
An Effective Bi-LSTM Word Embedding System for Analysis
and Identification of Language in Code-Mixed Social Media

Text in English and Roman Hindi

Shashi Shekhar1, Dilip Kumar Sharma1, M.M. Sufyan Beg2

1 GLA University,
Department of Computer Engineering and Applications,

India

2 Aligarh Muslim University,
Department of Computer Engineering,

India

{shashi.shekhar, dilip.sharma}@gla.ac.in, mmsbeg@cs.berkeley.ed

Abstract. The paper describes the application of the

code mixed index in Indian social media texts and
comparing the complexity to identify language at word
level using BLSTM neural model. In Natural Language
Processing one of the imperative and relatively less
mature areas is a transliteration. During transliteration,
issues like language identification, script specification,
missing sounds arise in code mixed data. Social media
platforms are now widely used by people to express their
opinion or interest. The language used by the users in
social media nowadays is Code-mixed text, i.e., mixing
of two or more languages. In code-mixed data, one
language will be written using another language script.
So to process such code-mixed text, identification of
language used in each word is important for language
processing. The major contribution of the work is to
propose a technique for identifying the language of
Hindi-English code-mixed data used in three social
media platforms namely, Facebook, Twitter, and
WhatsApp. We propose a deep learning framework
based on cBoW and Skip gram model for language
identification in code mixed data. Popular word
embedding features were used for the representation of
each word. Many researches have been recently done
in the field of language identification, but word level
language identification in the transliterated environment
is a current research issue in code mixed data. We have
implemented a deep learning model based on BLSTM
that predicts the origin of the word from language
perspective in the sequence based on the specific words
that have come before it in the sequence. The
multichannel neural networks combining CNN and
BLSTM for word level language identification of code-
mixed data where English and Hindi roman
transliteration has been used. Combining this with a

cBoW and Skip gram for evaluation. The proposed
system BLSTM context capture module gives better
accuracy for word embedding model as compared to
character embedding evaluated on our two testing sets.
The problem is modeled collectively with the deep-
learning design. We tend to gift an in-depth empirical
analysis of the proposed methodology against standard
approaches for language identification.

Keywords. Language identification, transliteration,

character embedding, word embedding, NLP,
machine learning.

1 Introduction

Humans use natural language as their medium for
communication. Natural Language Processing
(NLP), is an area of Artificial Intelligence where we
train the machine to understand and process the
text to make human-computer interactions more
efficient. Applications of NLP lies under several
fields like machine translation, text processing,
entity extraction and so on [1]. A large amount of
data is now available on the Web as text. With the
emergence of several social media platforms and
the availability of a large amount of text data in
them, NLP plays a great role in understanding and
generating data today. The social media platforms
are used widely today by people to discuss the
interests, hobbies, reviews on products, movies
and so on.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1415–1427
doi: 10.13053/CyS-24-4-3151

ISSN 2007-9737

In earlier days, the language used in such
platforms was purely English. Today mixing
multiple languages together is a popular trend.
These kinds of languages are called code-
mixed language.

A large amount of textual data is available on
the web. With the emergence of several social
media platforms and the availability of a large
amount of text data in them, NLP plays a great role
in understanding and generating data today. The
social media platforms are used widely today by
people to discuss the interests, hobbies, reviews
on products, movies and so on. In earlier days, the
language used in such platforms was purely
English. Today combining different languages
together is a common phenomenon. These kinds
of languages are called code-mixed language. An
example of Hindi-English code-mixed text is
described in the below sentences:

Sentence 1: GLA University ka course structure
kaisa hai:

NE/OOV E H E E H H

Sentence 2: Aray Friend, ek super idea hai mere
paas:

H E H E E H H H

Here Hindi words are labeled as H and English
word are labeled as E and Named entity as NE. We
can observe from the example that the Hindi
words, tagged as H, were written in Roman Script
instead of Unicode characters. The above example
has been cited to give an idea of code mixed data.

The paper presents a novel architecture, which
captures information at both word level and context
level to output the final tag for language
identification in context to the word belongs to
which language. For word level, we have used a
multichannel neural network (MNN) inspired by the
recent works of computer vision. Such networks
have also shown promising results in NLP tasks
like sentence classification [2]. For context capture,
we used Bi-LSTM-CRF. The context module was
tested more rigorously as in quite a few of the
previous work, this information has been sidelined
or ignored. We have experimented on Hindi-
English (H-E) code mixed data. Hindi is the most
popular spoken language of India.

Here Hindi words are written in Roman
transliterated form using the English alphabet.

For processing monolingual text, the primary
step would be Part-Of-Speech (POS), tagging of
the text. However, in the case of social media text,
the primary feature to be considered is the
identification of the language particularly for code-
mixed text [3]. The language identification for code-
mixed text proposed in this paper is implemented
using word embedding models. The term word
embedding refers to the vector representation of
the given data capturing the semantic relation
between the words in the data. The work is a
generalized approach because this system can be
extended for other NLP applications since only
word embedding features are considered. The
work involves features obtained from two
embedding models, word-based embedding and
character-based embedding. A comparison of the
performance of the two models with the addition of
contextual information is performed in this paper.
The machine learning [4] based classification is
used for training and testing the system.

Framework for discovering user intend based
on Hindi roman transliteration by identifying the
word level language identification was addressed
here. The remaining section of the paper is
organized as follows: An overview of the related
works on language identification in the multilingual
domain is discussed in section 2. A discussion on
the methodology proposed considering word
embedding and character embedding method is
discussed in section 3.The dataset description is
stated in section 4. Section 5 describes the
experimental evaluation and results obtained.
Section 6, analyses the inferences obtained from
the work done and a pointer towards the
future work.

2 Related Research

In this section, some of the recent techniques
regarding to the language transliteration and
identification is listed and reviewed as follows:
code-switching and mixing is a current research
area in the field of language tagging. Language
Identification (LID), is a primary task in many text
processing applications and hence several

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1415–1427
doi: 10.13053/CyS-24-4-3151

Shashi Shekhar, Dilip Kumar Sharma, M.M. Sufyan Beg1416

ISSN 2007-9737

research is going on this area especially with the
code-mixed data. King and Abney [5] used semi-
supervised methods for building a word level
language identifier. Nguyen and Dogru [6] used
CRF model limited to bigrams for identifying the
language. Logistic regression along with a module,
which gives code-switching probability was used
by Vyas et al. [7]. Das and Gamback [8] used
various features like a dictionary, n-gram, edit
distance and word context for identifying the origin
of the word.

A shared task on Mixed Script Information
Retrieval (MSIR) 2015 was conducted in which a
subtask includes language identification of 8 code-
mixed Indian Languages, Telugu, Tamil, Marathi,
Bangla, Gujarati, Hindi, Kannada, and Malayalam,
each mixed with English [9].

The MSIR language identification task was
implemented by using machine learning based
SVM classifier and obtained an accuracy of 76%
[16]. Word level language identification was
performed for English-Hindi using supervised
methods in [10]. Naive Bayes classifier was used
to identify the language of Hindi-English data and
an accuracy of 77% was obtained [11].

Language Identification is also performed as a
primary step to several other applications. [12],
implemented a sentiment analysis system which
utilized MSIR 2015 English-Tamil, English-Telugu,
English-Hindi, and English-Bengali code-mixed
dataset. Another emotion detection system was
developed for Hindi-English data with machine
learning based and Teaching Learning Based
Optimization (TLBO), techniques [13]. Part-of-
Speech tagging was done for English-Bengali-
Hindi corpus including the language identification
step in [14].

Since the code-mixed script is the common
trend in the social media text today, many kinds of
research are going on for the information extraction
from such text. An analysis of the behavior of code-
mixed Hindi-English Facebook dataset was done
in [15]. POS Tagging technique was performed on
code-mixed social media text in Indian
languages [16].

A shared task was organized for entity
extraction on code-mixed Hindi-English and Tamil-
English social media text [17]. Entity extraction for
code-mixed Hindi-English and Tamil-English

dataset was performed with embedding
models [18].

Sapkal et al. [19] have given the approach by
the use of SMS, which is meant for communicating
with others in minimal words. The regional
language messages are printed using English
alphabets due to the lack of regional keywords.
This SMS language may fluctuate, which leads to
miscommunication. The focus was on
transliterating short form to full form. Zubiaga et al.
[20] had mentioned language identification, as the
mission of defining the language of a given text. On
the other hand, certain issues like quantifying the
individuality of similar languages in multilingualism
document and analyzing the language of short
texts are still unresolved. The below section
describes the proposed methodology to overcome
the research gap identified in the area of
transliterated code mixed data. Alekseev et al. [29]
consider word embedding as an efficient feature
and proposed entity extraction for user profiling
using word-embedding features.

3 Proposed Methodology for

Language Identification

The code mixed data include the combination of
the native script (familiar language) and the non-
native script (unfamiliar language). Due to this
combination, a massive number of complications
arises while dealing with this mixed code.
Language Identification is the main and the
foremost problem identified in the mixed code data
since every user will not be clear about every
language recognized in the globe. The language
identification arises when the text is written in
different languages. This incorporates problems
such as the script specifications, which is the
possibility of different scripts between the source
and target languages.

The proposed system is comprised of two
modules. The first one is a multichannel neural
network trained at the word level, while the second
one is a simple bidirectional LSTM trained at the
context level. The second module takes the input
from the first module along with some other
features to produce the language tag.

The proposed architecture illustrated in Figure
2 is inspired by [30, 31, 21] where the recent deep

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1415–1427
doi: 10.13053/CyS-24-4-3151

An Effective Bi-LSTM Word Embedding System for Analysis and Identification of Language... 1417

ISSN 2007-9737

neural architectures developed for image
classification tasks.

The proposed model uses a very similar
concept for learning the language at the word level.

This is because the architecture allows the network
to capture representations of different types, which
can be really helpful for NLP tasks for identifying
the origin of a word in context to the language used

Fig. 1. Framework for word origin detection

Fig. 2. Methodology of the proposed system

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1415–1427
doi: 10.13053/CyS-24-4-3151

Shashi Shekhar, Dilip Kumar Sharma, M.M. Sufyan Beg1418

ISSN 2007-9737

in code mixed data. The network we developed
has 4 channels, the first three enters into a
Convolution 1D (Conv1D) network [22], while the
fourth one enters into a Long Short Term Memory

(LSTM) network [23].

In this work, two systems were developed
based on word-based embedding features and
character-based context features.

For the character-based system, the same
procedure as that of word-based is done except
that the vectors are character vectors. The
methodology of the proposed system is illustrated
in Figure 2.

For the embedding to capture the word
representation more effectively, additional data
apart from the train and test data must be provided
to the embedding model. The additional data used
here is also a code-mixed Hindi-English social
media data collected from other shared tasks.

The input for the word embedding will be the
train data and the additionally collected dataset.
The embedding model generates the vector of
each vocabulary (unique), words present in the
data. Along with extracting the feature vectors of
the train data, its context information is
also extracted.

The incorporation of the immediate left and right
context features with the features of the current
word is called 3-gram context appending. 5-gram
features were also extracted, which is the
extraction of features from two neighboring words
before and after the current word. So if the
vocabulary size of the training data is |V |, and the
embedding feature size generated is 100 for each
word, then after context appending with 3-gram

features, a matrix of size |V| x 300 is obtained. 5-
gram appending will result in a matrix of size |V|
x 500.

The test data was also given to the embedding
models. The data were then appended with the 3-
gram and 5-gram context information. These are
then fed to a machine learning based classifier, to
train and test the system.

3.1 Word-Based Embedding Model

The word-based embedding model is used to find
the feature vectors that are useful in predicting the
neighboring tokens in a context. The feature vector
for this model is generated using Skip-gram
architecture of popular Word2vec package
proposed by Mikolov et al. [24]. Apart from the skip-
gram model, another architecture continuous Bag
of Words (cBoW), is also present [24].

Word2vec is a predictive model that is used to
produce word embeddings from raw text. It exists
in two forms, the continuous Bag-of-Words model
(cBoW) and the Skip-Gram model. Algorithmically,
these two are similar, except that cBoW forecasts
target words from source context words, whereas
the skip-gram forecasts source context-words from
the target words.

This gives the flexibility to use skip gram when
we are having a large dataset and one can use
cBoW for the smaller dataset. We focused on the
skip-gram model for language identification at word
level in the multilingual domain to answer (word
belongs to which language) in the rest of this
paper. The illustration of Skip-gram model is
shown in Figure 3.

Here the input token is T0, which is fed to a log-
linear classifier to predict the neighboring words.
T−2, T−1, T1 and T2 are the words that are before
and after the current word.

When the data is given to the Skip-gram model,
it maximizes the average log probability, given by
L, which is formulated as in Equation 1. In the
equation, N is the total number of words in the train
data and x is the context size. p is the softmax
probability which is given using Equation 2:

𝐿 =
1

𝑁
∑ ∑ 𝑙𝑜𝑔𝑃(𝑇𝑛 + 𝑖|𝑇𝑛)−𝑥≤𝑖≤𝑥

𝑁

𝑛=1
 , (1)

Fig. 3. Skip gram model

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1415–1427
doi: 10.13053/CyS-24-4-3151

An Effective Bi-LSTM Word Embedding System for Analysis and Identification of Language... 1419

ISSN 2007-9737

P(Tj|Tk) =
exp⁡(V′Tj(VTk)⁡)

∑ exp⁡(V′Tj(VTk))
w
w=1

⁡, (2)

where w is the vocabulary size, p(Tj |Tk), is the
probability of occurrence of the next word. V' is the
output vector representation. The dataset along
with the additional dataset collected was given to
the skip-gram model.

The vector sizes to be generated were fixed as
100. The skip-gram model generates a vector of
size 1 × 100 for each vocabulary word available in
the dataset.

From this, the vectors for the training data were
extracted. The context appending features were
then extracted from this file. The final training file
for the classifier will consist of the tokens in the
train data, their language tag and the 3-gram and
5-gram context feature vectors extracted.

Thus, three training files are generated with |V|
x 101, |V| x 301 and |V| x 501 dimension. The test
data with its corresponding context appended
vectors are fed to the classifier for testing
the system.

3.2 Character-Based Embedding Model

The procedure for character embedding is the
same as that of skip-gram based word embedding.

Each token in the train data gets splitted into
characters and fed to the system. This will
generate a vector for each character. The vector
size to be generated was fixed as 100. The vectors
generated for each character is used to create
vectors for each token as per equation 3:

⁡𝑌 = 𝑥 + 𝑆ℎ(𝑊, 𝐶𝑡−𝑘,….𝐶𝑡+𝑘,𝐶). (3)

In regard to above, equation softmax
parameters are denoted by x and S where h is the
embedding features of character and word. C is the
character vectors and W is the word vectors. ct−k,...
ct+k, are the characters in the train data.

The figure 4 suggests that the word PAANI gets
splitted into characters and given to the system to
produce an embedding feature vector. The vectors
are generated for each character in the word.
These are then transformed to produce the
character-based embedding vector of the word
PAANI using Equation 3. The vectors for each
token are then used to extract the context feature
vectors. The feature vector with context features is
appended along with the language tag and is fed
to the classifier for training the system. The similar
procedure is done for the test file. The vectors
generated from character embedding model is
then transformed as a context matrix for the test
data. This context matrix with the test words is fed
to the classifier for testing the system.

3.3 Design Consideration and Proposed
Algorithm

‒ Each document must consist of words from
two languages.

‒ All the documents must be in a single script.
The chosen script, in this case, is
ROMAN Script.

‒ In the Indian scenario, code-mixing is
applicable between English and other
Indian languages.

‒ The language used in the proposal is English
and Hindi, where Hindi is represented using
Roman, not Devanagari.

If the Hindi words are written in Devanagari
script, it is then a simpler task to identify the
language. This becomes non-trivial tasks to

Fig. 4. Embedding Model

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1415–1427
doi: 10.13053/CyS-24-4-3151

Shashi Shekhar, Dilip Kumar Sharma, M.M. Sufyan Beg1420

ISSN 2007-9737

identify the language as both Hindi and English are
written using the same character set.

Algorithm 1. Proposed Algorithm for Language

Identification

Input: Code Mixed Data

Output: Language of the input word.

Algorithm steps

1. Input term from Test Document

 Let D=W1, W2….Wn be a document

 where

 W is are the words

2. Letter of the words{a-z}

3. // word level tagging task based on vectors

3.1 Lb(W i) chosen from Language L

 Where L= {LE,LH,LO)

//Check the frequencies of character in W i and

 W j.

3.2 Generate Vectors for characters
for Wi and W j

3.3 Apply Similarity metrics

𝑆𝑖𝑚(𝑋, 𝑌) =

∑ 𝑋𝑖𝑛
𝑖=1 𝑌𝑖

√∑ 𝑋𝑖𝑛
𝑖=1

2
√∑ 𝑌𝑖2𝑛

𝑖=1

4. Label the word E- English or H-Hindi.

5. Check the Conf_Score of the classifier for
Language Lj on input W i as 0 ≤ Conf_Score ≤ 1

Where Conf_Score is similarity metrics

sim(Wx,Wy) x and y can be word in string

sim(x,y) ∈[0,1] for Normalization

sim(x,y) = 1 : exact match

sim(x,y) = 0 : “completely different“ x and y.

0 < sim(x,y) < 1 :approximate similarity

Threshold value =1 for exact match

 1 matches LE

< 1 matches LH OR Lo Based on List condition LoW

 If LE matches LoW

 L=Lo

6. Classify the Word as E, H or O.

4 Dataset Descriptions

The dataset used for this work is obtained from
POS Tagging task for Hindi-English code-mixed
social media text conducted by ICON 2016 [25].

The dataset contains the text of three social
media platforms namely Facebook, Twitter and
WhatsApp. The train data provided contains the
tokens of the dataset with its corresponding
language tag and POS tag.

The dataset used here for language
identification is Indian language corpora used in
the FIRE2014 (Forum for IR Evaluation) shared
task on transliterated search. Data used for training
the classifier consists of bilingual documents
containing English and Hindi words in Romanized
script for Bollywood Song Lyrics.

Complete database of songs consists of 63,000
documents in form of text file. (Dataset of FIRE
MSIR). The below table shows the sample dataset
showing various transliterated variations for non-
English word and a second sample for mixed script
data having words as English and transliterated
Hindi words.

Table1. Dataset ICON 2016 [25]

Data

No. of Sentences No. of Tokens

Trainin
g data

Testin
g data

Trainin
g data

Testin
g data

Facebook 772 111 20,615 2,167

Twitter 1,096 110 17,311 2,163

WhatsAp
p

763 219 3,218 802

Table 2. Sample data

Data sample

amir se hoti hai, garib se hotii hai

door se hotee hai, qarib se hoti hai

magar jahaan bhi hoti hai, ai mere dost

shaadiyaan to naseeb se hoti hai

Mixed Script Data sample

Party abhi baaki hai…………..

Party abhee baaki hai………………………..

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1415–1427
doi: 10.13053/CyS-24-4-3151

An Effective Bi-LSTM Word Embedding System for Analysis and Identification of Language... 1421

ISSN 2007-9737

5 Evaluation and Experimental

Results

The next section discusses the complete
experimental part along with results and
consequent discussions.

5.1 Experimental Results

The proposed algorithm for retrieving language of
the word in code mixed data is evaluated on the
basis of statistical measures and also evaluated
using the machine learning approach. The below
section provides the complete evaluation based on
the statistical model. We performed two separate
experiments on the code mixed data to rationalize

the performance of the language, we have
computed code-mixing patterns in the dataset on
two metrics. This is being used to know the mixing
patterns in the dataset.

The proposed system is analyzed and
evaluated based on the following code
mixing metrics.

MI: Multilingual index is a measure for word-
count that quantifies the distribution variations of
the language tags in a corpus of languages.
Equation 4 defines the MI (Multilingual Index) as:

𝑀𝐼 = 𝑥 =
1 − ∑𝑃2⁡𝐽

(𝑘 − 1)∑𝑃2⁡𝐽
⁡, (4)

where k denotes the number of languages, Pj
denotes the number of words in the language j over
the number of words in the corpus. The value of MI
resides between 0 and 1. Value of 0 relates
monolingual corpus and 1 relates to the equal
number of tokens from each language in a corpus.

CMI: Code-Mixing Index: At the phonetic level,
this is calculated by discovering the most frequent
language in the utterance and then counting the
frequency of the words belonging to all other
languages present. It is calculated using
equation (5):

𝐶𝑀𝐼 =
∑ (𝑤𝑖) − 𝑚𝑎𝑥(𝑤𝑖)
𝑛
𝑖=1

𝑛 − 𝑢
⁡, (5)

where ∑ 𝑤𝑖
𝑛
𝑖=1 is the sum of all languages present

in the utterance, max{wi} is the maximum number
of words exists from any language.(considering the
case more than one language can have same
maximum word count), n denotes total number of
tokens, and u denotes the number of tokens for
other language independent tags.

If an utterance only contains u (i.e., N=u)
language independent tokens. Its index is
considered to be zero. For other utterances, we
use the normalization (multiply the value by 100) to
acquire the digits in the range of 0 to 100.

The next wi are the tagged language words and
max(wi) is the most prominent language words.
Applying this equation we will get CMI=0 for
monolingual utterances because max(wi = n − u).
Equation 5 is normalized as below in equation (6):

𝐶𝑀𝐼 = {100 × [1 −
𝑚𝑎𝑥{𝑤𝑖}

𝑛 − 𝑢
] ∶ 𝑛 > 𝑢,

0⁡⁡ ∶ 𝑛 = 𝑢,
⁡⁡ (6)

Fig. 5 (a). Word level similarity

Fig. 5 (b). Word level similarity

Table 3. MI and CMI values

Language set MI CMI

Hindi-English 0.582 22.229

1
0.94

0.89 0.89

0.8

0.9

1

1.1

hoti hotii hotie hotei

Similarity Score : Test Word
hoti

1

0.94

0.89 0.89

1

0.93

0.84 0.84

0.75

0.8

0.85

0.9

0.95

1

1.05

Similarity Score at word level

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1415–1427
doi: 10.13053/CyS-24-4-3151

Shashi Shekhar, Dilip Kumar Sharma, M.M. Sufyan Beg1422

ISSN 2007-9737

where wi are the words labelled with each
language tag, max{wi} is the most prominent
language words. By applying the above equation
we will get a value of CMI as 0 for monolingual and
a higher value of CMI designates high mixing
of languages.

To understand the model, consider the
following scenario, sentence S1 contains ten
words. Five words are from Language L1 and
remaining 5 words are from Language L2.

Applying equation 6 the CMI will be 100 × (1 –
5/10) = 50. However, another sentence S2
contains 10 words and each word is from a
different language. The CMI = 100 × (1 – 1/10) =
90. It rightly reflects that S2 is highly mixed as
every word belongs to a different language. This
CMI value helps us to understand the level of code
mixing available in the dataset. The table below
describes the values obtained for MI and CMI for
the corpus.

Secondly, we computed the similarity score
based on the proposed algorithm on the dataset
using the equation (7).It gives significance in
labeling the word as either English or Hindi based
on the frequency of the word. The proposed
algorithm checks the Conf_Score of the classifier
for Language Lj on input Wi as 0 ≤ Conf_Score ≤
1, where Conf_Score is similarity metrics,
sim(Wx,Wy) x and y can be the word in a string.
The below section describes the different results
obtained on the code mixed dataset for calculating
the similarity score at word level and sentence
level. Figure 5(a) and 5(b) describes the result
obtained at word level for Hindi roman
transliterated words in the corpus. Figure 6 plots
the similarity at the sentence level. Figure 7
describes the sentence level language
identification based on the proposed design and
algorithm discussed in section 3.3:

𝑆𝑖𝑚(𝑋, 𝑌) =
∑ 𝑋𝑖𝑛
𝑖=1 𝑌𝑖

√∑ 𝑋𝑖𝑛
𝑖=1

2
√∑ 𝑌𝑖2𝑛

𝑖=1

⁡,
(7)

The next section describes the experimental
evaluation based on applying BLSTM neural
model. The dataset used for this work is obtained
from POS Tagging task for Hindi-English code-
mixed social media text conducted by ICON 2016
[25]. The dataset contains the text of three social
media platforms namely Facebook, Twitter and

WhatsApp. We use the Hindi-English dataset for
the experimental evaluation.

The labels used are summarized in Table 4.
The training data contains the tokens of the
dataset with its corresponding language tag and
POS tag.

1. E indicates English words, for example: This,
and, there.

2. H indicates Hindi words, for example: aisa,
mera, tera.

3. NE indicates named entities like Person,
Location and Organization, for example:
Narendra Modi, India, Facebook.

4. Other indicates tokens containing special

Fig. 6. Sentence level similarity

Fig. 7. Visualization of word level language identification

by the statistical model

1 0.994

0.949 0.946

0.903

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

party
abhi

baki hai

party
abhi
baaki

hai

paartee
abhi

baki hai

party
abhi

abhee
baki hai

party
abhi

baakee
haie

Similarity Score at Sentence Level

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1415–1427
doi: 10.13053/CyS-24-4-3151

An Effective Bi-LSTM Word Embedding System for Analysis and Identification of Language... 1423

ISSN 2007-9737

characters and numbers, for example:
@,#,0- 9.

5. Ambiguous indicates words used
ambiguously in Hindi and English, for example:
is, to, us.

6. Mixed indicates words of Hindi-English and
Number combination, for example: MadamJi
Sirji.

7. Unk indicates unrecognized words, for
example: t.M , @.s,Ss.

All the seven tags are present in the Facebook
dataset, where ’E’, ’H’, ’NE’, ’Other’ are the tags
present in Twitter and Whatsapp data. The size of
the training and testing data is summarized in
Table 4. From the table, it can be observed that the
average tokens per comment of Whatsapp training
and testing data are very less than Facebook and
Twitter data. This may be due to the fact that
Facebook and Twitter data mostly contains news
articles and comments which make the average
tokens per comment count to be more while
Whatsapp contains conversational
short messages.

For generating the embedding vectors, more
dataset has to be provided to obtain efficiently the
distributional similarity of the data. The additional
dataset collected along with the training data will
be given to the embedding model. The Hindi-
English additional code-mixed data were collected
from Shared task on Mixed Script Information
Retrieval (MSIR), conducted in the year 2016 [26]
& 2015 [27] and shared task on Code-Mix Entity
Extraction task conducted by Forum for
Information Retrieval and Evaluation (FIRE), 2016
[28]. Most of the data collected for embedding is
Hindi-English code-mixed Twitter data. The size of
the dataset used for embedding is given in
below table.

Context appending was done for each
Facebook, Twitter and WhatsApp train as well as
test data. These were given to the learning model
for training and testing. The cross-validation
accuracies obtained for Facebook, Twitter, and
WhatsApp with 1-gram, 3-gram and 5-gram
features for character-based embedding model
and word-based embedding model is presented in
below section.

When comparing the overall accuracy obtained
for Facebook, Twitter, and WhatsApp, we can see

Table 4. Description of the labels for Hindi-

English dataset

Label Description
Hindi-
English %

E English words only 57.76

H Hindi words only 20.41

NE Named Entity 6.59

Other Symbols, Emoticons 14.8

Ambiguous
Can’t determine
whether Hindi or
English

0.27

Mixed
Word of Hindi English
in combination

0.08

Unk Unrecognized word 0.09

Table 5. Embedding dataset

Number of sentences in the dataset used for
embedding (Facebook, Twitter and WhatsApp)

ICON2016 2631

MSIR 2015 2700

MSIR 2016 6139

Table 6. F measure obtained for Twitter

Embedding Type E H NE

Character
Embedding

1 gram 84.95 93.31 78.38

3 gram 85.34 93.44 77.12

5 gram 85.38 93,49 80.27

Word
Embedding

1 gram 65.86 82.96 62.22

3 gram 85.71 93.97 83.94

5 gram 85.42 93.16 78.15

Table 7. F measure obtained for Facebook

Embedding Type E H NE

Character
Embedding

1 gram 85.65 92.92 64.95

3 gram 86.45 93.36 65.02

5 gram 85.47 92.55 65.05

Word
Embedding

1 gram 85.02 92.03 62.80

3 gram 86.99 93.51 67.21

5 gram 85.15 92.47 61.03

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1415–1427
doi: 10.13053/CyS-24-4-3151

Shashi Shekhar, Dilip Kumar Sharma, M.M. Sufyan Beg1424

ISSN 2007-9737

that the accuracy obtained is more with the word-
based model as compared to character-based
embedding model.

It can also be observed that in the word-based
embedding model, 3-gram-based features give
more accuracy than 1-gram and 5-gram context
feature model while in character-based model 5-
gram gives more accuracy than 1-gram and
3- gram.

When observing Table 6,7, and 8 shows the
performance of Facebook, Twitter and WhatsApp
Hindi-English code-mixed data, we can see that
the F-score for language labels E-English, H-Hindi,
NE-Named Entity is better using word embedding.

From the performance of data tabulated in
Table 6, 7 and 8, it is clearly seen that the word
embedding 3-gram based model gives a better
score than other models. Table 6 holds label wise
accuracy for Twitter data, Table 7 holds label wise
accuracy for Facebook data and Table 8 holds
label wise accuracy for WhatsApp data.

It can be observed from the table that 3-gram
word embedding model gives significant accuracy
in comparison to 1-gram and 5-gram word
embedding and to character embedding model
whereas in case of character gram model accuracy
is better in 5-gram model except for WhatsApp
accuracy where 5 gram shows better accuracy.
This is because the system needs more context
information to identify the language. That is why
the 5-gram embedding gives a better result in the
case of WhatsApp for character
embedding techniques.

We tend to envision the representations
learned by the RNN model by the word
embeddings for the selected subset of words from
datasets. The above result maps the labels to
colors’ indicating the defined seven parameters
defined in table 4. The color encoding is
summarized as follows: 1)Red for label E, 2)Blue
for Label H, 3) Black for Label NE, 4) Orange for
Label Others, 5) Purple for Label Ambiguous and
Mixed, and 7) Yellow for Label Unk
(Unrecognized word).

The proposed neural model gives a clearer
separation between the different labeling
parameters as defined in table 4 along with giving
a crystal clear separation between the language
Hindi and English used in the code mixed dataset.
This result shows that this model can be scaled to
detect language in code mixed data without any
additional feature engineering.

6 Conclusions

The intricacy of language identification in code
mixed and code switched data is governed by the
following: data source, code switching and code
mixing manners, and the relation between the
languages involved. We find that the code mixing
is more used in social media context as per the
evaluation and experiments were undertaken in

Fig. 8. Visualization of word representation learned by

the Bi-LSTM model for Hindi-English

Table 8. F measure obtained for WhatsApp

Embedding Type E H NE

Character
Embedding

1 gram 52.42 80.15 28.57

3 gram 54.99 80.26 37.70

5 gram 54.39 80.91 31.58

Word
Embedding

1 gram 50.42 79.62 40.00

3 gram 60.88 81.98 40.27

5 gram 53.70 80.19 40.12

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1415–1427
doi: 10.13053/CyS-24-4-3151

An Effective Bi-LSTM Word Embedding System for Analysis and Identification of Language... 1425

ISSN 2007-9737

this work. Code mixing metrics helps in identifying
the code-mixing patterns across language pairs.

By analyzing the code mixing metrics we
conclude that Hindi-English words are often mixed
in our dataset. It would be a great idea to
investigate the emerging trend of code switching
and code mixing to bring conclusion about the
behavioral patterns in the data of different sources
like lyrics of songs, chat data having different
language sets, blog data and scripts of plays or
movies. We have implemented two different
evaluation models: statistical model and neural
based learning model and obtained competitive
results for the identification of languages. This is
probably due to the amount of training and testing
data we have.

The results depict that the word embeddings
are capable to detect the language separation by
identifying the origin of the word and
correspondingly mapping to its language label. The
BLSTM system performs better for HIN-ENG
language pairs. The BLSTM model captures long-
distance dependencies in a sequence and this is in
line with the observation made above for
identifying word level language identification in
code mixed data considering the context of the
word belonging to labeled languages. Scaling this
system to identify other characteristics in linguistics
with different language dataset is a potential future
direction to explore.

References

1. Weiscbedel, R., Carbonell, J., Grosz, B., Lehnert,
W., Marcus, M., Perrault, R., & Wilensky, R.
(1989). White paper on natural language
processing. Association for Computational
Linguistics, pp. 481–493.

2. Kim, Y. (2014). Convolutional neural networks for
sentence classification. arXiv:1408.5882.

3. Barman, U., Das, A., Wagner, J., & Foster, J.
(2014). Code mixing: A challenge for Language
Identification in the Language of Social Media.
EMNLP´14, Vol. 13, pp. 1–23.

4. King, L., Baucom, E., Gilmanov, T., Kübler, S.,
Whyatt, D., Maier, W., & Rodrigues, P. (2014).

The IUCL+ System: Word-Level Language
Identification via Extended Markov Models.
Proceedings of the First Workshop on

Computational Approaches to Code Switching, pp.
102–106. DOI:10.3115/v1/W14-3912.

5. King, B. & Abney, S. (2013). Labeling the

languages of words in mixed-language documents
using weakly supervised methods. Proceedings of
the 2013 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pp. 1110–1119.

6. Dong, N. & Doʇruöz A.S. (2013). Word level

language identification in online multilingual
communication. Proceedings of the 2013
Conference on Empirical Methods in Natural
Language Processing, pp. 857–862.

7. Vyas, Y., Gella, S., Sharma, J., Bali, K., &
Choudhury, M. (2014). Pos tagging of english-hindi
code-mixed social media content. Proceedings of
the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 974–

979. DOI:10.3115/v1/D14-1105.

8. Das, A. & Gamback, B. (2014). Identifying

languages at the word level in code-mixed indian
social media text. ICON´14.

9. Sequiera, R., Choudhury, M., Gupta, P., Rosso,
P., Kumar, S., Banerjee, S., Naskar, S.,
Bandyopadhyay, S., Chittaranjan, G., Das, A., &
Chakma, K. (2015). Overview of FIRE´15 Shared

Task on Mixed Script Information Retrieval.
Proceedings of FIRE, Vol. 1587, pp. 19–25.

10. Jhamtani, H., Bhogi, S. K., & Raychoudhury, V.
(2014). Word-level language identification in bi-

lingual code-switched texts. 28th Pacific Asia
Conference on Language, Information and
Computation, pp. 348–357.

11. Ethiraj, R., Shanmugam, S., Srinivasa, G., &
Sinha, N. (2015). NELIS - Named Entity and

Language Identification System: Shared Task
System Description. Proceedings of FIRE, Vol.
1587, pp. 43–46.

12. Bhargava, R., Sharma, Y., & Sharma, S. (2016).

Sentiment Analysis for Mixed Script Indic
Sentences. International Conference on Advances
in Computing, Communications and Informatics,
ICACCI´16, pp. 524–529. DOI:10.1109/ICACCI.
2016.7732099.

13. Sharma, S., Srinivas, P., & Balabantaray, R.
(2016). Emotion Detection using Online Machine

Learning Method and TLBO on Mixed Script.
Language Resources and Evaluation Conference,
Vol. 10, No. 5, pp. 47–51.

14. Barman, U., Wagner, J., & Foster, J. (2016). Part-

of-speech tagging of code-mixed social media
content: Pipeline, stacking and joint modeling.
Proceedings of the Second Workshop on

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1415–1427
doi: 10.13053/CyS-24-4-3151

Shashi Shekhar, Dilip Kumar Sharma, M.M. Sufyan Beg1426

ISSN 2007-9737

Computational Approaches to Code Switchingpp,
pp. 30–39.

15. Bali, K., Jatin, S., Choudhury, M., & Vyas, Y.
(2014). I am borrowing ya mixing?. An Analysis of

English-Hindi Code Mixing in Facebook.
Proceedings of the First Workshop on
Computational Approaches to Code Switching, pp.
116–126.

16. Vyas, Y., Gella, S., Sharma, J., Bali, K., &
Choudhury, M. (2014). POS tagging of English-

Hindi Code-Mixed Social Media Content.
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, pp.

974– 979.

17. Rao, P.R.K. & Devi, S. (2016). CMEE-IL: Code Mix

Entity Extraction in Indian Languages from Social
Media Text@FIRE´16 - An Overview. FIRE
Workshops, Vol. 1737, pp. 289–295.

18. Remmiya-Devi, G., Veena, P.V., Anand-Kumar,
M., & Soman, K. P. (2016). AMRITA-CEN@FIRE

2016: Code-mix Entity Extraction for Hindi-English
and Tamil-English tweets. CEUR Workshop
Proceedings, Vol. 1737, pp. 304–308.

19. Sapkal, K. & Shrawankar, U. (2016).

Transliteration of Secured SMS to Indian Regional
Language. Procedia Computer Science, Vol. 78, pp.

748–755. DOI: 10.1016/j.procs.2016.02.048.

20. Zubiaga, A., Vicente, I.S., Gamallo, P., Pichel,
J.R., Alegria, I., Aranberri, N., & Fresno, V.
(2015). TweetLID: A benchmark for tweet language
identification. Language Resources and Evaluation,
Vol. 50, No. 4, pp. 729–766. DOI:10.1007/s10579-
015-9317-4.

21. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed,
S., Anguelov, D., & Rabinovich, A. (2015). Going
deeper with convolutions. Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 1–9. DOI:10.1109/CVPR.2015.

7298594.

22. LeCun, Y., Haffner, P., Bottou, L., & Bengio. Y.
(1999). Object recognition with gradient-based
learning. Shape, Contour and Grouping in
Computer Vision, pp. 319–345.

23. Hochreiter, S. & Schmidhuber, J. (1997). Long
short-term memory. Neural Computation, Vol. 9, No.

8, pp. 1735–1780. DOI:10.1162/neco.1997.
9.8.1735

24. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.
S., & Dean, J. (2013). Distributed Representations

of Words and Phrases and their Compositionality.
pp. 3111–3119.

25. Jamatia, A. & Das, A. (2016). Task Report: Tool

Contest on POS Tagging for Code-mixed Indian
Social Media (Facebook, Twitter, and Whatsapp)
Text@ ICON 2016. Conference International
Conference on Natural Language Processing.

26. Banerjee, S., Chakma, K., Naskar, S., Das, A.,
Rosso, P., Bandyopadhyay, S., & Choudhury, M.
(2016). Overview of the Mixed Script Information
Retrieval (MSIR) at FIRE-2016. CEUR Workshop
Proceedings, Vol. 1737, pp. 94–99. DOI:10.1007/
978-3-319-73606-8_3.

27. Sequiera, R., Choudhury, P., Rosso, P., Kumar,
S., Banerjee, S., Naskar, S., Bandyopadhyay, S.,
Chittaranjan, G., Das, A., & Chakma, K. (2015).

Overview of FIRE´15 Shared Task on Mixed Script
Information Retrieval. Post Proceedings of the
Workshops at the 7th Forum for Information
Retrieval Evaluation, Gandhinaga, Vol. 1587, pp.
19–25.

28. Srinidhi-Skanda, V., Singh, S., Remmiya-Devi,
G., Veena, P.V., Anand-Kumar, M., & Soman, K.
P. (2016). CEN@ Amrita FIRE 2016: Context based

Character Embeddings for Entity Extraction in
Code-Mixed Text. CEUR Workshop Proceedings,

Vol. 1737, pp. 321–324.

29. Alekseev, A. & Nikolenko, S. (2017). Word

embeddings for user profiling in online social
networks. Computación y Sistemas, Vol. 21, No. 2.
DOI:10.13053/cys-21-2-2734.

30. Shekhar, S., Sharma, D.K., & Beg, M.S. (2018).

Hindi Roman Linguistic Framework for Retrieving
Transliteration Variants using Bootstrapping.
Procedia Computer Science, Vol. 125, pp. 59–67.
DOI:10.1016/j.procs.2017.12.010.

31. Veena, P.V., Anand-Kumar, M., & Soman, K. P.
(2018). Character Embedding for Language

Identification in Hindi-English Code-mixed Social
Media Text. Computación y Sistemas, Vol. 22, No.
1. DOI:10.13053/cys-22-1-2775.

Article received on 20/02/2019; accepted on 25/07/2020.
Corresponding author is Shashi Shekhar.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1415–1427
doi: 10.13053/CyS-24-4-3151

An Effective Bi-LSTM Word Embedding System for Analysis and Identification of Language... 1427

ISSN 2007-9737

