
Educational Robot Arm Development

David Sáenz Zamarrón, Nancy Ivette Arana de las Casas, Enrique García Grajeda,
José Francisco Alatorre Ávila, Naciff Arroyo Jorge Uday

Tecnológico Nacional de México,
Instituto Tecnológico de Ciudad Cuauhtémoc,

División de Estudios de Posgrado e Investigación,
Mexico

davsaenzz@gmail.com

Abstract. A robot is a complex machine that involves the

conjunction of many technologies working harmoniously
together to provide to the final user, a nice interface to
interact. The kind of problems need to be solved to have
a robotic arm involves overcoming lateral loads, power
consumption, solution of kinematics equations, etc.
Peter Corke’s Robotics Toolbox [1] is a computer library
useful to design, model, visualize and simulate a robot
and it is widely utilized in the present study. This paper
describes the design process and construction of a 4-
DOF robotic arm, involving CAD, CAM, electronics, and
Matlab’s Robotics Toolbox to solve kinematics. It
constitutes a low-cost platform, in a process of
permanent improvement, for the study of laboratory
courses of design, manufacturing, electronics and
robotics, essentials for many engineering curriculums.
The platform provides the student with hands-on
experience that consolidates classroom lectures.

Keywords. Educational robot, Matlab robotic toolbox,

CNC machining.

1 Introduction

Robot arms are programmable electro-mechanical
devices designed to carry out specific tasks such
as assembly, material handling, and loading of a
tool for: welding, painting, spraying, etc. To
understand the complexity of robots, engineering
knowledge of design, manufacturing, mechanical,
electrical, computer science and mathematics
are required.

Applications and developments in the field of
robotics have been increasing over time and
demand trained graduates who must be proficient
in all the technologies related to it.

Teaching engineering courses and specially
robotics, is an important subject in undergraduate
and graduate school. Engineering educators agree
that experience with the real world cannot be
taught just in the classroom, hands-on tangible
experience is needed.

In addition, it is well known that the more active
and pragmatic the students are involved in
applying a subject, the better the learning of its
theoretical aspects. That is why laboratories are
paired to theoretical classes to combine these two
important learning aspects. Thus, when teaching a
robotics course, it is recommended the use of an
experimental platform in the learning process [2] as
it allows a practical experience demonstrating the
basic concepts and keeping the students' interest
and motivation.

A possible platform are commercial industrial
manipulator robots, but this constitute limited
resources for students to access because of their
high costs for institutions. In addition, they could be
only used through their proprietary motion
description languages, which are specifics to any
given manufacturer, requiring to spend long time
learning any of them, and the user won’t be
involved in designing aspects of the robot.
However, even if an industrial robotic design is
trying to be built, it is still difficult to achieve,
because its parts require long, and expensive
processes operated in specialized laboratory
equipment to generate an industrial design.

A more reachable platform could be built with
open hardware/software philosophy. In this case,
the robot designer must deal with concepts like
rigid links which are interconnected by joints into a

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1387–1401
doi: 10.13053/CyS-24-4-3165

ISSN 2007-9737

serial chain and manipulated with servo motors in
the so-called Joint space. Additionally, there is
another Cartesian space where objects and task
are defined to operate. Transformation between
Joint and Cartesian space and vice versa is the
issue of kinematics and it is required for any
robot arm.

Hence forward kinematics is defined as
transformation from joint space to Cartesian space
whereas inverse kinematics is defined as
transformation from Cartesian space to
joint space. Solution for kinematics is available in
algorithms written into specialized libraries. That is
the case of the open source Matlab Toolbox for
robotics: Robotics Toolbox, this has been
translated into a series of different languages such
as Python, SciLab and LabView.

The Toolboxes have some important virtues.
First, they have been available for a long time and
have been used by many people for different
problems. So the code could be said to have a high
degree of reliability. The Robotics Toolbox [1] is a
software package that allows a MATLAB user to
readily create and manipulate datatypes
fundamental to robotics such as homogeneous
transformations and trajectories. Functions
provided, for arbitrary serial-link manipulators,
include forward and inverse kinematics.

When considering moving the joints, the driver
could be an open-source hardware resource.
These has grown up in the last times, offering
many possibilities in open platforms, and every
time come new products at low cost. Open
hardware offers the possibility to educators and
researchers to add and program the hardware
devices as they want, making the systems
completely customizable. In the case of robotics,
there is a tendency towards open hardware
products [3] because its low cost and
easy development.

Thus, the need to develop an experimental
platform to serve the purpose of a permanent
laboratory for universities and research institutions
is justified.

To emphasize on the general principles and
provide the student with both a theoretical
appreciation of, and practical design and
construction experience, a robot arm manipulator
has been developed. It is especially valuable for
many universities with limited economic resources.

Therefore, it is a good alternative for such robot
because it is inexpensive to build.

This paper shows the design, manufacturing,
mechanics, electronics, and software of an
educational robot arm manipulator. Additionally,
mathematical model for the forward and inverse
kinematics problems were implemented by the
educational robot arm model. A GUI software
interface of great importance was developed to use
the physical robot arm together with its
virtual mirror.

The platform prototype is a robotic arm
manipulator with 4 degrees of freedom (DOF). The
arm consists of four servomotors: the base,
shoulder, elbow, and the wrist, where a marker is
hold as a tool. The motor control is performed by a
servo controller Arduino UNO that allows a serial
connection to send and receive commands to
a computer.

The robot arm has been taken as a case study;
it utilizes Matlab/Arduino as the tools for testing the
characteristics of the robot. The developed
platform is used as an educational tool. This work
will continue to increase the education, training,
research and development possibilities for robotics
classes and research in graduate and
undergraduate studies.

2 Background

Educational robotic research efforts have been
reported in the literature. In [4] a robotic course
was developed in Korea integrating the use of
LEGO kits, humanoids, and industrial robots to
improve competitions in engineering education.
The author presents an approach to teaching
robotics to undergraduate students that used
modular, reconfigurable robots developed at
LEGO. These kits are accessible in cost, permitting
students to acquire experience in the kinematic
design of fixed robot manipulators. But students, in
fact, did not build the robots.

A commercial 5 DOF robot with the CRS
CataLyst-5 from Thermo Fisher Scientific Inc. was
controlled through a Matlab/Simulink open-
architecture interface, being mostly a software
project [5]. With [6], an educational robotic arm was
built, but the interface to it, is through

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1387–1401
doi: 10.13053/CyS-24-4-3165

David Sáenz Zamarrón, Nancy Ivette Arana de las Casas, Enrique García Grajeda, et al.1388

ISSN 2007-9737

Matlab/Simulink, so the robot can be used just for
experimented programmers.

Others educational robotic arm were thought as
remote laboratories developing e-learning
potentialities in the field of robotics tele
laboratories. A virtual training environment was
created through a commercial SCARA-type
AdeptOne-MV robot arm, a video camera, and an
internet connection [7].

A tele laboratory was also created to access
remotely a SCORBOT ER-V PLUS robot based on
Web by using the free open-source software:
Scilab, Comedi and Linux [8]. In the two previous
projects, the students acquired design ability by
doing active learning, in a tele laboratory
characterized by high immersivity. Virtual
laboratories were accessible 24 hours a day and
allowed the students to practice their robotics skills
at home and at their free time. However, students
were focused more on training than in
robotic design.

The virtual robotic systems represent an
illustrative and cost-effective solution. However,
such systems, being mostly soft, may not offer the
necessary exposure corresponding to the real
robot performance. Virtual models do not address
the complexities such as backlash, friction, non-
collocation, etc. associated with the physical
systems. Typically, the accuracy and credibility of
results obtained in a simulated environment are not
comparable with physical experiments.

Additionally, training platforms based on
commercial robots and development of software
had been reported. In [9] the GUI software for
kinematics of a commercial 5 DOF Lynx-6 was
developed. Visual Studio.Net 2005 was used for
the implementation. Students learn how to use
knowledge and techniques to carry out a set of
standard tasks for robots.

A robotic arm was used to test the sliding mode
and computed torque control strategies. But no
detail on the construction of the robot was given,
neither an educational aspect of the project was
especially underlined [10].

BRACON robotic arm based on Dynamixel
servomotors and Python software was developed
[11]. The project presented a low-cost robotic arm
with a nice GUI, but important details of links
mechanical design were not shown.

An industrial robotic arm was taken to be
modeled using D-H methodology and to generate
simulated trajectories based on computer vision
techniques [12]. In more hands-on approaches,
students can develop their own robot structure and
then program it with a language. There have been
found several papers addressing different areas of
teaching and learning with robots for the
development of suitable teaching curricula.

A 6 DOF robotic arm was built and reported in
[13]. Servomotors were used, details of the design
were given, a nice GUI was created, but no
solution of the inverse kinematic problem was
done. A particularly good effort to amplify access
to practical experiences in educational robotics
was done in [14]. The activities implemented with
this platform included: playing, building, exploring,
programming, competing, and learning various
science subjects. However, it was completely
centered in Lego Mindstorm kits, which is not
adequate for university courses and research
because of its limited hardware. In addition, no
fabrication processes skills were developed in
that project.

There are some papers documenting the use of
many different low-cost open-source
microcontroller cards based on ARM processors.
Given that the main purpose of these works was to
build a low cost open-source platform to introduce
robotics concepts, any card could be suitable since
high computational resources were not required.
However, its programming should had been simple
because maybe the students did not know much
about programming or perhaps, they were
learning it.

A good review of low-cost open hardware
microcontroller boards was given in [15]. Arduino,
Raspberry Pi and BeagleBone among others were
mentioned. These boards are useful to control
educational platforms like Lego. Arduino support
for Simulink software was proposed to control the
hardware. In [16] an ED722C 6-DOF commercial
robotic arm was used to be motion controlled
through a camera seeing objects in the
robot’s workspace.

The project was more interested on the
technical aspects of the tasks development instead
of getting educational goals. In [17] Arduino was
used to control several types of robots like line

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1387–1401
doi: 10.13053/CyS-24-4-3165

Educational Robot Arm Development 1389

ISSN 2007-9737

followers, bug-like, boat-sailer, explorer and
battle oriented.

Arduino arose in 2005 and due to its low cost
and open hardware policy, in a few years it has
achieved widely spread within the scientific and
research community as the brain of various kind
of projects.

The Robotics Toolbox [1] provides a diverse
range of functions to simulate arm type robots. The
original Toolbox started in 1990 and was dedicated
only to arm type robots and supported a very
general method of representing the structure of a
manipulator with serial joints using objects of
Matlab. Arbitrary manipulators with serial links can
be created and the Toolbox provides functions for
direct and inverse kinematics and dynamics.

The Toolbox includes functions to manipulate
and convert between data types such as vectors,
homogeneous transformations and unitary
quaternies which are necessary to represent
position and three-dimensional orientation.

Other Matlab toolbox for teaching, modeling
and simulation of robotics manipulators had been
developed like [18]. This toolbox has been called
ARTE (A Robotics Toolbox for Education). Another
Matlab toolbox had been developed; it is called
ROBOLAB and includes into its library the 16
different 6-DOF fundamental serial robot
manipulators [19].

A very convenient GUI allowed the movement
of virtual robots chosen in the software. Both
toolboxes: ARTE and ROBOLAB, by far, are not so
deployed and accepted like the Corke’s one [1].

3 Design and Construction

Through 3D CAD software for mechanical
modeling: SolidWorks, the basic link was created
by means of a draw with real measurements. This
is done in order to later build and assemble each
of them together with its servomotor and, with four
of them, form the articulations and links, needed for
the construction of the final assembly.

The development of the piece in software
allows seeing the characteristics that the element
has before manufacturing it, this facilitates finding
errors and making the corrections that correspond.
Two terminals were designed for each link that
contains the assembly until the end-effector.

The link (figure 1) that was designed has two
terminals, each one on one end and with a different
function. The one on the right has a rectangular
hole that holds the servomotor to the link with
screws.

The one on the left, has the function of
connecting with the next link in the kinematic chain.
Figure 1 shows the design of the link on an
aluminum framework that is the material selected
to make the piece.

The circular connection, leftmost connection on
figure 1 is connected to the next link, through a
servo hub, which runs perfectly through a servo
block kit. The servo hub is made of aluminum, it
has a length of 1”, a hub diameter of 1”, a shaft
diameter of 0.5”, and utilize the 0.77” hub pattern
(figure 2).

The aluminum framework has ends bent at 90°,
which allows the piece to function as a
reinforcement structure. In addition, the material is
light, resistant and easy for machining. There was
access to a CNC milling machine DYNA MACH
EF8035 to perform the machining by means of chip
cutting by turning a 3/8" cutter with 4 cutting edges.

Through milling, it is possible to machine the
most diverse materials, such as wood, steel, cast
iron, non-ferrous metals, and synthetic materials,
on flat or curved surfaces.

The case of aluminum is particularly soft when
cut. In addition, the milled pieces were roughened
and tuned to avoid roughness. To operate the CNC
milling machine, a program in G code was wrote,
this is the most used in this type of numerical
control machines.

Fig. 1. Mechanical flat of aluminum framework

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1387–1401
doi: 10.13053/CyS-24-4-3165

David Sáenz Zamarrón, Nancy Ivette Arana de las Casas, Enrique García Grajeda, et al.1390

ISSN 2007-9737

In general terms, G-code is a language by
means of which computer-controlled machines and
tools can be told what to do and how to do it, for
this machine, the 4M software was used. These
actions are defined by instructions on where to
move, how fast to move and what path to follow.
The G codes can be those that contain movements

and fixed cycles and M, those that are auxiliary
functions. Next, the simulation stage comes, it
helps the designer of the piece to foresee and
detect problems related to the design before it
even physically being built. Hence offering a much
more efficient development stage in terms of time
and cost.

Figure 3 shows the simulation of the machining
of the link at the end of the servomotor. During the
process of the simulation, it is possible to observe
by which places the cutter is passing and, in this
way, some possible error can be found. It is also
possible to see in which parts it is, where the milling
machine is cutting and in which it is not, this by
means of the color of the lines that the simulation
leaves. If they are marked lines it is when it is
cutting and those that are weaker color is when it
is just making a quick movement.

Figure 4 displays the milling of the link at the
end of the servomotor. Figure 5 demonstrates the
simulation of the milling of the link at its connecting
end to the next link. The physical machining of the
link is performed at the connection end to the next
link, figure 6.

The material that is machined is the 1mm thick
aluminum framework with irrelevant measures
since the code was designed so that this does not
matter. That is, the machining starts only from a
center and from there it opens. The proper speed
and rotation speed must be specified to obtain
adequate machining.

To increase a servo’s load-bearing capabilities
is necessary to isolate the lateral load from the
servo spline and case. It can be done by using a
servo block. The servo block allows users to create
complex, extremely rigid, structures with ease
using standard Hitec servos. Using a clamping hub
on the 1/2” aluminum servo shaft provides an easy
way to adjust the position of the component
attached to the ServoBlock.

The robust aluminum framework acts as a
servo exoskeleton, greatly enhancing the
mechanical loads the servo can withstand. The
.77” hub pattern is repeated throughout the
framework to allow endless attachment options. It
is compatible with all standard size Hitec servos.
Figure 7 displays a Hitec servo attached to a servo
block kit. The robot arm rotational joints are
controlled by dedicated servo motors. Servomotors
are some kinds of traction elements.

Fig. 2. Servo hub

Fig. 3. Rectangular cut simulation

Fig. 4. Machined of link, servo edge

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1387–1401
doi: 10.13053/CyS-24-4-3165

Educational Robot Arm Development 1391

ISSN 2007-9737

The servo selected was the powerful Hitec HS-
625MG. This high-quality servo is perfect for

mechatronic and robotics needs. This element is
one of the strongest metal gear servos that is
available and at a low cost. The HS-625MG servo
comes standard with a 3-pin gold plated power and
control cable. The HS-625MG can take in 6 volts
and deliver 94 oz-in of maximum torque at 0.15
sec/60°.

The servomotors have an acceptable accuracy,
given in milliseconds. They can be manipulated by
any microcontroller with PWM module, in this case,
the Arduino UNO. The microcontroller for example,
produces a pulse width, this is sent into a
servomotor input, and it can respond with a
movement given in degrees.

In this approach being described, four servo
motors are controlled to form the kinematics chain.
For the robot arm being developed, the base link is
the one that most care must be taken, because of
the lateral loads it is imposed. A swivel hub
connection was used on the base link to allow a
360° horizontally rotation.

The swivel hub lets the connection of any two
parts together and has them swivel a full 360°.
Internal ball bearings allow for smooth motion.
Four holes are on both sides, making attachment
easy. Figure 8 shows the swivel hub.

However, the servo motors draw considerable
power and must be fed with enough power supply.
For this purpose, a 18W 6-in-1 based on the
LM350K voltage regulator was built. It provides 6
VDC @ 3A, 18W max output. It takes a 110VAC,
50/60Hz input. Figure 9 illustrate the power supply
and Arduino UNO servo controller.

Servo motors have three wires: power, ground,
and signal. The servo’s power wire should be
connected to the 6V pin on the power supply. The
ground wire should be connected to a ground pin
on the power supply and the Arduino board. The
signal pin should be connected to a digital pin on
the Arduino board. To facilitate these connections
special 3-feet long cable was built; it is seen in
figure 10.

The final mechanical assembly of the prototype
of the real robot along with all its wiring and the
end-effector, a marker, is revealed in figure 11.
This building stage allows students to get
acquainted to various aspects of technical design,
teamwork, and material constraints. In this stage,
design errors frequently occur like building too big
links, selection of weak motors, structures stressed

Fig. 5. Circular cut simulation

Fig. 6. Machined of link, next link connection edge

Fig. 7. Servo block kit and servo

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1387–1401
doi: 10.13053/CyS-24-4-3165

David Sáenz Zamarrón, Nancy Ivette Arana de las Casas, Enrique García Grajeda, et al.1392

ISSN 2007-9737

because of its own weight or selection of an
inappropriate material. These errors had to be
overcome to have an operative arm. Figure 12
displays the serial communication scheme
between the computer, which is using MATLAB® /
Robotics Toolbox [20] and the Arduino; as well as
the communication by train of pulses of the Arduino
(library Servo) and the servomotor.

A sequence of four consecutive integer values
is sent to serial servo controller from the computer.
These are a sync byte ($), the desired position joint
for each of the four servos (qi) and the final
character (#). Rotational position of each of the
servo motors is determined by the specific angle
(qi) by an internal servomotor’s closed
loop feedback.

4 Modelling

The kinematics defines the movement of a body as
the transformation from its Cartesian space to its
joint space and vice versa [21].

A manipulator with serial joints contains a chain
of joints and mechanical links. Each joint can move
the league of its neighbor further away from its
nearest neighbor to the origin. One end of the
chain, the base, is fixed and the other end is free
to move in space, the latter holds the end-effector.
The kinematic modeling of a robot is categorized
into forward kinematics and inverse kinematics.

The forward kinematic problem consists of
determining the location of end-effector in the work
space, i.e., position and orientation with respect to
a coordinate system that is taken as reference. It is
determined based on the joint variables and the
parametric values of the robot configuration given
by its D-H parameters [22]. The inverse kinematics
problem refers to finding the values of the joint
variables that allows the manipulator to reach the
given location [23].

For a manipulator with N joints, numbered from

1 to N numbered. Link 1 is the base of the

manipulator and link N loads the end-effector. The
joint i connects the link i-1 to the link i and therefore

the joint i moves the link i-1. A link is a rigid body
that defines the spatial relationship between two
neighboring joints. A link is specified by two
parameters, its length ai and its rotation αi. The
joints are also described by two parameters.

Fig. 8. Swivel hub

Fig. 9. Power supply & controller

Fig. 10. Special connection cable

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1387–1401
doi: 10.13053/CyS-24-4-3165

Educational Robot Arm Development 1393

ISSN 2007-9737

The displacement of link di is the distance from
one joint to the next along the axis of the joint. The

angle of the joint θi is the rotation of one joint with
respect to the next around the axis of the joint.
Transformation link matrix is shown in (1):

𝑻𝒊
𝒊−𝟏 (𝜃𝑖 , 𝑑𝑖 , 𝑎𝑖 , 𝛼𝑖)

= [

cos 𝜃𝑖

sin 𝜃𝑖

0
0

− sin 𝜃𝑖 cos 𝛼𝑖

cos 𝜃𝑖 cos 𝛼𝑖

sin 𝛼𝑖

0

sin 𝜃𝑖 sin 𝛼𝑖

− cos 𝜃𝑖 sin 𝛼𝑖
cos 𝛼𝑖

0

cos 𝛼𝑖

𝑎𝑖 sin 𝜃𝑖

𝑑𝑖

1

].
(1)

4.1 D-H Parameters

The structure of articulations for the robot is
described by a chain of joints of Revolution. A
systematic way of describing the geometry of a
chain of serial joints was proposed by Denavit and
Hartenberg and is implemented into the Matlab’s
Robotics Toolbox [1].

Next, Table 1 shows the Denavit-Hartenberg
parameters for the robot developed. The following
segment of code shows variables defining the D-H
parameters into the Matlab program:

N=5; %4 DOF

% D-H Parameters

Theta =[q(1,1) q(1,2) q(1,3) q(1,4) q(1,5) q(1,6)];

d =[12 0 0 0 10 0];

a =[0 12 12 0 0 0];

alpha =[-pi/2 pi -pi/2 0 0]

4.2 Forward Kinematics

Forward kinematics is expressed as the pose of
the end-effector of the robot arm according to the
values of the joints. Homogeneous transformations
are used; these are simply the product of the
transformation matrices of each individual joint.

A manipulator robot with six articulations or
degrees of freedom (DOF) allows reaching an
arbitrary pose in the end-effector. The

transformation of the manipulator is written as 𝑻𝟔
𝟎

for the 6-axis robot [24, 25].
The first three columns in the matrices

represent the orientation of the end effectors,
whereas the last column represents the position of
the end effectors.

The forward kinematics problem is concerned
with the relationship between the individual joints
of the robot manipulator and the position and
orientation of the end-effector.

Forward Kinematics equations are generated
from the transformation matrixes (4)-(9) and the
forward kinematics solution of the arm is the

product of these six matrices identified as 𝑻𝟔
𝟎 .

The approach divides the forward kinematics

problem in two parts. From 𝑻𝟏
𝟎 to 𝑻𝟑

𝟐 is the elbow

manipulator part and from 𝑻𝟒
𝟑 to 𝑻𝟔

𝟓 the wrist

movement description. Elbow manipulator and
wrist are defined through D-H methodology.

Fig. 11. Robot on rest position

Fig. 12. Robot communication scheme

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1387–1401
doi: 10.13053/CyS-24-4-3165

David Sáenz Zamarrón, Nancy Ivette Arana de las Casas, Enrique García Grajeda, et al.1394

ISSN 2007-9737

The direct model is the relation that allows

determining the matrix column x of operational
coordinates of the robot corresponding to a given
configuration q, see (2):

𝒙 = 𝑓(𝒒). (2)

The direct geometric model of a robot can be
obtained from the homogeneous transformation

matrix of the robot that defines the N links of the
terminal link with respect to the link 0 of the base
of the robot. In the case of simple structure of
robots, the transformation matrix is given by (3):

𝑻𝟔
𝟎 = 𝑻𝟏

𝟎 𝑻 𝟐
𝟏 𝑻 𝟑

𝟐 𝑻𝟒
𝟑 𝑻 𝟓

𝟒 𝑻𝟔
𝟓 . (3)

Equations (4-9) are the transformation matrices
for each link:

𝑻𝟏
𝟎 = [

𝐶𝑞1 0 −𝑆𝑞1 0

𝑆𝑞1 0 𝐶𝑞1 0

0
0

−1
0

0
0

𝑑1

1

], (4)

𝑻𝟐
𝟏 = [

𝐶𝑞2 𝑆𝑞2 0 𝑎2𝐶𝑞2

𝑆𝑞2 −𝐶𝑞2 0 𝑎2𝑆𝑞2

0
0

0
0

−1
0

0
1

], (5)

𝑻𝟑
𝟐 = [

𝐶𝑞3 𝑆𝑞3 0 𝑎3𝐶𝑞3

𝑆𝑞3 −𝐶𝑞3 0 𝑎3𝑆𝑞3

0
0

0
0

−1
0

0
1

], (6)

𝑻𝟒
𝟑 = [

𝐶𝑞4 0 −𝑆𝑞4 0

𝑆𝑞4 0 𝐶𝑞4 0

0
0

−1
0

0
0

0
1

], (7)

𝑻𝟓
𝟒 = [

𝐶𝑞5 −𝑆𝑞5 0 0
𝑆𝑞5 𝐶𝑞5 0 0

0
0

0
0

1
0

𝑑5

1

], (8)

𝑻𝟔
𝟓 = [

𝐶𝑞6 −𝑆𝑞6 0 0
𝑆𝑞6 𝐶𝑞6 0 0

0
0

0
0

1
0

0
1

]. (9)

The code below is the calculation of the forward

kinetics made in the project using the Corke’s fkine
Toolbox method [1]:

qb=handles.Robotqb;

q=qb(index,:)*pi/180;

qi=q;

Point=CI.fkine(qi); %Position in world coordinate system

handles.Matriz=Point;

4.3 Inverse Kinematics

Inverse kinematics is a procedure that seeks to

obtain the required joint coordinate values q, given
the desired Cartesian pose of the end-effector x.
This is a more difficult problem than forward
kinematics. On the contrary of forward kinematics,
there exist multiple solutions in inverse kinematics
[26, 27]. Some constraints can be used to
decrease the number of solutions for simplicity.
Into Corke’s Robotic Toolbox [1] there are two
methods useful to solve the inverse
kinematics problem:

a) Closed-Form solution (algebraic and
geometric methods).

b) Numerical solution.

For the first one the kinematics equations that
relate the joint variables to the end-effector pose
are nonlinear and the Toolbox gives only a
restrained description of the manipulator in terms
of kinematic parameters. The robot must have 6-
axis; also, the robot must have the three wrist axes
intersect at a single point (spherical wrist).

For the case of robots, which do not meet this
specification, an iterative and numerical slower
solution is implemented.

The numerical solution takes advantage of the
differential equations that relates joint rates to end-

Table 1. D-H Parameters, angles (Rad), lengths (cm)

Link θi di ai αi offset

1 q1 12 0 -π/2 .222π

2 q2 0 12 π 1.22π

3 q3 0 12 π 1.33π

4 q4 0 0 -π/2 .888π

5 q5 10 0 0 0

6 q6 0 0 0 0

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1387–1401
doi: 10.13053/CyS-24-4-3165

Educational Robot Arm Development 1395

ISSN 2007-9737

effector velocities, which are linear. It takes the
form of (10), which can be easily solved but
produces joint rates, rather than the joint
values themselves:

𝑽 = 𝑱(𝒒)�̇�, (10)

where 𝒒 = [𝑞1, 𝑞2, … , 𝑞𝑛]𝑇 is the joint variable

vector and �̇� = [𝑞1̇, 𝑞2̇, … , 𝑞�̇�]𝑇 is the joint rates

vector and produces spatial velocities V = [vx, vy, vx,
wx, wy, wz]T.

In order to track a trajectory that can be
described by a sequence of desired pose matrices
at regular time intervals tk along with desired end-
effector velocities V(tk) the joint rate vectors can be
computed based on (11):

�̇�(𝑡𝑘) = 𝑱[𝒒(𝑡𝑘)]−1𝑽(𝒕𝒌). (11)

Using the numerical integration approximation
shown in (12) joint variable vector for the next point
on the trajectory is calculated.

𝒒(𝑡𝑘+1) = 𝒒(𝒕𝒌) + �̇�(𝑡𝑘)∆𝑡, (12)

Δt is the time interval between points on
the trajectory.

It should be small enough to minimize
computation errors from one step to the next on the
trajectory. The kinematic inversion, based on the
manipulator Jacobian, is applicable to robots of
any architecture but requires a nonsingular
Jacobian matrix at every point on the trajectory,
which is rank deficient compared to the maximum
of the Jacobian, singularity is stated in (13).

|𝑱(𝒒)| = 0. (13)

At the singularity, joint rates will go to infinity;
but even if the robot is close to a singularity, there
is the problem for some Cartesian end-effector
velocities that require extremely high joint rates.

An alternative for this problem is to use the
Jacobian transpose.

The Jacobian transpose transforms a wrench
applied at the end-effector to torques and forces
experienced at the joints, see (14):

𝑸 = 𝑱𝑇(𝒒)𝒈, (14)

where g is a wrench which is a vector in the world
coordinate frame of forces and moments.

g = [fx, fy, fz, mx, my, mz].

Q is a joint force vector. The elements of Q are
joint torque or force for revolute or prismatic joints,
respectively. This mapping from the wrench to joint
forces differs from the velocity because singularity
will not happen, as it can be for velocity, since the
Jacobian’s transpose is used.

This property is harnessed to solve the inverse
kinematic problem into the Corke´s Toolbox
numerically. The Toolbox develops this approach
based on the forward kinematics and the Jacobian
transpose which can compute for any manipulator
configuration, these functions have no
singularities. Into the Toolbox this approach
assumes a special spring between the end-effector
of the different poses which is pulling and twisting
the robot´s end-effector toward the desired pose
with a wrench proportional to the difference in
pose. The robot has virtually viscous dampers so
the joint velocity due to the applied forces will be
proportional (15):

�̇�(𝑡𝑘+1) = 𝑸(𝒒)/𝐵, (15)

where B is the joint damping coefficient. The
update for the joint coordinate is the same as (12).

This algorithm is implemented into the ikine
Toolbox method [1] and is used in this project in
the fragment of code below.

There, an incremental pose kinematics inverse

is used in order to have world (x, y, z)
displacements by using the same Rotation

submatrix R3x3, and varying Translational

submatrix T3x1 into the Homogeneous
Transformation matrix:

Point=handles.Matriz;

Point(windice,4)=Point(windice,4)+w;

%handles.Matriz=Point;

%Obtaining the value of links for the desired point

q=CI.ikine(Point,qi,[1 1 1 1 0
0],'pinv',…'ilimit',2000,…

 'alpha',.05,'tol',.3);

if (isequal((q<0)|(q>pi),zeros(1,NArt)))

 qb(index,:)=round(q*180/pi);

 handles.Matriz=Point;

else

 q=qi;

end

handles.Robotqb=qb;

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1387–1401
doi: 10.13053/CyS-24-4-3165

David Sáenz Zamarrón, Nancy Ivette Arana de las Casas, Enrique García Grajeda, et al.1396

ISSN 2007-9737

5 User Graphics Interface

The need for a graphical interface (GUI) is very
important because it requires a user-friendly
interface for users who have limited
programming knowledge.

It is also required that GUI be intuitive, in such
a way that anyone familiar with a computer can
easily handle the robotic arm just using buttons,
text boxes, sliders, etc., and observe changes in
both virtual and physical robot arm.

The graphical interface designed for the four
degrees of freedom robot (figure 13) was
programmed using the MATLAB® software and
presents a compact version compared with
interfaces developed in other projects, such
as [28].

The interface that was created has four controls

(buttons: q+, q-, edit box: Deg, and a slide bar) that
modify the angle of one of the four joints that is
specifically selected to be changed (Joint). It
constitutes the direct kinematics. In addition, this
modification of the angle is changed in one of four

intervals given by the selection that is operated
in Increment.

The selection that affects the articulation space
(Joint) also affects the World space (inverse
kinematics) by selecting one of the three
references (wx, wy, wz) for an incremental
movement. There is a selection to visualize the
virtual robot from four different points of View.

The Home button sends the robot to its resting
position. The Store option stores a joint position in
memory and increases the Index. The Del button
removes the joint position indicated by Index.

The Save button saves all the joint positions of
the robot to a *.mat file, thus recording a trajectory.
A trajectory is a spatial construction, a location in
space that leads from an initial position to a final
position. The Load button loads a *.mat file with a
path to the robot. The Run button goes through the
joint positions that constitute the path to
be traveled.

When one of the joint controls is activated, the
change produced is observed graphically in the
virtual robot. Similarly, the updated value of the
joint variable can be seen in the Deg edit box. The
position of the slide bar for the modified joint is also
updated. Table 2 describes in detail each of the
controls of the developed graphical interface.

When the virtual robot in the software moves,

the same program sends the joint positions (q1, q2,
q3, q4) to the controller (Arduino UNO) through the
serial port so that these changes can be seen in
the servo motors of the real robot (figure 14).

5.1 Programming

The calculated qi values should be supplied into
the servo controller card from the computer. The
Arduino board handles the relevant angular motion
to every servo motor in the robot arm. Arduino IDE
is used directly to perform the programming on
the board.

To establish communication between the
interface and the robot, a serial communication
port is used. The pseudocode that was loaded on
the Arduino UNO card is presented; this code
receives articulated positions from the computer
and transfers them to the servo motors of
the robot:

a) Inclusion of the Servo library.

Fig. 13. Graphical Interface

Fig. 14. Virtual nd real robot arm

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1387–1401
doi: 10.13053/CyS-24-4-3165

Educational Robot Arm Development 1397

ISSN 2007-9737

b) Initialization of variables and position of

servomotors qi = [0° 90° 0° 0°].

c) Read the joint positions from the serial port.

d) Map the positions and write them to
servomotors.

e) Return to step c).

5.2 Algorithm

Next, the pseudocode of the program developed in
MATLAB® [20] is presented, with the purpose of
having a general understanding of its operation:

a) Initialization of program variables.

b) Initial joint position qi = [0° 90° 0° 0°].

c) Opening of the serial port.

d) Check user changes in controls that affect
joint space, update variables and interface,
solve direct kinematics.

e) Check user changes in controls that affect the
World space, update variables and interface,
solve inverse kinematics.

f) Write the current position qi to the serial port.
Under the format: $ q1 q2 q3 q4 #

g) Go back to step d).

h) If the program is closed, close before the
serial port.

6 Results

After mathematical modeling (D-H) and kinematic
solutions were generated and implemented by the
software, a Robot arm was developed and tested
in this study.

Several trajectories were generated, one of
them with the shape of a full circle (figure 15), this
was done in order to evaluate the adequate
generation of joint positions obtained by solving the
direct and inverse kinematics equations by
Matlab's Robotics Toolbox.

7 Discussion

The realization of this project allowed, since the
beginning, the enrichment of a senior-level
undergraduate robotic course showing many

Fig. 15. Evaluation of generated positions

Table 2. Controls of the interface

Control Description

Select the specified joint to be rotated.

Select the specified angular or linear
increment to be moved.

Select the specified world frame of
reference to be moved.

Select the specified point of view for the
robot.

Controls that change the angular
position of the selected joint.

Controls that change the selected
world frame by a specified increment.

 Sends the robot to Home.

 Motion over all the saved positions.

Index changes automatically when a
position is stored or deleted

 Store a position

 Delete a position

 Save a trajectory to a file

 Load a trajectory from a file

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1387–1401
doi: 10.13053/CyS-24-4-3165

David Sáenz Zamarrón, Nancy Ivette Arana de las Casas, Enrique García Grajeda, et al.1398

ISSN 2007-9737

positive results. Students were very enthusiastic
because their exposition to a real case of study,
also they learn to work in teams in the design and
construction of the robot. The students divided
tasks among themselves and scheduled
their work.

The course was organized in accordance with
specific goals. The first goal was to design the
robot, CAD was used to design the main
mechanical pieces under certain specifications,
and such was the case of the robot’s links.

The second goal was to develop manufacturing
processes, where the students were challenged by
machining pieces with Computer-Aided
Manufacturing (CAM) software/machines. In
addition, they constructed mechanical and
electrical assemblies of the manipulator robot
using tools such as band saws, drills, soldering
irons, and multimeters.

The third goal was to integrate mechanism,
electronic, and computer control, carrying out the
achievement of a functional robotic prototype. Here
the spectrum of topics required for developing the
actual robotic device were components like
mechanisms, structures, actuators, drivers, power
sources, wiring, microprocessors, peripherals, and
real-time programming. Because of the emphasis
upon integration, the project centered on
laboratory experiences in which student
configured, designed, and implemented
mechatronic devices.

The fourth goal was the implementation of
kinematics. Here concepts were exposed starting
from mathematical foundations, such as matrix
algebra and trigonometry. Students were
introduced to the concepts of direct and inverse
kinematics, singularity definition and avoidance,
joint rotations, translations, and trajectory
computation. Furthermore, in the fifth goal,
students demonstrated kinematics concepts
developing and programming laboratory
experiments with working robotic arm, with the
programming environment.

To make the laboratory experience more like
real, the six goal was devoted to put the complete
experimental robotic system together and to make
it move. Students stablished serial communication

1 Video Available: https://home.mycloud.com/action/share/

7387d7d0-56eb-4dac-a0a4-c3b880b0d57e

between computer and microcontroller’s
embedded communication library.

Students wrote scrips in Matlab language
inserting functional and structural parameters;
homogeneous transformations, D-H, calculation of
position and orientation of the tool, direction of the
joint rotation in the kinematics model, which must
coincide with the rotation of the robot’s
servo motor. Evaluation the extent of the
workspace by varying the joint angles through the
reachable space. Scripts should consider joint
limitations, and thus joint angles into both, the arm
controller and script, must be inside of the physical
limits. Therefore, testing of robustness of the code
was developed.

Then, the final goal consisted of the script ran
in Matlab environment. Students did a final check
of the manipulator behavior; they had some
specific task to do with the robot. Students
programmed the robot to follows a planned path,
stored in a *.mat file; as the motion was performed,
a draw was painted by a marker on a board.

A static obstacle in the robot path was put,
introducing complexity to the task. From that
experiment, students understood concepts such
as posture (high and low elbow) and its
connections with options chosen during the
computation of the inverse kinematic. The previous
task was repeated, but including a field of
obstacles, this had repercussions on the path,
precluding the robot from moving into areas
previously specified as areas to avoid.

All goals of curriculum were reached, and
students took advantage of the robotic course very
much. However, existing opportunity areas were
identified for further improvement of the
robot design.1

8 Conclusion

The objective was achieved, this is that a low-cost
educational and experimental manipulator robot
arm of 4 degrees of freedom was designed and
built; It took advantage of the most current open
hardware and software technology. It can be used
in graduate and undergraduate robotic courses to

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1387–1401
doi: 10.13053/CyS-24-4-3165

Educational Robot Arm Development 1399

ISSN 2007-9737

realize didactically the relationships between
theoretical and practical aspects of robot
manipulator motions in real time. The article
described the most relevant details as practical
laboratory exercises of the mechanical structure,
the electrical and electronic aspects, and the
software developed for its management.

Thus, the design of the links was made through
SolidWorks. These were machined in a CNC
milling machine programmed with G codes.
Mechanical exo-skeletal structures were added to
reduce the effect of lateral loads on the links. The
final assembly was carried out together with the
wiring, power supply and controller for the physical
robot. The robot was modeled mathematically
using the Robotics Toolbox, solving direct and
inverse kinematics and an attractive and intuitive
GUI interface was created in Matlab.

The controller program was loaded with serial
communication and the Servo library of the
Arduino. Several tasks (trajectories) were carried
out to evaluate the performance of the prototype,
resulting in an adequate functioning. All these
laboratory exercises provided invaluable hands-on
experience that complemented classroom
lectures, which are essential for many other
aspects of robotics education.

Students showed enthusiasm in the application
of the concepts discussed during the lectures,
solving the problems by teamwork. In the future,
our goal for the robotics educational platform is to
integrate formally the prototype with the entire
robotics curriculum, increasing the number and
type of laboratory exercises routinely conducted by
students of robotics track. Therefore, the platform
finds its higher potential applications in
educational, academic, and research sectors,
representing a very encouraging starting point to
further development of these activities.

Acknowledgments

This work has been funded by Tecnologico
Nacional de Mexico under the grant 6678.18-P.

References

1. Corke, P. (2013). Robotics, vision and control
fundamental algorithms in matlab®. Springer.

2. Greenwald, L., & Kopena, J. (2003). Mobile robot
labs. IEEE Robotics Automation Magazine, Vol. 10,

No. 2, pp. 25−32. DOI: 10.1109/MRA.2003.
1213613

3. Fisher, D. & Gould, P. (2012). Open-Source

Hardware Is a Low-Cost Alternative for Scientific
Instrumentation and Research. Scientific Research
an Academic Publisher, Vol. 1, No. 2. DOI:
10.4236/mi.2012.12002.

4. Jung, S. (2013). Experiences in developing an

experimental robotics course program for
undergraduate education. IEEE Transactions on
Education, Vol. 56, No. 1, pp. 129−136. DOI:
10.1109/TE.2012.2213601.

5. Wood, R. (2008). Robotic manipulation using an

open-architecture industrial arm: a pedagogical
overview. IEEE Robotics & Automation Magazine.

6. Krasnansky, P., Toth, F., Villaverde, V., & Rahal,
B. (2013). Basic laboratory experiments with an
educational robotic arm. IEEE International
Conference on Process Control, pp. 510−515. DOI:
10.1109/PC.2013.6581462.

7. Tzafestas, C. & Palaiologou, N. (2006). Virtual and

remote robotic laboratory: comparative
experimental evaluation. IEEE Transactions on
Education, Vol. 49, No. 3, pp. 360−369. DOI:
10.1109/TE.2006.879255.

8. Balestrino, A., Caiti, A., & Crisostomi, E. (2009).

From remote experiments to Web-based learning
objects: an advanced telelaboratory for robotics and
control systems. IEEE Transactions on Industrial
Electronics, Vol. 56, No. 12, pp. 4817−4825. DOI:
10.1109/TIE.2008.2006941.

9. Baki, K. & Mehmet, G. (2007). Software

development for the kinematic analysis of a Lynx 6
robot arm. International Journal of computer,
electrical, automation, control and information
engineering, Vol. 1, No. 6, pp. 1575−1580. DOI:
10.5281/zenodo.1075392.

10. Raza, U.I., Jamshed, I., & Qudrat, K. (2014).

Design and comparison of two control strategies for
multi-DOF articulated robotic arm manipulator.
Control Engineering and Applied Informatics, Vol.
16, No. 2, pp. 28−39.

11. Rivas, D., Alvarez, M., Velazco, P., Mamarandi,
J., Carrillo, J.L., Bautista, V., Galarza, O., Reyes,
P., Erazo, M., Pérez, M., & Huerta, M. (2015).

BRACON: control system for a robotic arm with 6
degrees of freedom for education systems. IEEE
Proceedings of the 6th International Conference on
Automation, Robotics and Applications, pp. 358-
363. DOI: 10.1109/ICARA.2015.7081174.

12. Medrano, J., Zendejas, I., Sánchez, E., & Jara, R.
(2016). Modelado, trayectorias y control de un

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1387–1401
doi: 10.13053/CyS-24-4-3165

David Sáenz Zamarrón, Nancy Ivette Arana de las Casas, Enrique García Grajeda, et al.1400

ISSN 2007-9737

brazo manipulador industrial para la elaboración de
distintas tareas por medio de visión. Congreso
Internacional de Ingeniería Electrónica ELECTRO.
Vol. 38, pp. 116−121.

13. Fernandez-Ramírez, A., Rodríguez, R.A., &
García, R. (2017). Modelado, diseño y construcción
de un robot didáctico de 6 GDL. Congreso
Internacional de Ingeniería Electrónica. ELECTRO.

Vol. 39, pp. 229−234.

14. Galvan, S., Botturi, D., Castellani, A., & Fiorini,
P. (2006). Innovative robotics teaching using Lego©
sets. Proceedings of the IEEE International
Conference on Robotics and Automation, pp.

721−726. DOI: 10.1109/ROBOT.2006.1641795.

15. Soriano, A., Marín, L., Vallés, M., Valera, P., &
Albertos, P. (2014). Low cost platform for

automatic control education based on open
hardware. Proceedings of the 19th world congress,
the International Federation of Automatic Control,

Vol. 47, No. 3, pp. 9044−9050. DOI:
10.3182/20140824-6-ZA-1003.01909.

16. Sarah, M., Raza, U.I., Aayman, K., Abdul, S., &
Jamshed, I. (2014). An open-source multi-DOF

articulated robotic educational platform for
autonomous object manipulation. Robotics and
Computer-Integrated Manufacturing Elsevier, Vol.
30, pp. 351−362. DOI:10.1016/j.rcim.2013.11.003.

17. Warren, J.D., Adams, J., & Molle, H. (2011).
Arduino Robotics. Apress.

18. Gil, A., Reinoso, O., Marin, J., Paya, L., & Ruiz, J.
(2014). Development and deployment of a new

robotics toolbox for education. Wiley Periodicals,
Vol. 23, pp. 443−454. DOI:10.1002/cae.21615.

19. Kucuk, S. & Bingul, Z. (2009). An off-line robot
simulation toolbox. Wiley Periodicals, Vol. 18, pp.

41−52. DOI:10.1002/cae.20236.

20. MathWorks (2019). Matlab, Release Notes.

[Online] Available: http://www.mathworks.com

21. Manseur, R. (2006). Robot Modeling and
Kinematics. Da Vinci Engineering Press.

22. Fu, K.S., Gonzalez, R.C., & Lee, C.S.G. (1987).
Robótica: Control, Visión e Inteligencia.
McGraw Hill.

23. Barrientos, A., Peñín, L.F., Balaguer, C., & Aracil,
R. (1997). Fundamentos de Robótica. Mc Graw Hill.

24. Spong, M.W. & Vidyasagar, M. (1989). Dynamics

and Control. John Wiley & Sons.

25. Craig, J.J. (2006). Robótica. Pearson Prentice Hall.

26. Saeed, B.N. (2001). Introduction to Robotics
Analysis, Systems, Applications. Pearson
Education, Prentice Hall.

27. Chacón, M., Sandoval, R., & Vega, J. (2015).
Percepción Visual Aplicada a la Robótica.
Alfaomega.

28. ARTE (2019). A Robotics Toolbox for

Education. [Online] Available:
http://arvc.umh.es/arte/index_ en.html.

Article received on 11/03/2019; accepted on 10/08/2020.

Corresponding author is David Sáenz Zamarrón.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1387–1401
doi: 10.13053/CyS-24-4-3165

Educational Robot Arm Development 1401

ISSN 2007-9737

