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Abstract. A nonlinear principal component analysis 

(NLPCA) represents an extension of the standard 
principal component analysis (PCA) that overcomes 
the limitation of the PCA’s assumption about the 
linearity of the model. The NLPCA belongs to the family 
of nonlinear versions of dimension reduction or the 
extraction techniques of underlying features, including 
nonlinear factor analysis and nonlinear independent 
component analysis, where the principal components 
are generalized from straight lines to curves. The 
NLPCA can be achieved via an artificial neural network 
specification where the PCA classic model is 
generalized to a nonlinear mode, namely, Neural 
Networks Principal Component Analysis (NNPCA). In 
order to extract a set of nonlinear underlying systematic 
risk factors, we estimate the generative multifactor 
model of returns in a statistical version of the Arbitrage 
Pricing Theory (APT), in the context of the Mexican 
Stock Exchange. We used an auto-associative 
multilayer perceptron neural network or autoencoder, 
where the ‘bottleneck’ layer represented the nonlinear 
principal components, or in our context, the scores of 
the underlying factors of systematic risk. This neural 
network represents a powerful technique capable of 
performing a nonlinear transformation of the observed 

variables into the nonlinear principal components, and 
to execute a nonlinear mapping that reproduces the 
original variables. We propose a network architecture 
capable of generating a loading matrix that enables us 
to make a first approach to the interpretation of the 
extracted latent risk factors. In addition, we used a two 
stage methodology for the econometric contrast of the 
APT involving first, a simultaneous estimation of the 
system of equations via Seemingly Unrelated 
Regression (SUR), and secondly, a cross-section 
estimation via Ordinary Least Squared corrected by 
heteroskedasticity and autocorrelation by means of the 
Newey-West heteroskedasticity and autocorrelation 
consistent covariances estimates (HEC). The evidence 
found shows that the reproductions of the observed 
returns using the estimated components via NNPCA 
are suitable in almost all cases; nevertheless, the 
results in an econometric contrast lead us to a partial 
acceptance of the APT in the samples and 
periods studied. 

Keywords. Extraction of underlying risk factors, 

nonlinear principal component analysis, arbitrage 
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1 Introduction 

The Principal Components Analysis (PCA) and 
Factor Analysis (FA) have been the classic 
techniques used for extracting the underlying 
systematic risk factors of the generative 
multifactor model of returns in the statistical 
approach to the Arbitrage Pricing Theory (APT). 
Both techniques make a strong assumption about 
the multivariate Gaussianity of the observed 
variables; however, real life data sets, especially 
financial time series, are not normally distributed 
neither univariate nor multivariate, and this 
causes the application of a PCA or a FA to yield 
unreliable results.  

A solution to this problem is to extract the 
components by means of the Independent 
Component Analysis (ICA), which is capable of 
extracting statistically independent components 
from a set of non-Gaussian data. In addition, the 
underlying risk factors extracted by an ICA 
represent better estimations than those extracted 
by a PCA and a FA, because the first are 
statistically independent, whereas the latter are 
only linearly uncorrelated. 

Nevertheless, both the PCA-FA and the ICA 
make another strong assumption: the linearity of 
the model. In the present research we use a novel 
extraction technique which deals with the 
nonlinearity problem: the Nonlinear Principal 
Components Analysis (NLPCA). This technique 
has been used in many fields of science as a 
dimensionality reduction or as a feature 
extraction technique1. 

For example, in [25] authors use a NLPCA to 
detect nonlinearities, extract features and classify 
spectral data from a set of stars, showing that the 
nonlinear principal components perform better 
than a standard PCA. They also apply it in the 
physiology field, analyzing data from 
electromyographic recordings of muscle activities 
and obtained similar results. In biochemistry and 
bioinformatics, in [26, 27, 21, 23] the authors 
applied a NLPC in order to analyze molecular 

                                                      
1 The main difference between these two approaches is 

the required aim of the components or factors extracted. 
Whereas in the dimensional reduction the only interest is in 
achieving a smaller dimension of usually noise-free variables; 

data from metabolite levels of a plant and from the 
reproductive cycle of a parasite.  

Their findings demonstrate that the nonlinear 
components extracted by a NLPCA are more 
suitable for interpreting this kind of large multi-
dimensional biological data as well.  

Other fields of applications where there is an 
extensive list of studies are for instance: in 
Oceanography and Atmospheric Sciences, for 
extracting features from different atmospheric 
phenomena; in chemical and industrial 
engineering, for detecting faults in nonlinear 
industrial and chemical separation processes; in 
psychology, for dealing with nonlinear 
relationships applied to categorical data; and in 
robotics, for characterizing humanoid motion and 
for transferring human skills to robots.  

In the field of finance, the application of 
NLPCA has been little developed. In [6] the 
authors used a NLPCA to determine the nonlinear 
principal components driving the variations of the 
implied volatility smile derived from FTSE-100 
stock index options; in [18] a NLPCA is employed 
for bankruptcy prediction in banks, and in [30] it is 
used to analyze and predict the trend of 
withdrawals from an employment time 
guarantee fund.  

On the other hand, some works have used 
related techniques to extract nonlinear 
components in the field of finance, e.g., [8] and 
[14], where the authors employ a Kernel PCA 
(KPCA) and a Curvilinear Component Analysis 
(CLCA), respectively, to reduce the dimension 
from a set of technical analysis indicators that 
they use for predicting stock prices and a market 
index. In addition, in [28] the authors used a 
KPCA to extract features from a set of stock 
prices with predictive purposes as well. 

Applications in other related areas such as 
economics and business are limited too. In [13] 
the authors used NLPCA to evaluate the 
nonlinear relationship between budget rules and 
fiscal performance, and in [5] it is used as a 
dimensionality reduction technique to measure 
the perception of consumers about the quality 
of services. 

in the feature extraction, the concern is for identifying unique 
and meaningful components or factors representing the main 
characteristics of the variables.  
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As far as we are concerned, there is neither 
any reference using NLPCA to extract the 
underlying systematic risk factors affecting the 
returns on equities in the stock markets, nor any 
study using NLPCA applied to Mexico; 
consequently, the main objective of this research 
is to fill this gap in financial literature2. 

The structure of this paper is as follows: 
Section 2 presents a brief review of the NLPCA, 
Section 3 explains the empirical study and 
Section 4 draws the conclusions. Finally, the last 
section presents the references consulted in 
this research. 

2 Nonlinear Principal Component 
Analysis 

The objective of a NLPCA is to extract nonlinear 
components from a data set.  

The NLPCA represents a nonlinear 
generalization of the standard PCA, where the 

                                                      
2 Nevertheless, there are some related studies carrying 

out other types of PCA, in the context of Ibero-America, to 
other fields of science that it is important to cite, such as: in 
[29] where the Dynamic Principal Component Analysis is 
compared to the Diagnostic Observers for fault detections in a 
heat exchanger; and in [2] where the authors used the Class-
Conditional Probabilistic Component Analysis for gender 
recognition. 

estimated principal components are taken from 
straight lines to curves, capable of handling and 
of discovering nonlinear relationships among 
variables and between components and 
variables, in other words, the subspace produced 
in the original data space is curved. 

On the other hand, continuous financial time 
series, such as returns on equities, might present 
a nonlinear behavior, implying that possibly they 
might be better explained by curved lines rather 
than straight lines.  

The relationship between the underlying 
systematic risk factors and the returns on equities 
might be nonlinear, too; thus, it could be better 
explained by a nonlinear model as well3.   

2.1 Auto-Associative Neural Network 

In this study we will focus on one approach to 
perform NLPCA based on artificial neural 
networks (ANN)4.  

3 NLPCA belongs to the family of nonlinear versions of 
dimensionality reduction or feature extraction techniques, 
including Nonlinear Factor Analysis (NLFA) and Nonlinear 
Independent Component Analysis (NLICA). In addition, 
another related nonlinear approach in structural analysis is the 
Nonlinear Partial Least Squares (NLPLS). 

4 Other methods to extract nonlinear components are: the 
Locally Linear Embedding (LLE), the Isometric Feature 
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Fig. 1. Auto-associative multilayer perceptron neural network or autoencoder. Based on [23 and 16] 
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This approach, known as Neural Networks 
Principal Component Analysis (NNPCA) or 
Principal Component Neural Networks (PCNN), is 
commonly performed via an auto-associative 
neural network architecture named autoencoder, 
replicator network, bottleneck or sandglass type 
network5. This neural network (NN) is a multilayer 
perceptron6, where the output layer of the network 
is required to be identical to the input layer 
(identity mapping) by minimizing the square error: 

‖𝑥 − �̂�‖2. (1) 

In the middle of the network there is a layer 
(bottleneck) where the reduction of dimension is 
done and represents the values of the principal 
components or scores. Figure 1 shows a diagram 
of this kind of NN.  

The first part of the process is the extraction 
of the principal components (third layer) from the 
original data (first layer). The NN estimates a first 
matrix of weights to generate the second hidden 
layer, which will represent a previous layer before 
the one of nonlinear principal components 
(NLPC); then, the NN estimates a second matrix 
of weights, which will generate the third layer or 
principal components (Z).  

The second part of the process is the 
reconstruction of the variables from the NLPC. 
The NN computes a third matrix of weights to 
produce a fourth hidden layer as a previous step 
to the reconstructed variables, which will be used 
together with to the fourth matrix of weights, in 
order to reproduce the original variables. Actually, 
the second and fourth hidden layers are the ones 
that perform the nonlinear mapping.  

The formal expressions of the extraction and 
generation functions are: 

Extraction function: 

𝑧 = 𝜙𝑒𝑥𝑡𝑟 = (𝑤, 𝑥) = 𝐖2𝑔(𝐖1𝑥), (2) 

Generation function: 

�̂� = 𝜙𝑔𝑒𝑛 = (𝑤, 𝑧) = 𝐖4𝑔(𝐖3𝑧), (3) 

                                                      
Mapping (Isomap), the Principal Curves, the Self Organizing 
Maps (SOM), the Kernel PCA (KPCA), the Curvilinear 
Component Analysis (CLCA), and the Quantum-Inspired 
Evolutionary Algorithm (QIEA). 

5 Another approach used for estimating the NLPCA based 
on NN is the input training network (IT-net). For details 
see  [16]. 

where z represents the scores or principal 
components; W1 and W2, the matrices of weights 

in the extraction process; �̂�, the reconstructed 
variables; W3 and W4, the matrices of weights in 
the generation process; and g, the nonlinearity 
performing the nonlinear transformation, usually a 
tangent sigmoid function. 

There are several architectures for the auto-
associative neural network approach, such as: 
the standard, the hierarchical, the circular and the 
inverse model, and all of them can be used in 
combination. The standard NLPCA is the naive 
model, where both of the extraction and 
generation processes are included and no 
additional constraint, regarding the order of 
components, is imposed. The use of this version 
is recommended for non-periodic or non-cyclic 
data when the main interest is only the reduction 
of the dimensionality and not the extraction of 
meaningful features.  In the hierarchical NLPCA, 
the order of the nonlinear components is enforced 
to respect the hierarchical ranking obtained in the 
linear PCA, thus yielding more meaningful 
features for the analysis. The circular version 
allows the extraction of circular components 
which describe a closed curve, instead of a 
standard curve with an open interval, more 
suitable for periodic or cyclic phenomena. Finally, 
the inverse definition only models the 
generation process.  

This version is more efficient since we only 
train the second part of the neural network and 
not the two processes. It produces results more 
suited for real processes, since it models the 
natural process generating the observed data. In 
addition, it allows dealing with missing data 
because it does not need the sample data as an 
input. All the former extensions can be used in 
combination or separately 7. 

2.2 Dealing with Nonlinearity 

In many studies a NLPCA has been used as a 
successful alternative to deal with the nonlinear 

6 For details on multilayer perceptron neural networks, and 
in general, on foundation of neural networks, see [3]. 

7 For details about the different variants of the 
autoencoder  NN, see [25, 26, 27, 21, 23]. 
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relations among variables existent in different 
kinds of real data. Nevertheless, the use of 
NLPCA can be justified under a different 
perspective independently of the linear or 
nonlinear relation among the data set. Whereas 
PCA, FA and ICA represent linear models, a 
NLPCA has the attribute of being a nonlinear 
system8. In other words, PCA, FA and ICA 
express the variables in the model as linear 
combinations, while a NLPCA does it as a 
nonlinear mixing.  

In NLPCA performed via an autoencoder 
neural network, the nonlinear hidden layers 
enable, first, a nonlinear mapping from the 
observed variables in order to estimate the 
principal components, and then another nonlinear 
transformation (demapping) from the estimated 
components in order to approximate the 
reconstructed variables. As a nonlinear system 
characterized by the non-proportionality between 
its inputs and outputs, a NLPCA will produce 
different insights of the studied phenomena. 
Particularly in the finance field, it could be 
assumed that simple variations in the underling 
systematic risk factors may generate complex 
effects in the returns on equities; i.e., the relation 
between the stock returns and the underlying 
systematic risk factors may be nonlinear. 

2.3 Estimation of the Parameters of the Model 

The generation function, gives the inverse 
function, from a set in the latent space z, as 
shown in equation (3) above. In order to estimate 
the parameters of the model W3 and W4 that allow 

for the estimation of 𝑥, we will optimize a global 
cost function that simultanously yields, a 

projection from the initial values 𝑥 into the latent 

space and then from the latent space 𝑥 estimates 

a new reconstruction 𝑥.  According to [21] this is 
done by minimizing the RMSE as follows: 

𝐸(𝑤) =
1

𝑁
∑ ‖𝑥𝑘

𝑛 −𝑁
𝑛

𝑊4𝑔2(𝑊3𝑊2𝑔1(𝑊1𝑥𝑘
𝑛))‖

2
  

(4) 

                                                      
8 As stated in [21]: “Linear models can be expressed as a 

(weighted) sum of their individual parts (factors …). Nonlinear 
models, by contrast, cannot simply be expressed by a sum. 
More precisely, the linear transformation … of a linear model 

is given by a linear function. A function 𝑓(𝑥) is termed linear 

In the case of implementation done in this 
paper, the parameters 𝑤𝑖𝑗 corresponding to each 

of the matrices W1, W2, W3, W4 were estimated by 
means of gradient search. 

Following [26] in order to compute each of the 
weight values 𝑤𝑖𝑗 the above equation can be 

expressed more specifically as:  

𝐸(𝑤, 𝑧) =
1

d𝑁
∑ ∑ [𝑥𝑖

𝑛 −𝑑
𝑖

𝑁
𝑛

∑ 𝑤𝑖𝑗
ℎ
𝑗 𝑔(∑ 𝑤𝑗𝑘

𝑚
𝑖 𝑧𝑘

𝑛)]
2
,  

(5) 

and the partial derivatives are the following 
(according to the Matlab® notation, and including 
the bias term corresponding to 𝑗 = 0): 

𝜕𝐸

𝜕𝑤𝑗𝑘
=∑𝜎𝑖

𝑛𝑔(𝑎𝑗
𝑛)

𝑛

; 𝜎𝑖
𝑛 = �̂�𝑖𝑛 − 𝑥𝑖

𝑛, (6) 

𝜕𝐸

𝜕𝑤𝑗𝑘
=∑𝜎𝑗

𝑛

𝑛

𝑧𝑘
𝑛; 

𝜎𝑗
𝑛 =

𝑔′(𝑎𝑗
𝑛)∑ 𝑤𝑖𝑗𝜎𝑖

𝑛
𝑖 , 

(7) 

𝜕𝐸

𝜕𝑧𝑘
𝑛 = 𝜎𝑘

𝑛; 
𝜎𝑘
𝑛 =

∑ 𝑤𝑘𝑗𝜎𝑗
𝑛

𝑗 , 
(8) 

The above partial derivatives are used for 
updating the estimation of the weights 𝑤𝑖𝑗 

iteratively as: 

𝑤𝑖𝑗 ← 𝑤𝑖𝑗 − 𝜇
𝜕𝐸

𝜕𝑤𝑖𝑗
. (9) 

The selection of the  mu parameter is done 

heuristically, taking into account 
convergence considerations. 

3 Empirical Study 

3.1 The Data 

In conformity with the availability of information, 
and for the sake of a comparison to former 
studies9, the sample used in this research 
contains the log returns of the stocks that have 
been part of the main index of the Mexican Stock 

when it satisfies both properties: additivity (𝑥 + 𝑦) = 𝑓(𝑥) +
𝑓(𝑦) and homogeneity (𝛼𝑥) = 𝛼𝑓(𝑥), otherwise it is a more 
complex nonlinear function.” 

9 See [10, 11]. 
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Exchange, the Price and Quotations Index (IPC), 
during all the periods considered.  

Because of their importance in the Mexican 
Economy and their characteristics of liquidity and 
market value, these companies can be 
considered as representative of the Mexican 
stock market. Table 1 shows the names and 
sectors of these shares.  

We carried out our study on four different 
databases structured as follows:  two databases 
of 20 stocks ranging from July 7, 2000 to January 
27, 2006, one expressed in weekly returns 

                                                      
10 The two stocks not included in the daily databases are: 

CEMEXCP and KIMBERA. The interest rates considered as 
the riskless interest rate were the average weekly and daily 

(DBWR) and the other in returns in excess of the 
riskless interest rate (DBWE); and two databases 
of 22 stocks running through the period from July 
3, 2000 to January 31, 2006, the first expressed 
in returns (DBDR) and the latter in 
excesses (DBDE)10. 

The period analyzed in this study (2000-2006) 
was considered according to the following criteria: 

a) This article represents the third part of a major 
research, where we are testing different 
techniques for extracting the underlying 

funding interest rates using government securities, published 
by the Bank of Mexico, http://www.banxico.org  

Table 1. Stocks used in this study 

No. TICKER Name of the Company Industrial Sector 

1 ALFAA Grupo Alfa Holding 

2 ARA* Consorcio Ara Construction: Housing 

3 BIMBOA Grupo Bimbo Food processing 

4 CEMEXCP Cemex Cement 

5 CIEB 
Corporación Interamericana de 

Entretenimiento 
Holding 

6 COMERUBC Controladora Comercial Mexicana Commerce: retailing and wholesale 

7 CONTAL* Grupo Continental Food and beverage processing 

8 ELEKTRA* Grupo Elektra Commercial firms 

9 FEMSAUBD Fomento Económico Mexicano Beer 

10 GCARSOA1 Grupo Carso Holding 

11 GEOB Corporación GEO Construction: Housing 

12 GFINBURO Grupo Financiero Inbursa Financial services 

13 GFNORTEO Grupo Financiero Banorte Financial services 

14 GMODELOC Grupo Modelo Food, tobacco and beverages 

15 KIMBERA Kimberly-Clark de México Cellulose and paper 

16 PE&OLES* Industrias Peñoles Ferrous minerals 

17 SORIANAB Organización Soriana Commerce: retailing and wholesale 

18 TELECOA1 Carso Global Telecom Communications 

19 TELMEXL Teléfonos de México Communications 

20 TLEVICPO Grupo Televisa Communications 

21 TVAZTCPO TV Azteca Communications 

22 WALMEXV Wal-Mart de México Commerce: retailing and wholesale 
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systematic risk factors in the context of the 
Mexican Stock Exchange. The Neural 
Networks Principal Component Analysis 
represents the third approach we have used to 
perform that extraction, under a statistical 
approach to the latent systematic risk factors. 

b) The technique used in this article, and the other 
techniques utilized in the previous stages of 
our research, have an explanatory and a 
predictive character. First, we are carrying out 
the explanatory approach, which make us 
divide our dataset in two blocks: one for 
explanation or training and another for 
prediction; i.e., the first period is used for the 
explanation or training of the model, and the 
second one, will be used for testing the 
predictive power of the generative model of 
returns estimated. Consequently, the data from 
2000 to 2006 were used to extract the 
generative underlying structure of returns, 
which explains the behavior of the returns of 
the training period. This estimation will help us 
in the next stage of prediction, where the model 
will be tested in subsequent periods of time 
(from 2006 on). 

c) The other techniques that we have employed 
in our research are the Independent 
Component Analysis, Factor Analysis and 
Principal Component Analysis; our objective is 
to be able to compare the results of the four 
techniques, concerning both their explanatory 
and predictive power. Therefore, we are using 
the same training and prediction periods for the 
four of them. 

d) Additionally, another reason for using this 
period of the dataset, is to be able to compare 
in further studies, the effects of the 2008-2009 
financial crisis in the estimation of the 
                                                      
11 This study only focuses in the estimation of the 

explanatory model using NNPCA. The estimation of the 
explanatory models using the other referred techniques, the 
testing of the prediction power of the estimated models and 
the comparison of the results in the crisis and post-crisis 
periods are out of the scope of this article, and represent other 
stages of the research conducted by the authors of the present 
document. 

12 Where, ji represents the sensitivity of equity i to factor 
j, Fjt the value of the systematic risk factor j in time t common 

for all the stocks, and i the idiosyncratic risk affecting only the 
equity i. 

underlying structure of systematic risk, by 
means of the extraction of the generative 
model of returns during the crisis and the post-
crisis periods, using the four techniques11. 

3.2 Methodology and Results 

3.2.1 Extraction of Underlying Systematic 
Risk Factors Via NNPCA 

The Arbitrage Pricing Theory (APT) assumes the 
following generative multifactor model of 
returns12: 

𝑅 = 𝐸(𝑅𝑖) + 𝛽1𝑖 ∙ 𝐹1𝑡 + 𝛽2𝑖 ∙ 𝐹2𝑡 +⋯+ 𝛽𝑗𝑖
∙ 𝐹𝑗𝑡 + 𝜀𝑖𝑡 . 

(10) 

From the statistical approach, neither the 
factors nor their sensitivities are given13 and we 
must estimate them simultaneously by means of 
statistical or feature extraction techniques such 
as, in this case, the NNPCA. Although the 
NNPCA is capable of extracting the scores of the 
components (the Fs), it is very difficult or even 
impossible to obtain a single matrix containing the 
equivalent to the sensitivities for each factor 
(betas), because there are two matrices of 
weights and a nonlinear transformation involved 
in the process of reproducing the variables14. 
Consequently, we used the NNPCA for extracting 
only the scores of the underlying systematic risk 
(the Fs) in the expression 10. 

In order to estimate the NNPCA model, we 
used its hierarchical extension (h-NLPCA) 
performed by an auto-associative neural network, 
which respects the ranking of the principal 
components in the linear PCA15. This hierarchy 
implies the fulfillment of two important properties: 
scalability and stability. Scalability means that the 
first n components must explain, as much as 

13 The macroeconomic approach assumes the factors as 
given and estimates the sensitivities; whereas the 
fundamental, sector, and technical approaches assume the 
sensitivities as given and estimate the factors [31,1].  

14 The analogous situation occurs in the process of 
extraction, where there are two matrices of weights and a 
nonlinear transformation involved in the extraction of the 
components process.  

15We used the Matlab® code created by [22] to perform 
the NNPCA estimation, available at 
http://www.nlpca.org/matlab.  
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possible, the variance in the n-dimensional 
subspace. Stability denotes that the i-th 
component of an n-dimensional solution must be 
identical to the i-th component of an m-

dimensional result, where mn  .  

According to [25], the hierarchy constraints are 
based on searching in the original data space for 
the smallest mean square reconstruction error 
while using the first i-th components according to 
the following expression: 

𝐸 =
1

𝑑𝑁
∑∑(𝑥𝑘

𝑛 − �̂�𝑘
𝑛)

𝑑

𝑘

𝑁

𝑛

, (11) 

where, 𝑥 and �̂� represent the observed and 
reproduced data respectively; N, the number of 
samples; and d, the dimensionality. The 
hierarchical error function extended to k 
components, with k<d, implies minimizing:  

𝐸𝐻 = 𝐸1 + 𝐸1,2 + 𝐸1,2,3 +⋯+ 𝐸1,2,3,…,𝑘 . (12) 

Therefore, the h-NLPCA can be interpreted as 
we look for a k-dimensional subspace of minimal 
mean square error (MSE), so that the (k-1)-
dimensional subspace is also of MSE. 
Consequently, all the dimensional subspaces 1, 
k, are of minimal MSE and represent their 
dimensionality in the best way16. For the sake of 
a comparison with our former studies, we 
estimated 8 different Neural Networks (NNs) to 
extract from 2 to 9 nonlinear principal components 
in each database.  

In order to generate a loading matrix that make 
possible a first attempt to interpret the latent risk 
factor extracted, we used a five-layer architecture 
with 20 neurons in the input layer for the weekly 
databases and 22 for the daily ones, from 2 to 917 
in the mapping layer, the bottleneck layer, and the 
demapping layer and, finally, 20 and 22 in the 
output layer, respectively. In terms of the NN 
notation, the architectures used were: [20:2-9:2-
9:2-9:20] and [22:2-9:2-9:2-9:22]. 

Concerning the nonlinear transferring 
functions, following the recommendations of [16] 
for an autoencoder NN in order to perform the 

                                                      
16For details on the hierarchical error function, see [25]. 
17 Our test window in each database run from 2 to 9 non-

linear components. 
18 Obviously, the greater the number of components 

estimated, the better the reproduction capacity of the model.  

NLPCA, we used a tangent sigmoid function from 
layer one to layer two and from layer  three to 
layer four; and a linear function from layer two to 
layer three and from layer four to layer five. 

Using the Matlab® code by [22] for the 
performance of the NLPCA on our four 
databases, we obtained the scores of the 
principal components hierarchically ordered, the 
four matrices of weights and the reproduced 
variables. We emphasize that the objective of 
such estimation is to achieve a nonlinear 
transformation, first, from the observed variables 
to the principal components, and then to realize 
another nonlinear transformation capable of 
reproducing the observed variables from the 
extracted components.  

The results in the reconstruction of the 
observed returns or excesses were suitable for all 
the stocks in the four databases; this implies that 
the estimation of the generative multifactor model 
in the statistical approach to the APT, performed 
by NLPCA, was successful18. 

The only problem detected was in the 
reproduction of some observations in a few stocks 
presenting very high levels of volatility, where the 
reconstruction was not able to reach all the peaks 
completely. Nevertheless, if we add more 
components to the extraction, the reproduction of 
all the series improves greatly, covering almost all 
the peaks of high volatility19. 

For reasons of space saving, in Figures 2 we 
only show the lines plots of the observed and 
reproduced returns and excesses from the first 5 
stocks in each database of the experiment, where 
we extracted nine components. We can observe 
that the reconstruction is suitable in nearly all 
cases, except for the observations regarding very 
high volatility, as stated above. 

In addition, for visualization purposes in 
Figures 3, we present the plots generated by the 
software used for the extraction, where the first 
three principal components of the NLPCA are 
plotted as a grid in the original data space.  

19 These experiments are not reported because we only 
focused on the range of estimation from 2 to 9 components. In 
spite of these findings, further research about this loss of 
volatility in the reconstruction might be done, as an attempt to 
discover why these components fail in picking up the risk.  
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In this case the grids represent the new 
coordinates of the component space, thus giving 
a nonlinear or curved description of the data.  

Although it is not completely conclusive, the 
four plots show that the data could be described 
sufficiently well by nonlinear behaviors. 

3.2.2 Interpretation of the Extracted Factors 

Although this study is mainly focused on the 
extraction process of systematic risk factors of the 
Mexican Stock Exchange, but not on the risk 
attribution stage of statistical approach to the 
Arbitrage Pricing Theory, in this section we will 
just make a first attempt to propose an 
interpretation of the meaning or nature of the 
systematic risk factors extracted. We will follow an 
analogue methodology similar to the classical 
approach used when Principal Component 
Analysis (PCA) and Factor Analysis (FA) are used 

to reduce dimensionality or to extract features 
from a multifactor dataset.  

This approach is based on the use of the factor 
loading matrix estimated in the extraction process 
in order to identify the loading of each variable in 
each component or factor; high factor loadings in 
absolute terms indicate a strong relation between 
the variables and the factor. In our context, the 
factors will be saturated with loadings of one stock 
or a group of stocks that may help us in the 
identification of those factors with certain 
economic sectors, as a first approach to the 
interpretation of each component or factor.  

In the case of NNPCA, that factor loading 
matrix is not clearly defined, since the demixing 
process involves the combined effect of two 
loading matrices (W1 and W2) and a nonlinear 
function of transference; however, in order to use 
one of these matrices as an analogue one to 

Database of weekly returns Database of weekly excesses 

 
 

Database of daily returns Database of daily excesses 

 
 

Note: Logarithmic returns of the first five stocks observed in each database and their respective reconstructions 

using the estimated NNPCA model. Stock symbols of the stocks presented appear above each line plots. 
 

Fig. 2. Line plots of the observed and reproduced stocks 
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those used in techniques such as PCA and ICA 
as a first approach to give meaning to the 
extracted factors, we can argument the following, 
considering the role that each matrix plays in the 
demixing process. 

Following the network architecture displayed 
in Figure 1. Matrix W1 makes a projection into the 
space where we have an internal representation 
in the form of the hidden units, thus, it would be 
equivalent to a mixing matrix such as those used 
in PCA and FA. In other words, from a structural 
point of view NNPCA makes a non-linear 
transformation given by W1. For that effect, it is 
necessary to subtract the medium value by 
means of the bias involved in the estimation and 
to scale the inputs somehow, so that the 
nonlinearity compresses the margin properly.  

This makes the function of the first layer of the 
network to be different to that of other methods 
such as PCA and FA. On the other hand, matrix 
W2 makes a dimensionality change of the 
representation given the output of the first layer.  

Its function is to make a lineal transformation 
to rotate and scale the output, in such a way that 
the intermediate representation could be 
transformed by the second part of the network. 

Furthermore, from a structural standpoint, the 
product (W1*x) in expression 1, generates the 
representation that will pass through the 
nonlinearity later.  

The function of the nonlinearity is to make a 
compression of the space in order to make easy 
the function of the posterior part of the neural 
network easy. From this standpoint, the projection 

Database of weekly returns Database of weekly excesses 

 

 

Database of daily returns Database of daily excesses 

 

 
Note: The first three principal components of NNPCA plotted as grid in the original data space. The grids represent 

the new coordinates in the space of the components and give a nonlinear or curved description of the data. 

Fig. 3. Nonlinear PCA plot. Nine components estimated 
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form given by (W1*x) informs about the 
intermediate representation of the information 
and it could be compared with the latent factors 
estimated by PCA and FA; although it is important 
to remark that they are different things since they 
are obtained through different criteria. 

According to the above stated, in this research 
we will use matrix W1 as a loading matrix to 
propose preliminary meanings for the extracted 
latent factors. 

In the interest of saving space, we only present 
the loading matrices plots from the database of 
weekly returns that belong to the experiment 
where we extracted nine underlying factors, 
nevertheless, this kind of plots were developed for 

all the cases under the same methodology. Figure 
4 presents these results. 

Additionally, we constructed some tables 
summarizing the results derived from the analysis 
of the factor loading matrices and plots, where we 
propose a certain economic sector that may be 
related to each factor. We grouped together the 
stocks with the highest loading in each factor 
according to the official classification of the 
economic sectors used in the Mexican Stock 
Exchange.  

Table 2 presents this summaryThere is not a 
clear interpretation of the factors using the matrix 
W1; however, we uncover that in this case, the 
most of the factors are formed by a mixture of 

   

   

   

Fig. 4. Loadings matrices plots for interpretation of extracted factors.Database of weekly returns Nine 

components extracted 
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stocks from different industrial sectors instead of 
a combination of shares from the same sector.  

In other words, excluding some factors that we 
could identify clearly; i.e.: number five (Salinas 
Group factor), in database of weekly returns; 

number five (Consumer sector factor), number six 
(Construction sector factor or GEO factor) and 
number eight (Food and Beverage sector factor), 
in database of weekly excesses; number one 
(Construction sector factor or Geo factor) and 

Table 2. Summary of the Interpretation of the Non-linear Principal Components 

Database of Weekly Returns Database of Weekly Excesses 

NLPC1 Beverages and Leisure / mining sectors factor. NLPC1 
Mining / Food products and beverages, 
Consumer staples and Communication media 
sectors factor. 

NLPC2 
Mining and Telecommunications / Holding 
sectors factor. 

NLPC2 Mining / House building sectors factor. 

NLPC3 Holding / Mining sectors factor. NLPC3 
House building, Mining and Holdings sectors 
factor. 

NLPC4 
Home Furnishing and Beverages sectors 
factor. 

NLPC4 
Beverages, Leisure and Home furnishing sectors 
factor. 

NLPC5 Salinas Group Factor. NLPC5 Consume sector factor. 

NLPC6 
House building and Beverages / Consumer 
staples, Communication media and Mining 
sector factors. 

NLPC6 Construction sector factor (Geo Factor). 

NLPC7 Holdings / Food products sector factors. NLPC7 
Financial and House building /Consumer staples 
sectors factors. 

NLPC8 Food products / Construction sector factors. NLPC8 Food and beverages sector factor. 

NLPC9 
Food products, Beverages and Construction 
sector factors. 

NLPC9 
House building, communication media and 
consumer staples sector factor. 

Database of Daily Returns Database of Daily Excesses 

NLPC1 Construction sector factor (Geo factor). NLPC1 Salinas Group / Mining sector factor. 

NLPC2 Mining sector factor (Peñoles factor). NLPC2 
Beverages / Home furnishing and Financial 
services sectors factor. 

NLPC3 
Consumer staples, Financial services, Home 
furnishing and Mining sector factors. 

NLPC3 
Salinas Group, Holdings and Mining / Leisure 
sectors factor. 

NLPC4 
Communication media and Beverage sector 
factor. 

NLPC4 Holdings / Leisure sectors factors. 

NLPC5 
Beverages and mining / Home furnishing and 
house building sectors factor. 

NLPC5 
Beverages and House building / Mining sector 
factors. 

NLPC6 
Beverages, Communication media, House 
building and Home furnishing sectors factor. 

NLPC6 
House building and Holdings / Leisure sectors 
factor. 

NLPC7 
Leisure and Financial services sectors / 
Salinas Group factor. 

NLPC7 
Communication media / Financial services 
sectors factor. 

NLPC8 
House building and Holdings / Home 
furnishing and Consumer staples sector factor. 

NLPC8 Mining sector factor (Peñoles factor). 

NLPC9 
Holdings and House building / Mining and 
Home furnishing sector factors. 

NLPC9 Mining and Beverages sector factor. 
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number two (Mining factor or Peñoles factor), in a 
database of daily returns; and finally, number 
eight (Mining factor or Peñoles factor), in 
database of daily excesses; the rest of the factors 
represent a combination of sectors that in many 
cases have opposite signs. 

In addition, we can distinguish the strong and 
constant contribution of some sectors or stocks in 
many factors in the four databases; e.g., mining 
sector with PEÑOLES (DBWR:4 + DBWE:3 + 
DBDR:4 + DBDE:5 = 16), beverage sector with 
CONTAL (DBWR:4 + DBWE:3 +DBDR:3 + 
DBDE:3 = 13), construction sector with GEO 
(DBWR:3 + DBWE:5 + DBDR:5 = 13), home 
furnishing sector with ELEKTRA (DBDR:6 + 
DBDE:3 = 9 ), holding sector with ALFA (DBWR:3 
+ DBDE:3 = 6), food products sector with BIMBO 
(DBWR:3), consumer staples with WALMEX 
(DBWE: 3) and SORIANA (DBWE:3), 
communication media sector with TVAZTECA 
(DBDR:3) and leisure sector with CIEB (DBDE:3). 

In this case, none of the components in any 
database is clearly related to market factor. 
Likewise, there is not a homogeneous 
interpretation of the factors in all the databases. 
Nevertheless, there are two factors that could 
have the same interpretation in the different 
databases but are ranked in different order; e.g., 
the mining and the construction factors, as can be 
observed in the referred table. 

3.2.3 Econometric Contrast 

As a complement for our research, we carried out 
an econometric contrast of the APT, using the 
underlying systematic risk factors extracted via 
the NNPCA, in order to test its validity as a 
suitable pricing model for the sample and periods 
considered. This methodology of contrast 
represents only a first approach to the 
econometric validation of the APT using NNPCA, 
so the result should be viewed in that light. 

After applying the second assumption of the 
APT (the principle of arbitrage) to its first 
assumption (the generative multifactor model of 
returns) of expression 10, we get the APT 
fundamental pricing equation20: 

                                                      
20 A clear analytic development about the integration of the 

two assumptions which yields the APT pricing equation can be 
seen in [1].  

𝐸(𝑅𝑖) = 𝜆0 + 𝜆1 ∙ 𝛽1𝑖 + 𝜆2 ∙ 𝛽2𝑖 +⋯+ 𝜆𝑘 ,∙ 𝛽𝑘𝑖, (13) 

where the betas are the sensitivities to the 
systematic risk factors and the lambdas are the 
risk premium paid by the market for  being 
exposed to each class of systematic risk. 

The former equation can be tested by means 
of an average cross-section methodology for 
estimating the ordinary least squares (OLS) 
coefficients of the following regression model: 

�̅� = 𝜆0 + 𝜆1 ∙ 𝛽1𝑖 + 𝜆2 ∙ 𝛽2𝑖 +⋯+ 𝜆𝑘 ∙ 𝛽𝑘𝑖 + 𝜀. (14) 

The straight methodology for contrasting the 
APT under the statistical approach would directly 
use the loadings or betas estimated in expression 
10 in the former regression model [5], since both 
factors and sensitivities are computed 
simultaneously by the extraction techniques 
usually employed [1]. 

Nevertheless, as remarked in [15, 17], this 
methodology could present some econometric 
problems such as heteroskedasticity and 
autocorrelation in the residuals, in addition to 
error in variables, which would yield inefficient 
OLS estimators with biased variances. Besides, 
the NNPCA estimation does not generate a single 
matrix equivalent to the loadings in the generative 
multifactor model of returns; hence, we cannot 
use this methodology. One possible solution to 
the foregoing problems is to employ a two-stage 
methodology widely used in the fundamental and 
macroeconomic approach to the APT, where in a 
first stage we estimate the betas to use in 
expression 14, then in a second stage we 
estimate the lambdas. 

Following [4]21, in the first stage we estimated 
the betas to be used in expression 13, by 
regressing the factor scores obtained by the 
NNPCA as a cross-section on the returns and 
excesses. In order to improve the efficiency of the 
parameter estimates and to eliminate 
autocorrelation in the error terms of the 
regressions, we used a seemingly unrelated 
regression (SUR) to estimate simultaneously the 
entire system of equations.  

21In their work, the authors use principal component 
analysis to extract the underlying risk factors from a set of 
macroeconomic variables in the Spanish market. 
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Table 3. Summary of the Econometric Contrast 

 λ0 1 λ2 λ3 λ4 λ5 λ6 7 λ8 λ9 R2* λsig / λtot F WALD 
J-

B 

Database of 
weekly returns 

               

Model with 2 
betas 

● ● ●        9.45% 0.00% ● ● ○ 

Model with 3 
betas 

0.005078 ● 0.01034 0.02173       51.89% 66.67% ○ ● ○ 

Model with 4 
betas 

0.005582 ● 0.00193 0.01002 ●      48.58% 50.00% ○ ● ○ 

Model with 5 
betas 

0.005411 ● 0.00892 0.02423 ● 0.00348     50.84% 60.00% ○ ● ○ 

Model with 6 
betas 

0.004886 ● 0.00378 0.00997 ● ● ●    47.96% 33.33% ○ ○ ○ 

Model with 7 
betas 

0.005458 ● 0.00362 0.01168 ● ● ● ●   55.59% 28.57% ○ ○ ○ 

Model with 8 
betas 

0.005605 ● 0.00303 0.02117 ● ● ● ● ● ● 50.58% 25.00% ○ ○ ○ 

Model with 9 
betas 

0.005782 ● ● 0.02016 ● ● ● ● ● ● 46.35% 11.11% ● ○ ○ 

Database of weekly 

excesses 
              

Model with 2 
betas 

● ● ●        6.61% 0.00% ● ○ ○ 

Model with 3 
betas 

0.003488 ● 0.00195 0.02129       47.35% 66.67% ○ ● ○ 

Model with 4 
betas 

0.003945 ● 0.00237 0.00481 ●      49.04% 50.00% ○ ● ○ 

Model with 5 
betas 

● ● 0.00505 0.03206 ● ●     48.14% 40.00% ○ ○ ○ 

Model with 6 
betas 

● ● 0.00404 0.00882 ● 0.00147 ●    52.74% 50.00% ○ ○ ● 

Model with 7 
betas 

● ● 0.00218 0.00650 ● 0.00168 ● ●   51.67% 42.86% ○ ○ ● 

Model with 8 
betas 

● ● 0.00439 0.02272 ● ● ● ● ●  53.% 25.00% ○ ○ ○ 

Model with 9 
betas 

0.0433 ● 0.00613 0.02391 ● ● ● ● ● 0.00040 57.13% 33.33% ○ ● ● 

Database of 
daily returns 

               

Model with 2 
betas 

● ● ●        0.00% 0.00% ● ○ ○ 

Model with 3 
betas 

0.00047 ● 0.00113 
-

0.00104 
      38.93% 66.67% ○ ○ ○ 

Model with 4 
betas 

● ● 0.00090 
-

0.00184 
●      38.11% 50.00% ○ ○ ○ 

Model with 5 
betas ● ● ● 

-
0.00229 ● ●         44.15% 20.00% ○ ○ ○ 

Model with 6 
betas 0.001226 ● ● 0.00401 ● ● ●       56.56% 16.67% ○ ○ ○ 

Model with 7 
betas ● ● ● 0.00211 ● ● ● ●     50.05% 14.29% ○ ○ ○ 

Model with 8 
betas ● ● ● 

-
0.00163 ● ● ● ● ●   49.49% 12.50% ○ ○ ○ 

Model with 9 
betas ● ● ● 

-
0.00361 ● ● 0.00058 ● ● ● 61.79% 22.22% ○ ○ ○ 
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The results of the regressions in the four 
databases were very good, producing, in almost 
all cases, statistically significant parameters, high 
R2 coefficients and statistics from the Durbin-
Watson test of autocorrelation, all of which led us 
to the non-rejection of the null hypothesis of no-
autocorrelation22. 

Following [9]23, in the second stage we 
estimated the lambdas in expression 14 by 
regressing the betas obtained in the first stage as 
a cross-section on the returns and excesses, 
using OLS. In order to avoid the econometric 
problems of heteroskedasticity and 
autocorrelation in the residuals of the model 
estimated through OLS, we used Ordinary Least 
Squared corrected by heteroskedasticity and 
autocorrelation by means of the Newey-West 
heteroskedasticity and autocorrelation consistent 
covariances estimates (HEC). Additionally, we 
verified the normality in the residuals by carrying 
out the Jarque-Bera test of normality.  

In order to accept the APT pricing model, we 
require the statistical significance of at least one 
parameter lambda different from λ0

24
, and the 

                                                      
22 For reasons of saving space these results are not 

presented. 
23 In their study the authors used a factor analysis to 

extract the underlying risk factors from a set of returns on 
mutual funds in the Spanish market. 

equality of the independent term to its theoretical 
value, i.e., the average returns, in the models 
expressed in returns: 

𝜆0 = �̅�0, (15) 

and zero, in the models expressed in excesses of 
the riskless interest rate: 

𝜆0 = 0. (16) 

We used Wald’s test to confirm these 
equalities. 

In Table 3, we present a summary of the 
results of the econometric contrast. In general, 
the results of the explanation power (R2), the 
statistical significance of the multivariate test (F), 
and the residual test are very good in all the 
contrasted models, except in the cases where 
only two factors were extracted. 

The univariate tests for the individual statistical 
significance of the parameters25 priced from one 

to three factors different from 0, thus, giving 
evidence in favor of the APT in 29 models26. 
Nevertheless, only four models fulfilled both the 

24The ideal situation is that more than one parameter 
different from  λ0 be statistically significant, since the APT 
assumes that there are multiple underlying risk factors in the 
economy affecting the returns on equities and not only one. 

25 Statistic t.  
26 The total number of tested models was 32. 

Database of 
daily excesses 

               

Model with 2 
betas ● ● 0.00046        1.36% 50.00% ● ○ ○ 

Model with 3 
betas ● ● 0.00085 0.00162       41.19% 66.67% ○ ○ ○ 

Model with 4 
betas 0.000636 ● 0.00043 0.00140 ●      50.91% 50.00% ○ ● ● 

Model with 5 
betas ● ● 0.00080 0.00174 ● ●     36.09% 40.00% ○ ○ ● 

Model with 6 
betas ● ● ● 0.00402 ● ● ●    48.02% 16.67% ○ ○ ○ 

Model with 7 
betas ● ● ● 0.00146 ● 

-
0.00065 ● ●   44.49% 28.57% ○ ○ ○ 

Model with 8 
betas ● ● ● 0.00284 ● 

-
0.00069 ● 0.00028 ●  62.43% 37.50% ○ ○ ○ 

Model with 9 
betas ● ● ● 0.00281 ● ● ● ● ● ● 55.92% 11.11% ○ ○ ○ 

Notes: (1) The level of statistical significance used in all the tests was 5%.  (2) Empty circles mean that the required results in the different tests were 
fulfilled, whereas filled circles represent that those tests were not passed according to the different null hypotheses posed in each one of them.  (3) λj: 
Estimated coefficients. H0: λj = 0. Numeric value of the coefficient = Rejection of H0. Parameter significant. ● = Not rejection of H0. Parameter not 
significant. (4) R2*: Adjusted R-squared = Explanatory capacity of the model. (5) λsig / λtot : Ratio number of significant lambdas / total number of lambdas 
in the model. (6) F: Global statistical significance of the model. H0 = λ1 = λ2 = … = λk = 0. ○ = Rejection of H0. Model globally significant. ● = Not rejection 
of H0. Model globally not significant. (7) Wald: Wald's test for coefficient restrictions. Databases in returns: H0: λ0 = Average riskless interest rate. 
Databases in excesses: H0: λ0 = 0. ○ = Not rejection of H0. The independent term is equal to its theoretical value. ● = Rejection of H0. The independent 
term is not equal to its theoretic value. (8) J-B: Jarque Bera's test for normality of the residuals. H0 = Normality. ○ = Not rejection of H0. The residuals 
are normally distributed. ● = Rejection of H0. The residuals are not normally distributed. 
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statistical significance and the equality of the 
independent term to its theoretic value, in addition 
to the fulfilment of the requirements imposed by 
the residual test.  

These two models were those expressed in 
weekly returns when six, seven and eight factors 
were extracted; and the one expressed in daily 
returns when three components were estimated. 
Moreover, there are twelve other models which 
fulfil all the conditions for accepting the APT as a 
pricing model, except for the statistical 
significance of the independent term, and eight 
models that fail only in the equality of the 
independent term to its theoretical value, which 
provides some additional evidence in favor of this 
asset-pricing model. 

Making a cross-validation with the 
interpretation of the factors proposed in section 
3.2.2, the meaning of the significant factors 
corresponding to the fully accepted models are 
the following. In the four models the statistical 
significant factors were number two and three. 

Regarding the database of weekly returns, 
factor number two contrast the Mining and 
Telecommunications sectors to the Holding 
sector; and number three, counter the Holding 
sector to the Mining one. Concerning the model in 
the database of daily returns, factor number two 
was related to the Mining sector factor (Peñoles 
Factor); and number three correspond to a factor 
that mixes stocks of the Consumer staples, 
Financial services, Home furnishing and Mining 
sectors. Interestingly, datasets expressed in 
excesses did not produce any fully 
accepted model.  

Further research will be needed regarding this 
issue, as well as the significance of the 
undersized values and signs of the estimated 
individual parameters. To summarize, for the 
sample and periods considered, we can accept 
only partially the validity of the NNPCA-APT as a 
pricing model explaining the average returns (and 
returns in excesses) on equities of the Mexican 
Stock Exchange. On the other hand, the evidence 
showed that the APT is sensitive to the number of 

                                                      
27 More desirable in the sense that under the scope of the 

APT, in general, and the statistical approach, in particular, we 
look for obtaining risk factors as much independent or different 
as possible. In that sense having nonlinearly uncorrelated 

factors extracted and to the periodicity and 
expression of the models. 

4 Conclusions 

The theoretical attributes of the NLPCA present 
desirable features when we extract the underlying 
systematic factors via this alternative technique, 
since they represent nonlinearly uncorrelated 
factors and not only linearly uncorrelated ones. 
The NNLPCA performed via NNPCA is capable 
of uncovering both, linear and nonlinear 
correlations, while PCA identifies, for example, 
only linear correlations. In that sense, we may 
conclude that the factors obtained in this study 
represent a more desirable estimation of the 
underlying systematic risk factors under a 
statistical approach to the APT27. In our case, we 
believe that the extracted factors should be better 
estimations28, to be used in a statistical approach 
to the APT because: first, they represent factors 
that have eliminated both, linear and nonlinear 
correlations among variables, and second, they 
are the result of a nonlinear transformation, not 
only a linear mapping, which deals with any 
nonlinear effect of the systematic risk factors over 
the returns on equities. 

In addition, it is important to point that the non-
Gaussian nature of the financial data, make that 
the generally used techniques for extracting 
underlying risk factors, such as PCA or FA, may 
generate, not completely reliable estimations, 
which suggest that the estimation of the 
generative underlying multifactor model of returns 
on equities by means of NNPCA, could represent 
a more reliable option to this end. [See 11, 12, 17, 
9, 4, 5].  

We would like to remark that our main goal in 
this paper has been the estimation of the 
generative multifactor model of returns of the APT 
by means of the NNPCA, that is, the risk 
extraction stage of a statistical approach to the 
APT. Therefore, the interpretation of the 
components extracted represents only a first 
attempt to give meaning to the latent factors; 

factors would suppose a better attribute of those extracted 
factors. 

28 Nevertheless this statement is object of academic 
discussion. 
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however, further research will be needed about 
the risk attribution process of this 
statistical approach. 

In the same way, the econometric contrast 
corresponds only to a first approach to the 
validation of the APT as a pricing model using the 
systematic risk factors estimated via this 
extraction technique; therefore its results should 
be seen under this perspective. For the moment, 
we could attribute the not completely satisfactory 
results of the econometric contrast to two possible 
reasons: a) The methodology used for the 
contrast might not be the most suitable for a 
statistical approach to the APT, and perhaps it 
would be necessary to use time series moving 
regressions to estimate the sensitivities to the risk 
factors or betas [17, 19] or mimicking portfolios as 
proxies of the underlying factors [15, 29]. b) The 
origin of the problem might not be in the first 
assumption of the APT, the generative multifactor 
model of returns, but in the second, the arbitrage 
absence principle [10]; aspect that we have not 
investigated yet. Further research would be 
needed concerning these two possible causes of 
the results in the econometric contrast. 
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