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Abstract. A robot is a complex machine that involves the 

conjunction of many technologies working harmoniously 
together to provide to the final user, a nice interface to 
interact. The kind of problems need to be solved to have 
a robotic arm involves overcoming lateral loads, power 
consumption, solution of kinematics equations, etc. 
Peter Corke’s Robotics Toolbox [1] is a computer library 
useful to design, model, visualize and simulate a robot 
and it is widely utilized in the present study. This paper 
describes the design process and construction of a 4-
DOF robotic arm, involving CAD, CAM, electronics, and 
Matlab’s Robotics Toolbox to solve kinematics. It 
constitutes a low-cost platform, in a process of 
permanent improvement, for the study of laboratory 
courses of design, manufacturing, electronics and 
robotics, essentials for many engineering curriculums. 
The platform provides the student with hands-on 
experience that consolidates classroom lectures. 

Keywords. Educational robot, Matlab robotic toolbox, 

CNC machining. 

1 Introduction 

Robot arms are programmable electro-mechanical 
devices designed to carry out specific tasks such 
as assembly, material handling, and loading of a 
tool for: welding, painting, spraying, etc. To 
understand the complexity of robots, engineering 
knowledge of design, manufacturing, mechanical, 
electrical, computer science and mathematics 
are required. 

Applications and developments in the field of 
robotics have been increasing over time and 
demand trained graduates who must be proficient 
in all the technologies related to it. 

Teaching engineering courses and specially 
robotics, is an important subject in undergraduate 
and graduate school. Engineering educators agree 
that experience with the real world cannot be 
taught just in the classroom, hands-on tangible 
experience is needed. 

In addition, it is well known that the more active 
and pragmatic the students are involved in 
applying a subject, the better the learning of its 
theoretical aspects. That is why laboratories are 
paired to theoretical classes to combine these two 
important learning aspects. Thus, when teaching a 
robotics course, it is recommended the use of an 
experimental platform in the learning process [2] as 
it allows a practical experience demonstrating the 
basic concepts and keeping the students' interest 
and motivation. 

A possible platform are commercial industrial 
manipulator robots, but this constitute limited 
resources for students to access because of their 
high costs for institutions. In addition, they could be 
only used through their proprietary motion 
description languages, which are specifics to any 
given manufacturer, requiring to spend long time 
learning any of them, and the user won’t be 
involved in designing aspects of the robot. 
However, even if an industrial robotic design is 
trying to be built, it is still difficult to achieve, 
because its parts require long, and expensive 
processes operated in specialized laboratory 
equipment to generate an industrial design. 

A more reachable platform could be built with 
open hardware/software philosophy. In this case, 
the robot designer must deal with concepts like 
rigid links which are interconnected by joints into a 
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serial chain and manipulated with servo motors in 
the so-called Joint space. Additionally, there is 
another Cartesian space where objects and task 
are defined to operate. Transformation between 
Joint and Cartesian space and vice versa is the 
issue of kinematics and it is required for any 
robot arm. 

Hence forward kinematics is defined as 
transformation from joint space to Cartesian space 
whereas inverse kinematics is defined as 
transformation from Cartesian space to 
joint  space. Solution for kinematics is available in 
algorithms written into specialized libraries. That is 
the case of the open source Matlab Toolbox for 
robotics: Robotics Toolbox, this has been 
translated into a series of different languages such 
as Python, SciLab and LabView. 

The Toolboxes have some important virtues. 
First, they have been available for a long time and 
have been used by many people for different 
problems. So the code could be said to have a high 
degree of reliability. The Robotics Toolbox [1] is a 
software package that allows a MATLAB user to 
readily create and manipulate datatypes 
fundamental to robotics such as homogeneous 
transformations and trajectories. Functions 
provided, for arbitrary serial-link manipulators, 
include forward and inverse kinematics. 

When considering moving the joints, the driver 
could be an open-source hardware resource. 
These has grown up in the last times, offering 
many possibilities in open platforms, and every 
time come new products at low cost. Open 
hardware offers the possibility to educators and 
researchers to add and program the hardware 
devices as they want, making the systems 
completely customizable. In the case of robotics, 
there is a tendency towards open hardware 
products [3] because its low cost and 
easy development. 

Thus, the need to develop an experimental 
platform to serve the purpose of a permanent 
laboratory for universities and research institutions 
is justified. 

To emphasize on the general principles and 
provide the student with both a theoretical 
appreciation of, and practical design and 
construction experience, a robot arm manipulator 
has been developed. It is especially valuable for 
many universities with limited economic resources. 

Therefore, it is a good alternative for such robot 
because it is inexpensive to build. 

This paper shows the design, manufacturing, 
mechanics, electronics, and software of an 
educational robot arm manipulator. Additionally, 
mathematical model for the forward and inverse 
kinematics problems were implemented by the 
educational robot arm model. A GUI software 
interface of great importance was developed to use 
the physical robot arm together with its 
virtual mirror. 

The platform prototype is a robotic arm 
manipulator with 4 degrees of freedom (DOF). The 
arm consists of four servomotors: the base, 
shoulder, elbow, and the wrist, where a marker is 
hold as a tool. The motor control is performed by a 
servo controller Arduino UNO that allows a serial 
connection to send and receive commands to 
a computer. 

The robot arm has been taken as a case study; 
it utilizes Matlab/Arduino as the tools for testing the 
characteristics of the robot. The developed 
platform is used as an educational tool. This work 
will continue to increase the education, training, 
research and development possibilities for robotics 
classes and research in graduate and 
undergraduate studies. 

2 Background 

Educational robotic research efforts have been 
reported in the literature. In [4] a robotic course 
was developed in Korea integrating the use of 
LEGO kits, humanoids, and industrial robots to 
improve competitions in engineering education. 
The author presents an approach to teaching 
robotics to undergraduate students that used 
modular, reconfigurable robots developed at 
LEGO. These kits are accessible in cost, permitting 
students to acquire experience in the kinematic 
design of fixed robot manipulators. But students, in 
fact, did not build the robots. 

A commercial 5 DOF robot with the CRS 
CataLyst-5 from Thermo Fisher Scientific Inc. was 
controlled through a Matlab/Simulink open-
architecture interface, being mostly a software 
project [5]. With [6], an educational robotic arm was 
built, but the interface to it, is through 
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Matlab/Simulink, so the robot can be used just for 
experimented programmers. 

Others educational robotic arm were thought as 
remote laboratories developing e-learning 
potentialities in the field of robotics tele 
laboratories. A virtual training environment was 
created through a commercial SCARA-type 
AdeptOne-MV robot arm, a video camera, and an 
internet connection [7]. 

A tele laboratory was also created to access 
remotely a SCORBOT ER-V PLUS robot based on 
Web by using the free open-source software: 
Scilab, Comedi and Linux [8]. In the two previous 
projects, the students acquired design ability by 
doing active learning, in a tele laboratory 
characterized by high immersivity. Virtual 
laboratories were accessible 24 hours a day and 
allowed the students to practice their robotics skills 
at home and at their free time. However, students 
were focused more on training than in 
robotic design. 

The virtual robotic systems represent an 
illustrative and cost-effective solution. However, 
such systems, being mostly soft, may not offer the   
necessary exposure corresponding to the real 
robot performance. Virtual models do not address 
the complexities such as backlash, friction, non-
collocation, etc. associated with the physical 
systems. Typically, the accuracy and credibility of 
results obtained in a simulated environment are not 
comparable with physical experiments. 

Additionally, training platforms based on 
commercial robots and development of software 
had been reported. In [9] the GUI software for 
kinematics of a commercial 5 DOF Lynx-6 was 
developed. Visual Studio.Net 2005 was used for 
the implementation. Students learn how to use 
knowledge and techniques to carry out a set of 
standard tasks for robots. 

A robotic arm was used to test the sliding mode 
and computed torque control strategies. But no 
detail on the construction of the robot was given, 
neither an educational aspect of the project was 
especially underlined [10]. 

BRACON robotic arm based on Dynamixel 
servomotors and Python software was developed 
[11]. The project presented a low-cost robotic arm 
with a nice GUI, but important details of links 
mechanical design were not shown. 

An industrial robotic arm was taken to be 
modeled using D-H methodology and to generate 
simulated trajectories based on computer vision 
techniques [12]. In more hands-on approaches, 
students can develop their own robot structure and 
then program it with a language. There have been 
found several papers addressing different areas of 
teaching and learning with robots for the 
development of suitable teaching curricula. 

A 6 DOF robotic arm was built and reported in 
[13]. Servomotors were used, details of the design 
were given, a nice GUI was created, but no 
solution of the inverse kinematic problem was 
done. A particularly good effort to amplify access 
to practical experiences in educational robotics 
was done in [14]. The activities implemented with 
this platform included: playing, building, exploring, 
programming, competing, and learning various 
science subjects. However, it was completely 
centered in Lego Mindstorm kits, which is not 
adequate for university courses and research 
because of its limited hardware. In addition, no 
fabrication processes skills were developed in 
that  project. 

There are some papers documenting the use of 
many different low-cost open-source 
microcontroller cards based on ARM processors. 
Given that the main purpose of these works was to 
build a low cost open-source platform to introduce 
robotics concepts, any card could be suitable since 
high computational resources were not required. 
However, its programming should had been simple 
because maybe the students did not know much 
about programming or perhaps, they were 
learning it. 

A good review of low-cost open hardware 
microcontroller boards was given in [15]. Arduino, 
Raspberry Pi and BeagleBone among others were 
mentioned. These boards are useful to control 
educational platforms like Lego. Arduino support 
for Simulink software was proposed to control the 
hardware. In [16] an ED722C 6-DOF commercial 
robotic arm was used to be motion controlled 
through a camera seeing objects in the 
robot’s workspace. 

The project was more interested on the 
technical aspects of the tasks development instead 
of getting educational goals. In [17] Arduino was 
used to control several types of robots like line 
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followers, bug-like, boat-sailer, explorer and 
battle oriented. 

Arduino arose in 2005 and due to its low cost 
and open hardware policy, in a few years it has 
achieved widely spread within the scientific and 
research community as the brain of various kind 
of projects. 

The Robotics Toolbox [1] provides a diverse 
range of functions to simulate arm type robots. The 
original Toolbox started in 1990 and was dedicated 
only to arm type robots and supported a very 
general method of representing the structure of a 
manipulator with serial joints using objects of 
Matlab. Arbitrary manipulators with serial links can 
be created and the Toolbox provides functions for 
direct and inverse kinematics and dynamics.  

The Toolbox includes functions to manipulate 
and convert between data types such as vectors, 
homogeneous transformations and unitary 
quaternies which are necessary to represent 
position and three-dimensional orientation. 

Other Matlab toolbox for teaching, modeling 
and simulation of robotics manipulators had been 
developed like [18]. This toolbox has been called 
ARTE (A Robotics Toolbox for Education). Another 
Matlab toolbox had been developed; it is called 
ROBOLAB and includes into its library the 16 
different 6-DOF fundamental serial robot 
manipulators [19]. 

A very convenient GUI allowed the movement 
of virtual robots chosen in the software. Both 
toolboxes: ARTE and ROBOLAB, by far, are not so 
deployed and accepted like the Corke’s one [1]. 

3 Design and Construction 

Through 3D CAD software for mechanical 
modeling: SolidWorks, the basic link was created 
by means of a draw with real measurements. This 
is done in order to later build and assemble each 
of them together with its servomotor and, with four 
of them, form the articulations and links, needed for 
the construction of the final assembly. 

The development of the piece in software 
allows seeing the characteristics that the element 
has before manufacturing it, this facilitates finding 
errors and making the corrections that correspond. 
Two terminals were designed for each link that 
contains the assembly until the end-effector.  

The link (figure 1) that was designed has two 
terminals, each one on one end and with a different 
function. The one on the right has a rectangular 
hole that holds the servomotor to the link with 
screws.  

The one on the left, has the function of 
connecting with the next link in the kinematic chain. 
Figure 1 shows the design of the link on an 
aluminum framework that is the material selected 
to make the piece. 

The circular connection, leftmost connection on 
figure 1 is connected to the next link, through a 
servo hub, which runs perfectly through a servo 
block kit. The servo hub is made of aluminum, it 
has a length of 1”, a hub diameter of 1”, a shaft 
diameter of 0.5”, and utilize the 0.77” hub pattern 
(figure 2). 

The aluminum framework has ends bent at 90°, 
which allows the piece to function as a 
reinforcement structure. In addition, the material is 
light, resistant and easy for machining. There was 
access to a CNC milling machine DYNA MACH 
EF8035 to perform the machining by means of chip 
cutting by turning a 3/8" cutter with 4 cutting edges. 

Through milling, it is possible to machine the 
most diverse materials, such as wood, steel, cast 
iron, non-ferrous metals, and synthetic materials, 
on flat or curved surfaces. 

The case of aluminum is particularly soft when 
cut. In addition, the milled pieces were roughened 
and tuned to avoid roughness. To operate the CNC 
milling machine, a program in G code was wrote, 
this is the most used in this type of numerical 
control machines. 

 

Fig. 1. Mechanical flat of aluminum framework 
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In general terms, G-code is a language by 
means of which computer-controlled machines and 
tools can be told what to do and how to do it, for 
this machine, the 4M software was used. These 
actions are defined by instructions on where to 
move, how fast to move and what path to follow. 
The G codes can be those that contain movements 

and fixed cycles and M, those that are auxiliary 
functions. Next, the simulation stage comes, it 
helps the designer of the piece to foresee and 
detect problems related to the design before it 
even physically being built. Hence offering a much 
more efficient development stage in terms of time 
and cost. 

Figure 3 shows the simulation of the machining 
of the link at the end of the servomotor. During the 
process of the simulation, it is possible to observe 
by which places the cutter is passing and, in this 
way, some possible error can be found. It is also 
possible to see in which parts it is, where the milling 
machine is cutting and in which it is not, this by 
means of the color of the lines that the simulation 
leaves. If they are marked lines it is when it is 
cutting and those that are weaker color is when it 
is just making a quick movement. 

Figure 4 displays the milling of the link at the 
end of the servomotor. Figure 5 demonstrates the 
simulation of the milling of the link at its connecting 
end to the next link. The physical machining of the 
link is performed at the connection end to the next 
link, figure 6. 

The material that is machined is the 1mm thick 
aluminum framework with irrelevant measures 
since the code was designed so that this does not 
matter. That is, the machining starts only from a 
center and from there it opens. The proper speed 
and rotation speed must be specified to obtain 
adequate machining. 

To increase a servo’s load-bearing capabilities 
is necessary to isolate the lateral load from the 
servo spline and case. It can be done by using a 
servo block. The servo block allows users to create 
complex, extremely rigid, structures with ease 
using standard Hitec servos. Using a clamping hub 
on the 1/2” aluminum servo shaft provides an easy 
way to adjust the position of the component 
attached to the ServoBlock. 

The robust aluminum framework acts as a 
servo exoskeleton, greatly enhancing the 
mechanical loads the servo can withstand. The 
.77” hub pattern is repeated throughout the 
framework to allow endless attachment options. It 
is compatible with all standard size Hitec servos. 
Figure 7 displays a Hitec servo attached to a servo 
block kit. The robot arm rotational joints are 
controlled by dedicated servo motors. Servomotors 
are some kinds of traction elements. 

 

Fig. 2. Servo hub 

 

Fig. 3. Rectangular cut simulation 

 

Fig. 4. Machined of link, servo edge 
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The servo selected was the powerful Hitec HS-
625MG. This high-quality servo is perfect for 

mechatronic and robotics needs. This element is 
one of the strongest metal gear servos that is 
available and at a low cost. The HS-625MG servo 
comes standard with a 3-pin gold plated power and 
control cable. The HS-625MG can take in 6 volts 
and deliver 94 oz-in of maximum torque at 0.15 
sec/60°. 

The servomotors have an acceptable accuracy, 
given in milliseconds. They can be manipulated by 
any microcontroller with PWM module, in this case, 
the Arduino UNO. The microcontroller for example, 
produces a pulse width, this is sent into a 
servomotor input, and it can respond with a 
movement given in degrees. 

In this approach being described, four servo 
motors are controlled to form the kinematics chain. 
For the robot arm being developed, the base link is 
the one that most care must be taken, because of 
the lateral loads it is imposed. A swivel hub 
connection was used on the base link to allow a 
360° horizontally rotation. 

The swivel hub lets the connection of any two 
parts together and has them swivel a full 360°. 
Internal ball bearings allow for smooth motion. 
Four holes are on both sides, making attachment 
easy. Figure 8 shows the swivel hub. 

However, the servo motors draw considerable 
power and must be fed with enough power supply. 
For this purpose, a 18W 6-in-1 based on the 
LM350K voltage regulator was built. It provides 6 
VDC @ 3A, 18W max output. It takes a 110VAC, 
50/60Hz input. Figure 9 illustrate the power supply 
and Arduino UNO servo controller. 

Servo motors have three wires: power, ground, 
and signal. The servo’s power wire should be 
connected to the 6V pin on the power supply. The 
ground wire should be connected to a ground pin 
on the power supply and the Arduino board. The 
signal pin should be connected to a digital pin on 
the Arduino board. To facilitate these connections 
special 3-feet long cable was built; it is seen in 
figure 10. 

The final mechanical assembly of the prototype 
of the real robot along with all its wiring and the 
end-effector, a marker, is revealed in figure 11. 
This building stage allows students to get 
acquainted to various aspects of technical design, 
teamwork, and material constraints. In this stage, 
design errors frequently occur like building too big 
links, selection of weak motors, structures stressed 

 

Fig. 5. Circular cut simulation 

 

Fig. 6. Machined of link, next link connection edge 

 

Fig. 7. Servo block kit and servo 
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because of its own weight or selection of an 
inappropriate material. These errors had to be 
overcome to have an operative arm. Figure 12 
displays the serial communication scheme 
between the computer, which is using MATLAB® / 
Robotics Toolbox [20] and the Arduino; as well as 
the communication by train of pulses of the Arduino 
(library Servo) and the servomotor. 

A sequence of four consecutive integer values 
is sent to serial servo controller from the computer. 
These are a sync byte ($), the desired position joint 
for each of the four servos (qi) and the final 
character (#). Rotational position of each of the 
servo motors is determined by the specific angle 
(qi) by an internal servomotor’s closed 
loop feedback. 

4 Modelling 

The kinematics defines the movement of a body as 
the transformation from its Cartesian space to its 
joint space and vice versa [21]. 

A manipulator with serial joints contains a chain 
of joints and mechanical links. Each joint can move 
the league of its neighbor further away from its 
nearest neighbor to the origin. One end of the 
chain, the base, is fixed and the other end is free 
to move in space, the latter holds the end-effector. 
The kinematic modeling of a robot is categorized 
into forward kinematics and inverse kinematics. 

The forward kinematic problem consists of 
determining the location of end-effector in the work 
space, i.e., position and orientation with respect to 
a coordinate system that is taken as reference. It is 
determined based on the joint variables and the 
parametric values of the robot configuration given 
by its D-H parameters [22]. The inverse kinematics 
problem refers to finding the values of the joint 
variables that allows the manipulator to reach the 
given location [23]. 

For a manipulator with N joints, numbered from 

1 to N numbered. Link 1 is the base of the 

manipulator and link N loads the end-effector. The 
joint i connects the link i-1 to the link i and therefore 

the joint i moves the link i-1. A link is a rigid body 
that defines the spatial relationship between two 
neighboring joints. A link is specified by two 
parameters, its length ai and its rotation αi. The 
joints are also described by two parameters. 

 

Fig. 8. Swivel hub 

 

Fig. 9. Power supply & controller 

 

Fig. 10. Special connection cable 
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The displacement of link di is the distance from 
one joint to the next along the axis of the joint. The 

angle of the joint θi is the rotation of one joint with 
respect to the next around the axis of the joint. 
Transformation link matrix is shown in (1): 

𝑻𝒊
𝒊−𝟏 (𝜃𝑖 , 𝑑𝑖 , 𝑎𝑖 , 𝛼𝑖)

= [

cos 𝜃𝑖

sin 𝜃𝑖

0
0

− sin 𝜃𝑖 cos 𝛼𝑖

cos 𝜃𝑖 cos 𝛼𝑖

sin 𝛼𝑖

0

sin 𝜃𝑖 sin 𝛼𝑖

− cos 𝜃𝑖 sin 𝛼𝑖
cos 𝛼𝑖

0

cos 𝛼𝑖

𝑎𝑖 sin 𝜃𝑖

𝑑𝑖

1

]. 
(1) 

4.1 D-H Parameters 

The structure of articulations for the robot is 
described by a chain of joints of Revolution. A 
systematic way of describing the geometry of a 
chain of serial joints was proposed by Denavit and 
Hartenberg and is implemented into the Matlab’s 
Robotics Toolbox [1].  

Next, Table 1 shows the Denavit-Hartenberg 
parameters for the robot developed. The following 
segment of code shows variables defining the D-H 
parameters into the Matlab program: 

N=5;    %4 DOF 

% D-H Parameters 

Theta =[q(1,1)   q(1,2)   q(1,3)  q(1,4)  q(1,5)  q(1,6)  ]; 

d        =[12        0           0          0        10        0        ]; 

a        =[0          12         12        0         0         0        ]; 

alpha =[-pi/2      pi                  -pi/2    0         0        ] 

4.2 Forward Kinematics 

Forward kinematics is expressed as the pose of 
the end-effector of the robot arm according to the 
values of the joints. Homogeneous transformations 
are used; these are simply the product of the 
transformation matrices of each individual joint.  

A manipulator robot with six articulations or 
degrees of freedom (DOF) allows reaching an 
arbitrary pose in the end-effector. The 

transformation of the manipulator is written as 𝑻𝟔
𝟎  

for the 6-axis robot [24, 25].  
The first three columns in the matrices 

represent the orientation of the end effectors, 
whereas the last column represents the position of 
the end effectors. 

The forward kinematics problem is concerned 
with the relationship between the individual joints 
of the robot manipulator and the position and 
orientation of the end-effector.  

Forward Kinematics equations are generated 
from the transformation matrixes (4)-(9) and the 
forward kinematics solution of the arm is the 

product of these six matrices identified as 𝑻𝟔
𝟎 .  

The approach divides the forward kinematics 

problem in two parts. From 𝑻𝟏
𝟎  to 𝑻𝟑

𝟐  is the elbow 

manipulator part and from 𝑻𝟒
𝟑  to 𝑻𝟔

𝟓  the wrist 

movement description. Elbow manipulator and 
wrist are defined through D-H methodology. 

 

Fig. 11. Robot on rest position 

 

Fig. 12. Robot communication scheme 
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The direct model is the relation that allows 

determining the matrix column x of operational 
coordinates of the robot corresponding to a given 
configuration q, see (2): 

𝒙 = 𝑓(𝒒). (2) 

The direct geometric model of a robot can be 
obtained from the homogeneous transformation 

matrix of the robot that defines the N links of the 
terminal link with respect to the link 0 of the base 
of the robot. In the case of simple structure of 
robots, the transformation matrix is given by (3): 

𝑻𝟔
𝟎 = 𝑻𝟏

𝟎  𝑻 𝟐
𝟏 𝑻 𝟑

𝟐 𝑻𝟒
𝟑  𝑻 𝟓

𝟒 𝑻𝟔
𝟓 . (3) 

Equations (4-9) are the transformation matrices 
for each link: 

𝑻𝟏
𝟎 = [

𝐶𝑞1 0 −𝑆𝑞1 0

𝑆𝑞1 0 𝐶𝑞1 0

0
0

−1
0

0
0

𝑑1

1

], (4) 

𝑻𝟐
𝟏 = [

𝐶𝑞2 𝑆𝑞2 0 𝑎2𝐶𝑞2

𝑆𝑞2 −𝐶𝑞2 0 𝑎2𝑆𝑞2

0
0

0
0

−1
0

0
1

], (5) 

𝑻𝟑
𝟐 = [

𝐶𝑞3 𝑆𝑞3 0 𝑎3𝐶𝑞3

𝑆𝑞3 −𝐶𝑞3 0 𝑎3𝑆𝑞3

0
0

0
0

−1
0

0
1

], (6) 

𝑻𝟒
𝟑 = [

𝐶𝑞4 0 −𝑆𝑞4 0

𝑆𝑞4 0 𝐶𝑞4 0

0
0

−1
0

0
0

0
1

], (7) 

𝑻𝟓
𝟒 = [

𝐶𝑞5 −𝑆𝑞5 0 0
𝑆𝑞5 𝐶𝑞5 0 0

0
0

0
0

1
0

𝑑5

1

], (8) 

𝑻𝟔
𝟓 = [

𝐶𝑞6 −𝑆𝑞6 0 0
𝑆𝑞6 𝐶𝑞6 0 0

0
0

0
0

1
0

0
1

]. (9) 

The code below is the calculation of the forward 

kinetics made in the project using the Corke’s fkine 
Toolbox method [1]: 

qb=handles.Robotqb; 

q=qb(index,:)*pi/180; 

qi=q; 

Point=CI.fkine(qi);  %Position in world coordinate system 

handles.Matriz=Point; 

4.3 Inverse Kinematics 

Inverse kinematics is a procedure that seeks to 

obtain the required joint coordinate values q, given 
the desired Cartesian pose of the end-effector x. 
This is a more difficult problem than forward 
kinematics. On the contrary of forward kinematics, 
there exist multiple solutions in inverse kinematics 
[26, 27]. Some constraints can be used to 
decrease the number of solutions for simplicity. 
Into Corke’s Robotic Toolbox [1] there are two 
methods useful to solve the inverse 
kinematics problem: 

a) Closed-Form solution (algebraic and 
geometric methods). 

b) Numerical solution. 

For the first one the kinematics equations that 
relate the joint variables to the end-effector pose 
are nonlinear and the Toolbox gives only a 
restrained description of the manipulator in terms 
of kinematic parameters. The robot must have 6-
axis; also, the robot must have the three wrist axes 
intersect at a single point (spherical wrist). 

For the case of robots, which do not meet this 
specification, an iterative and numerical slower 
solution is implemented. 

The numerical solution takes advantage of the 
differential equations that relates joint rates to end-

Table 1. D-H Parameters, angles (Rad), lengths (cm) 

Link θi di ai αi offset 

1 q1 12 0 -π/2 .222π 

2 q2 0 12 π 1.22π 

3 q3 0 12 π 1.33π 

4 q4 0 0 -π/2 .888π 

5 q5 10 0 0 0 

6 q6 0 0 0 0 

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1387–1401
doi: 10.13053/CyS-24-4-3165

Educational Robot Arm Development 1395

ISSN 2007-9737



effector velocities, which are linear. It takes the 
form of (10), which can be easily solved but 
produces joint rates, rather than the joint 
values themselves: 

𝑽 = 𝑱(𝒒)�̇�, (10) 

where 𝒒 = [𝑞1, 𝑞2, … , 𝑞𝑛]𝑇 is the joint variable 

vector and �̇� = [𝑞1̇, 𝑞2̇, … , 𝑞�̇�]𝑇 is the joint rates 

vector and produces spatial velocities V = [vx, vy, vx, 
wx, wy, wz]T. 

In order to track a trajectory that can be 
described by a sequence of desired pose matrices 
at regular time intervals tk along with desired end-
effector velocities V(tk) the joint rate vectors can be 
computed based on (11): 

�̇�(𝑡𝑘) = 𝑱[𝒒(𝑡𝑘)]−1𝑽(𝒕𝒌). (11) 

Using the numerical integration approximation 
shown in (12) joint variable vector for the next point 
on the trajectory is calculated. 

𝒒(𝑡𝑘+1) = 𝒒(𝒕𝒌) + �̇�(𝑡𝑘)∆𝑡, (12) 

Δt is the time interval between points on 
the trajectory. 

It should be small enough to minimize 
computation errors from one step to the next on the 
trajectory. The kinematic inversion, based on the 
manipulator Jacobian, is applicable to robots of 
any architecture but requires a nonsingular 
Jacobian matrix at every point on the trajectory, 
which is rank deficient compared to the maximum 
of the Jacobian, singularity is stated in (13). 

|𝑱(𝒒)| = 0. (13) 

At the singularity, joint rates will go to infinity; 
but even if the robot is close to a singularity, there 
is the problem for some Cartesian end-effector 
velocities that require extremely high joint rates. 

An alternative for this problem is to use the 
Jacobian transpose. 

The Jacobian transpose transforms a wrench 
applied at the end-effector to torques and forces 
experienced at the joints, see (14): 

𝑸 = 𝑱𝑇(𝒒)𝒈, (14) 

where g is a wrench which is a vector in the world 
coordinate frame of forces and moments. 

g = [fx, fy, fz, mx, my, mz]. 

Q is a joint force vector. The elements of Q are 
joint torque or force for revolute or prismatic joints, 
respectively. This mapping from the wrench to joint 
forces differs from the velocity because singularity 
will not happen, as it can be for velocity, since the 
Jacobian’s transpose is used. 

This property is harnessed to solve the inverse 
kinematic problem into the Corke´s Toolbox 
numerically. The Toolbox develops this approach 
based on the forward kinematics and the Jacobian 
transpose which can compute for any manipulator 
configuration, these functions have no 
singularities. Into the Toolbox this approach 
assumes a special spring between the end-effector 
of the different poses which is pulling and twisting 
the robot´s end-effector toward the desired pose 
with a wrench proportional to the difference in 
pose. The robot has virtually viscous dampers so 
the joint velocity due to the applied forces will be 
proportional (15): 

�̇�(𝑡𝑘+1) = 𝑸(𝒒)/𝐵, (15) 

where B is the joint damping coefficient. The 
update for the joint coordinate is the same as (12). 

This algorithm is implemented into the ikine 
Toolbox method [1] and is used in this project in 
the fragment of code below.  

There, an incremental pose kinematics inverse 

is used in order to have world (x, y, z) 
displacements by using the same Rotation 

submatrix R3x3, and varying Translational 

submatrix T3x1 into the Homogeneous 
Transformation matrix: 

Point=handles.Matriz; 

Point(windice,4)=Point(windice,4)+w; 

%handles.Matriz=Point; 

%Obtaining the value of links for the desired point 

q=CI.ikine(Point,qi,[1 1 1 1 0 
0],'pinv',…'ilimit',2000,… 

    'alpha',.05,'tol',.3); 

if (isequal((q<0)|(q>pi),zeros(1,NArt))) 

    qb(index,:)=round(q*180/pi); 

    handles.Matriz=Point; 

else 

    q=qi; 

end 

handles.Robotqb=qb; 
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5 User Graphics Interface 

The need for a graphical interface (GUI) is very 
important because it requires a user-friendly 
interface for users who have limited 
programming  knowledge. 

It is also required that GUI be intuitive, in such 
a way that anyone familiar with a computer can 
easily handle the robotic arm just using buttons, 
text boxes, sliders, etc., and observe changes in 
both virtual and physical robot arm. 

The graphical interface designed for the four 
degrees of freedom robot (figure 13) was 
programmed using the MATLAB® software and 
presents a compact version compared with 
interfaces developed in other projects, such 
as  [28].  

The interface that was created has four controls 

(buttons: q+, q-, edit box: Deg, and a slide bar) that 
modify the angle of one of the four joints that is 
specifically selected to be changed (Joint). It 
constitutes the direct kinematics. In addition, this 
modification of the angle is changed in one of four 

intervals given by the selection that is operated 
in Increment. 

The selection that affects the articulation space 
(Joint) also affects the World space (inverse 
kinematics) by selecting one of the three 
references (wx, wy, wz) for an incremental 
movement. There is a selection to visualize the 
virtual robot from four different points of View.  

The Home button sends the robot to its resting 
position. The Store option stores a joint position in 
memory and increases the Index. The Del button 
removes the joint position indicated by Index. 

The Save button saves all the joint positions of 
the robot to a *.mat file, thus recording a trajectory. 
A trajectory is a spatial construction, a location in 
space that leads from an initial position to a final 
position. The Load button loads a *.mat file with a 
path to the robot. The Run button goes through the 
joint positions that constitute the path to 
be traveled. 

When one of the joint controls is activated, the 
change produced is observed graphically in the 
virtual robot. Similarly, the updated value of the 
joint variable can be seen in the Deg edit box. The 
position of the slide bar for the modified joint is also 
updated. Table 2 describes in detail each of the 
controls of the developed graphical interface. 

When the virtual robot in the software moves, 

the same program sends the joint positions (q1, q2, 
q3, q4) to the controller (Arduino UNO) through the 
serial port so that these changes can be seen in 
the servo motors of the real robot (figure 14). 

5.1 Programming 

The calculated qi values should be supplied into 
the servo controller card from the computer. The 
Arduino board handles the relevant angular motion 
to every servo motor in the robot arm. Arduino IDE 
is used directly to perform the programming on 
the board. 

To establish communication between the 
interface and the robot, a serial communication 
port is used. The pseudocode that was loaded on 
the Arduino UNO card is presented; this code 
receives articulated positions from the computer 
and transfers them to the servo motors of 
the robot: 

a) Inclusion of the Servo library. 

 

Fig. 13. Graphical Interface 

 

Fig. 14. Virtual nd real robot arm 
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b) Initialization of variables and position of 

servomotors qi = [0° 90° 0° 0°]. 

c) Read the joint positions from the serial port. 

d) Map the positions and write them to 
servomotors. 

e) Return to step c). 

5.2 Algorithm 

Next, the pseudocode of the program developed in 
MATLAB® [20] is presented, with the purpose of 
having a general understanding of its operation: 

a) Initialization of program variables. 

b) Initial joint position qi = [0° 90° 0° 0°]. 

c) Opening of the serial port. 

d) Check user changes in controls that affect 
joint space, update variables and interface, 
solve direct kinematics. 

e) Check user changes in controls that affect the 
World space, update variables and interface, 
solve inverse kinematics. 

f) Write the current position qi to the serial port. 
Under the format: $ q1 q2 q3 q4 # 

g) Go back to step d). 

h) If the program is closed, close before the 
serial port. 

6 Results 

After mathematical modeling (D-H) and kinematic 
solutions were generated and implemented by the 
software, a Robot arm was developed and tested 
in this study. 

Several trajectories were generated, one of 
them with the shape of a full circle (figure 15), this 
was done in order to evaluate the adequate 
generation of joint positions obtained by solving the 
direct and inverse kinematics equations by 
Matlab's Robotics Toolbox. 

7 Discussion 

The realization of this project allowed, since the 
beginning, the enrichment of a senior-level 
undergraduate robotic course showing many 

 

Fig. 15. Evaluation of generated positions 

Table 2. Controls of the interface 

Control Description 

 

Select the specified joint to be rotated. 

 

Select the specified angular or linear 
increment to be moved. 

 

Select the specified world frame of 
reference to be moved. 

 

Select the specified point of view for the 
robot. 

 

Controls that change the angular 
position of the selected joint. 

 

Controls that change the selected 
world frame by a specified increment. 

 Sends the robot to Home. 

 Motion over all the saved positions. 

 

Index changes automatically when a 
position is stored or deleted 

 Store a position 

 Delete a position 

 Save a trajectory to a file 

 Load a trajectory from a file 
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positive results. Students were very enthusiastic 
because their exposition to a real case of study, 
also they learn to work in teams in the design and 
construction of the robot. The students divided 
tasks among themselves and scheduled 
their work.  

The course was organized in accordance with 
specific goals. The first goal was to design the 
robot, CAD was used to design the main 
mechanical pieces under certain specifications, 
and such was the case of the robot’s links. 

The second goal was to develop manufacturing 
processes, where the students were challenged by 
machining pieces with Computer-Aided 
Manufacturing (CAM) software/machines. In 
addition, they constructed mechanical and 
electrical assemblies of the manipulator robot 
using tools such as band saws, drills, soldering 
irons, and multimeters.  

The third goal was to integrate mechanism, 
electronic, and computer control, carrying out the 
achievement of a functional robotic prototype. Here 
the spectrum of topics required for developing the 
actual robotic device were components like 
mechanisms, structures, actuators, drivers, power 
sources, wiring, microprocessors, peripherals, and 
real-time programming. Because of the emphasis 
upon integration, the project centered on 
laboratory experiences in which student 
configured, designed, and implemented 
mechatronic devices. 

The fourth goal was the implementation of 
kinematics. Here concepts were exposed starting 
from mathematical foundations, such as matrix 
algebra and trigonometry. Students were 
introduced to the concepts of direct and inverse 
kinematics, singularity definition and avoidance, 
joint rotations, translations, and trajectory 
computation. Furthermore, in the fifth goal, 
students demonstrated kinematics concepts 
developing and programming laboratory 
experiments with working robotic arm, with the 
programming environment. 

To make the laboratory experience more like 
real, the six goal was devoted to put the complete 
experimental robotic system together and to make 
it move. Students stablished serial communication 

                                                      
1 Video Available: https://home.mycloud.com/action/share/ 

7387d7d0-56eb-4dac-a0a4-c3b880b0d57e 

between computer and microcontroller’s 
embedded communication library. 

Students wrote scrips in Matlab language 
inserting functional and structural parameters; 
homogeneous transformations, D-H, calculation of 
position and orientation of the tool, direction of the 
joint rotation in the kinematics model, which must 
coincide with the rotation of the robot’s 
servo motor. Evaluation the extent of the 
workspace by varying the joint angles through the 
reachable space. Scripts should consider joint 
limitations, and thus joint angles into both, the arm 
controller and script, must be inside of the physical 
limits. Therefore, testing of robustness of the code 
was  developed. 

Then, the final goal consisted of the script ran 
in Matlab environment. Students did a final check 
of the manipulator behavior; they had some 
specific task to do with the robot. Students 
programmed the robot to follows a planned path, 
stored in a *.mat file; as the motion was performed, 
a draw was painted by a marker on a board. 

A static obstacle in the robot path was put, 
introducing complexity to the task. From that 
experiment, students understood concepts such 
as posture (high and low elbow) and its 
connections with options chosen during the 
computation of the inverse kinematic. The previous 
task was repeated, but including a field of 
obstacles, this had repercussions on the path, 
precluding the robot from moving into areas 
previously specified as areas to avoid. 

All goals of curriculum were reached, and 
students took advantage of the robotic course very 
much. However, existing opportunity areas were 
identified for further improvement of the 
robot design.1 

8 Conclusion 

The objective was achieved, this is that a low-cost 
educational and experimental manipulator robot 
arm of 4 degrees of freedom was designed and 
built; It took advantage of the most current open 
hardware and software technology. It can be used 
in graduate and undergraduate robotic courses to 
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realize didactically the relationships between 
theoretical and practical aspects of robot 
manipulator motions in real time. The article 
described the most relevant details as practical 
laboratory exercises of the mechanical structure, 
the electrical and electronic aspects, and the 
software developed for its management.  

Thus, the design of the links was made through 
SolidWorks. These were machined in a CNC 
milling machine programmed with G codes. 
Mechanical exo-skeletal structures were added to 
reduce the effect of lateral loads on the links. The 
final assembly was carried out together with the 
wiring, power supply and controller for the physical 
robot. The robot was modeled mathematically 
using the Robotics Toolbox, solving direct and 
inverse kinematics and an attractive and intuitive 
GUI interface was created in Matlab. 

The controller program was loaded with serial 
communication and the Servo library of the 
Arduino. Several tasks (trajectories) were carried 
out to evaluate the performance of the prototype, 
resulting in an adequate functioning. All these 
laboratory exercises provided invaluable hands-on 
experience that complemented classroom 
lectures, which are essential for many other 
aspects of robotics education. 

Students showed enthusiasm in the application 
of the concepts discussed during the lectures, 
solving the problems by teamwork. In the future, 
our goal for the robotics educational platform is to 
integrate formally the prototype with the entire 
robotics curriculum, increasing the number and 
type of laboratory exercises routinely conducted by 
students of robotics track. Therefore, the platform 
finds its higher potential applications in 
educational, academic, and research sectors, 
representing a very encouraging starting point to 
further development of these activities. 
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