin
g data 

Trainin
g data 

Testin
g data 

Facebook 772 111 20,615 2,167 

Twitter 1,096 110 17,311 2,163 

WhatsAp
p 

763 219 3,218 802 

Table 2. Sample data 

Data sample 

amir se hoti hai, garib se hotii hai 

door se hotee hai, qarib se hoti hai 

magar jahaan bhi hoti hai, ai mere dost 

shaadiyaan to naseeb se hoti hai 

Mixed Script Data sample 

Party abhi baaki hai………….. 

Party abhee baaki hai……………………….. 

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1415–1427
doi: 10.13053/CyS-24-4-3151

An Effective Bi-LSTM Word Embedding System for Analysis and Identification of Language... 1421

ISSN 2007-9737



5 Evaluation and Experimental 

Results 

The next section discusses the complete 
experimental part along with results and 
consequent discussions. 

5.1 Experimental Results 

The proposed algorithm for retrieving language of 
the word in code mixed data is evaluated on the 
basis of statistical measures and also evaluated 
using the machine learning approach. The below 
section provides the complete evaluation based on 
the statistical model. We performed two separate 
experiments on the code mixed data to rationalize 

the performance of the language, we have 
computed code-mixing patterns in the dataset on 
two metrics. This is being used to know the mixing 
patterns in the dataset. 

The proposed system is analyzed and 
evaluated based on the following code 
mixing metrics. 

MI: Multilingual index is a measure for word-
count that quantifies the distribution variations of 
the language tags in a corpus of languages. 
Equation 4 defines the MI (Multilingual Index) as: 

𝑀𝐼 = 𝑥 =
1 − ∑𝑃2⁡𝐽

(𝑘 − 1)∑𝑃2⁡𝐽
⁡, (4) 

where k denotes the number of languages, Pj 
denotes the number of words in the language j over 
the number of words in the corpus. The value of MI 
resides between 0 and 1. Value of 0 relates 
monolingual corpus and 1 relates to the equal 
number of tokens from each language in a corpus. 

CMI: Code-Mixing Index: At the phonetic level, 
this is calculated by discovering the most frequent 
language in the utterance and then counting the 
frequency of the words belonging to all other 
languages present. It is calculated using 
equation (5): 

𝐶𝑀𝐼 =
∑ (𝑤𝑖) − 𝑚𝑎𝑥(𝑤𝑖)
𝑛
𝑖=1

𝑛 − 𝑢
⁡, (5) 

where ∑ 𝑤𝑖
𝑛
𝑖=1  is the sum of all languages present 

in the utterance, max{wi} is the maximum number 
of words exists from any language.(considering the 
case more than one language can have same 
maximum word count), n denotes total number of 
tokens, and u denotes the number of tokens for 
other language independent tags.  

If an utterance only contains u (i.e., N=u) 
language independent tokens. Its index is 
considered to be zero. For other utterances, we 
use the normalization (multiply the value by 100) to 
acquire the digits in the range of 0 to 100.  

The next wi are the tagged language words and 
max(wi) is the most prominent language words. 
Applying this equation we will get CMI=0 for 
monolingual utterances because max(wi = n − u). 
Equation 5 is normalized as below in equation (6): 

𝐶𝑀𝐼 = {100 × [1 −
𝑚𝑎𝑥{𝑤𝑖}

𝑛 − 𝑢
] ∶ 𝑛 > 𝑢,

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ∶ 𝑛 = 𝑢,
⁡⁡ (6) 

 

Fig. 5 (a). Word level similarity 

 

Fig. 5 (b). Word level similarity 

Table 3. MI and CMI values 

Language set MI CMI 

Hindi-English 0.582 22.229 

1
0.94

0.89 0.89

0.8

0.9

1

1.1

hoti hotii hotie hotei

Similarity Score : Test Word 
hoti 

1

0.94

0.89 0.89

1

0.93

0.84 0.84

0.75

0.8

0.85

0.9

0.95

1

1.05

Similarity Score at word level
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where wi are the words labelled with each 
language tag, max{wi} is the most prominent 
language words. By applying the above equation 
we will get a value of CMI as 0 for monolingual and 
a higher value of CMI designates high mixing 
of languages. 

To understand the model, consider the 
following scenario, sentence S1 contains ten 
words. Five words are from Language L1 and 
remaining 5 words are from Language L2. 

Applying equation 6 the CMI will be 100 × (1 – 
5/10) = 50. However, another sentence S2 
contains 10 words and each word is from a 
different language. The CMI = 100 × (1 – 1/10) = 
90. It rightly reflects that S2 is highly mixed as 
every word belongs to a different language. This 
CMI value helps us to understand the level of code 
mixing available in the dataset. The table below 
describes the values obtained for MI and CMI for 
the corpus. 

Secondly, we computed the similarity score 
based on the proposed algorithm on the dataset 
using the equation (7).It gives significance in 
labeling the word as either English or Hindi based 
on the frequency of the word. The proposed 
algorithm checks the  Conf_Score of the classifier 
for Language Lj on input Wi as  0 ≤ Conf_Score ≤ 
1, where  Conf_Score is similarity metrics, 
sim(Wx,Wy) x and y can be the word in a string. 
The below section describes the different results 
obtained on the code mixed dataset for calculating 
the similarity score at word level and sentence 
level. Figure 5(a) and 5(b) describes the result 
obtained at word level for Hindi roman 
transliterated words in the corpus. Figure 6 plots 
the similarity at the sentence level. Figure 7 
describes the sentence level language 
identification based on the proposed design and 
algorithm discussed in section 3.3: 

𝑆𝑖𝑚(𝑋, 𝑌) =
∑ 𝑋𝑖𝑛
𝑖=1 𝑌𝑖

√∑ 𝑋𝑖𝑛
𝑖=1

2
√∑ 𝑌𝑖2𝑛

𝑖=1

⁡, 
(7) 

The next section describes the experimental 
evaluation based on applying BLSTM neural 
model. The dataset used for this work is obtained 
from POS Tagging task for Hindi-English code-
mixed social media text conducted by ICON 2016 
[25]. The dataset contains the text of three social 
media platforms namely Facebook, Twitter and 

WhatsApp. We use the Hindi-English dataset for 
the experimental evaluation. 

The labels used are summarized in Table 4. 
The training data contains the tokens of the 
dataset with its corresponding language tag and 
POS tag. 

1. E  indicates English words, for example: This, 
and, there. 

2. H indicates Hindi words, for example: aisa, 
mera, tera. 

3. NE indicates named entities like Person, 
Location and Organization, for example: 
Narendra Modi, India, Facebook. 

4. Other indicates tokens containing special 

 

Fig. 6. Sentence level similarity 

 

Fig. 7. Visualization of word level language identification 

by the statistical model 
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characters and numbers, for example: 
@,#,0- 9. 

5. Ambiguous indicates words used 
ambiguously in Hindi and English, for example: 
is, to, us. 

6. Mixed indicates words of Hindi-English and 
Number combination, for example: MadamJi 
Sirji. 

7. Unk indicates unrecognized words, for 
example: t.M , @.s,Ss. 

All the seven tags are present in the Facebook 
dataset, where ’E’, ’H’, ’NE’, ’Other’ are the tags 
present in Twitter and Whatsapp data. The size of 
the training and testing data is summarized in 
Table 4. From the table, it can be observed that the 
average tokens per comment of Whatsapp training 
and testing data are very less than Facebook and 
Twitter data. This may be due to the fact that 
Facebook and Twitter data mostly contains news 
articles and comments which make the average 
tokens per comment count to be more while 
Whatsapp contains conversational 
short messages. 

For generating the embedding vectors, more 
dataset has to be provided to obtain efficiently the 
distributional similarity of the data. The additional 
dataset collected along with the training data will 
be given to the embedding model. The Hindi-
English additional code-mixed data were collected 
from Shared task on Mixed Script Information 
Retrieval (MSIR), conducted in the year 2016 [26] 
& 2015 [27] and shared task on Code-Mix Entity 
Extraction task conducted by Forum for 
Information Retrieval and Evaluation (FIRE), 2016 
[28]. Most of the data collected for embedding is 
Hindi-English code-mixed Twitter data. The size of 
the dataset used for embedding is given in 
below table. 

Context appending was done for each 
Facebook, Twitter and WhatsApp train as well as 
test data. These were given to the learning model 
for training and testing. The cross-validation 
accuracies obtained for Facebook, Twitter, and 
WhatsApp with 1-gram, 3-gram and 5-gram 
features for character-based embedding model 
and word-based embedding model is presented in 
below section. 

When comparing the overall accuracy obtained 
for Facebook, Twitter, and WhatsApp, we can see 

Table 4. Description of the labels for Hindi-

English dataset 

Label Description 
Hindi-
English % 

E English words only 57.76 

H Hindi words only 20.41 

NE Named Entity 6.59 

Other Symbols, Emoticons 14.8 

Ambiguous 
Can’t determine 
whether Hindi or 
English 

0.27 

Mixed 
Word of Hindi English 
in combination 

0.08 

Unk Unrecognized word 0.09 

Table 5. Embedding dataset 

Number of sentences in the dataset used for 
embedding (Facebook, Twitter and WhatsApp) 

ICON2016 2631 

MSIR 2015 2700 

MSIR 2016 6139 

Table 6. F measure obtained for Twitter 

Embedding Type E H NE 

Character 
Embedding 

1 gram 84.95 93.31 78.38 

3 gram 85.34 93.44 77.12 

5 gram 85.38 93,49 80.27 

Word 
Embedding 

1 gram 65.86 82.96 62.22 

3 gram 85.71 93.97 83.94 

5 gram 85.42 93.16 78.15 

Table 7. F measure obtained for Facebook 

Embedding Type E H NE 

Character 
Embedding 

1 gram 85.65 92.92 64.95 

3 gram 86.45 93.36 65.02 

5 gram 85.47 92.55 65.05 

Word 
Embedding 

1 gram 85.02 92.03 62.80 

3 gram 86.99 93.51 67.21 

5 gram 85.15 92.47 61.03 
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that the accuracy obtained is more with the word-
based model as compared to character-based 
embedding model.  

It can also be observed that in the word-based 
embedding model, 3-gram-based features give 
more accuracy than 1-gram and 5-gram context 
feature model while in character-based model 5-
gram gives more accuracy than 1-gram and 
3- gram.   

When observing Table 6,7, and 8 shows the 
performance of Facebook, Twitter and WhatsApp  
Hindi-English code-mixed data, we can see that 
the F-score for language labels E-English, H-Hindi, 
NE-Named Entity is better using word embedding. 

From the performance of data tabulated in 
Table 6, 7 and 8, it is clearly seen that the word 
embedding 3-gram based model gives a better 
score than other models. Table 6 holds label wise 
accuracy for Twitter data, Table 7 holds label wise 
accuracy for Facebook data and Table 8  holds 
label wise accuracy for   WhatsApp data. 

It can be observed from the table that 3-gram 
word embedding model gives significant accuracy 
in comparison to 1-gram and 5-gram word 
embedding and to character embedding model 
whereas in case of character gram model accuracy 
is better in 5-gram model except for WhatsApp 
accuracy where 5 gram shows better accuracy. 
This is because the system needs more context 
information to identify the language. That is why 
the 5-gram embedding gives a better result in the 
case of WhatsApp for character 
embedding techniques. 

We tend to envision the representations 
learned by the RNN model by the word 
embeddings for the selected subset of words from 
datasets. The above result maps the labels to 
colors’ indicating the defined seven parameters 
defined in table 4.  The color encoding is 
summarized as follows: 1)Red for label E, 2)Blue 
for Label H, 3) Black for Label NE, 4) Orange for 
Label Others, 5) Purple for Label Ambiguous and 
Mixed, and 7) Yellow for Label Unk 
(Unrecognized word). 

The proposed neural model gives a clearer 
separation between the different labeling 
parameters as defined in table 4 along with giving 
a crystal clear separation between the language 
Hindi and English used in the code mixed dataset. 
This result shows that this model can be scaled to 
detect language in code mixed data without any 
additional feature engineering. 

6 Conclusions 

The intricacy of language identification in code 
mixed and code switched data is governed by the 
following: data source, code switching and code 
mixing manners, and the relation between the 
languages involved. We find that the code mixing 
is more used in social media context as per the 
evaluation and experiments were undertaken in 

 

Fig. 8. Visualization of word representation learned by 

the Bi-LSTM model for Hindi-English 

Table 8. F measure obtained for WhatsApp 

Embedding Type E H NE 

Character 
Embedding 

1 gram 52.42 80.15 28.57 

3 gram 54.99 80.26 37.70 

5 gram 54.39 80.91 31.58 

Word 
Embedding 

1 gram 50.42 79.62 40.00 

3 gram 60.88 81.98 40.27 

5 gram 53.70 80.19 40.12 
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this work. Code mixing metrics helps in identifying 
the code-mixing patterns across language pairs. 

By analyzing the code mixing metrics we 
conclude that Hindi-English words are often mixed 
in our dataset. It would be a great idea to 
investigate the emerging trend of code switching 
and code mixing to bring conclusion about the 
behavioral patterns in the data of different sources 
like lyrics of songs, chat data having different 
language sets, blog data and scripts of plays or 
movies. We have implemented two different 
evaluation models: statistical model and neural 
based learning model and obtained competitive 
results for the identification of languages. This is 
probably due to the amount of training and testing 
data we have. 

The results depict that the word embeddings 
are capable to detect the language separation by 
identifying the origin of the word and 
correspondingly mapping to its language label. The 
BLSTM system performs better for HIN-ENG 
language pairs. The BLSTM model captures long-
distance dependencies in a sequence and this is in 
line with the observation made above for 
identifying word level language identification in 
code mixed data considering the context of the 
word belonging to labeled languages. Scaling this 
system to identify other characteristics in linguistics 
with different language dataset is a potential future 
direction to explore. 
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