
A Flexible Framework for Real-Time Thermal-Aware Schedulers
using Timed Continuous Petri Nets

Gaddiel Desirena López1, Laura Elena Rubio Anguiano1, Antonio Ramı́rez Treviño1, José Luis Briz Velasco2

1 CINVESTAV-IPN Unidad Guadalajara,
Mexico

2 Universidad de Zaragoza,
Spain

{gdesirena,lerubio,art}@gdl.cinvestav.mx, briz@unizar.es

Abstract. This work presents TCPN-ThermalSim,
a software tool for testing Real-Time Thermal-Aware
Schedulers1. This framework consists of four main
modules. The first one helps the user to define the
problem: task set with periods, deadlines and worst
case execution times in CPU cycles, along with the CPU
characteristics, temperature and energy consumption.
The second module is the Kernel simulation, which
builds up a global simulation model according to the
configuration module. In the third module, the user
selects the scheduler algorithm. Finally the last
module allows the execution of the simulation and
present the results. The framework encompasses two
modes: manual and automatic. In manual mode the
simulator uses the task set data provided in the first
section. In automatic mode the task set is generated
by parameterizing the integrated UUniFast algorithm.

Keywords. Scheduling, simulator, Petri nets.

1 Introduction

Many modern embedded real-time (RT) systems
can benefit from today’s powerful System-on-Chip
multicores (MPSoCs). However, RT task schedul-
ing on multiprocessors is far more challenging
than traditional RT scheduling on uniprocessors.
Although it is possible to find practical solutions
for specific cases, considering thermal restrictions,
optimizing energy or dealing with resource sharing

1Available at: https://www.gdl.cinvestav.mx/art/uploads/
SchedulerFrameworkTCPN.zip

are still open questions ([6]). We have been explor-
ing the design of Thermal-Aware RT Schedulers in
recent contributions, leveraging control techniques
and combining fluid and combinatorial schedulers,
taking the most of both approaches ([15]).

On the one hand, fluid schedulers avoid the NP-
completeness of a solely combinatorial approach,
and allow the use of continuous controllers which
make easier to cope with disturbance rejection
or to adapt to small parameter variations. On
the other hand, the combinatorial approach better
matches the nature of the problem, discretizing
the fluid schedules to avoid large migrations and
context switches.

Testing these kind of schedulers or experiment-
ing with their variations by implementing them on a
real system, even on specific evaluation platforms
like Litmus-RT ([5]), can be overkilling if we are just
performing preliminary explorations of the design
space. For this reason, herein we are presenting
a novel flexible simulation framework for real time
thermal-aware schedulers: TCPN-ThermalSim. It
is composed of four main modules, which depend
on certain submodules to work.

The first module, which is referred as the
configuration module, allows us to introduce the
task set according to the three-parameter task
model ([7]), or use the UUnifast submodule to
generate automatically the task set. It also
permits to describe the platform used to execute
the task set, composed by the number of CPUs,

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

ISSN 2007-9737

CPU frequencies and its thermal parameters.
The second module is the Kernel simulation,
which works over three submodules, where each
submodule generates a Timed Continuous Petri
Net (TCPN) model that will be merged in order to
build a global simulation model. The third module
focuses on the scheduler definition, it allows the
addition of scheduler algorithms to its analysis.
And the last module correspond to the execution
of the simulation and present the results as graphs
or data in the workspace.

This framework includes out-of-the-box the task,
CPU usage and thermal general purpose models
reported in [22]. We have included three
schedulers: a global EDF scheduler from [1],
and other two from our own authorship a RT
fluid scheduler ([15]) and a thermal aware RT
scheduler ([16]), however the user can define his
own scheduler. Sec. 2 provides some background
on multiprocessor RT sheduling and Timed
Continuous Petri Nets (TCPN), since this formal
tool will be used to model the task set, CPU usage
and thermal aspects of task execution. Sec. 3
describes the simulation framework architecture
and Sec. 4 the user interface. The schedulers
included in the framework are described in Sec. 5.
Sec. 6 shows a usage example with results, and
Sec. 7 presents some conclusions and future work.

2 Background

There are three well-known avenues to leverage
multiprocessors for RT scheduling. The partitioned
approaches resort to statically allocating tasks
to processors. This results into a simple
schedulability analysis, since they can use
results from RT uniprocessor scheduling. The
downside is that this encompasses an NP-hard
bin-packing problem and as a consequence,
assuring schedulability imposes a maximum CPU
utilization bound of 50% or less ([21]).

Global scheduling gets around the problem by
dynamically allocating jobs (the periodic tasks’
instances) to processors, achieving a 100%
utilization bound. Thus, Pfair -based algorithms
allocates a new task for execution every time
quantum ([26]), which requires that all task
parameters are multiples of such a time quantum.

The principal inconvenience is that this approach
triggers an unfeasible number of preemptions and
migrations. By this reason, Deadline partitioning
does only take scheduling decisions on the set of
all deadlines of all tasks in the system, achieving
optimality with fewer preemptions than Pfair ([18]).

A third approach mixes static and dynamic
allocation. Thus, clustered scheduling statically
allocate tasks to clusters of CPUs, but jobs can
migrate within their cluster ([8]). Alternatively,
semipartitioned scheduling preforms a preliminary
static allocation of some tasks over the whole
set of available CPUs, allowing the rest of them
to migrate ([19]). Recently, [6] and [9] leverage
this technique to lowering migrations. In order
to test the performance of such schedulers and
new ones in early stages, the herein proposed
simulation framework is a powerful tool. It is
capable to stress schedulers under very realistic
conditions, avoiding the effort wasted in adapting
the schedulers to actual operating systems and
detect from early stages the consequences of a
bad heating balance.

When a dynamic thermal balance is a require-
ment, in order to keep the maximum temperature
under control, static allocation techniques are far
more restrictive than global approaches. This is
the reason why we consider global scheduling, with
strategies to minimize preemption and migration
like deadline partitioning.

Over the years different real time simulation
tools have been proposed, including different
features, for example, Cheddar ([25]) is a
real time scheduler simulator written in Ada, it
handles the multiprocessor case and provides
implementations of scheduling, partitioning and
analysis algorithms, but their interface is not very
user friendly. Another tool is YARTISS ([10]),
it evaluates scheduling algorithms by considering
overheads or hardware effects, and its design
focuses on energy consumption. On the other
hand, SimSo ([11]) is a simulation tool that
includes different scheduling policies, and takes
into account multiple kinds of overheads. All of
these tools represent a great aid when developing
new algorithms, but none of them is capable
of including a thermal model, for this reason
we developed TCPN-ThermalSim as a framework

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

Gaddiel Desirena López, Lorena Rubio Anguiano, Antonio Ramírez Treviño, José Luis Briz Velasco418

ISSN 2007-9737

Table 1. Software simulation tools comparison

Framework Programming Custom Energy Thermal
language Schedulers considerations considerations

Cheddar Ada
SimSo Python

YARTISS Java
TCPN ThermalSim MATLAB

capable of developing a thermal analysis of the
scheduling algorithms.

Finally, since the proposed framework models
tasks and CPUs using Timed Continuous Petri
Nets (TCPN), this Section introduces basic
definitions concerning Petri nets and continuous
Petri nets. An interested reader may also consult
[12], [13], [24] to get a deeper insight in the field.

2.1 Discrete Petri Nets

Definition 2.1 A (discrete) Petri net is the 4-tuple
N = (P ,T ,Pre,Post) where P and T are finite
disjoint sets of places and transitions, respectively.
Pre and Post are |P | × |T | Pre− and Post−
incidence matrices, where Pre(i, j) > 0 (resp.
Post(i, j) > 0) if there is an arc going from tj to pi
(resp. going from pi to tj), otherwise Pre(i, j) = 0
(resp. Post(i, j) = 0).

Definition 2.2 A (discrete) Petri net system is the
pair Q = (N ,M) where N is a Petri net and M :
P → N∪{0} is the marking function assigning zero
or a natural number to each place. The marking
is also represented as a column vector M , such
that its i − th element is equal to M(pi), named
the tokens residing into pi. M0 denotes the initial
marking distribution.

A transition t ∈ T is said enabled at the
marking M ∈ N

|P | iff M ≥ Pre[p, t], the
occurrence or firing of an enabled transition leads
to a new marking distribution M ′ ∈ N

|P | that
can be computed by using M ′ = M + C[P , t] =
M + C · et, where C = Post− Pre is named
the incidence matrix, and et denotes the t − th
elementary vector (et(k) = 1 if k = t, otherwise
et(k) = 0).

2.2 Continuous and Timed Continuous Petri
Nets

Definition 2.3 A continuous Petri Net (ContPN)
is a pair ContPN = (N ,m0) where N =
(P ,T ,Pre,Post) is a Petri net (PN) and m0 ∈
{R+ ∪ 0}|P | is the initial marking.

The evolution rule is different from the discrete
PN case. In continuous PN ’s the firing is
not restricted to be integer. A transition ti
in a ContPN is enabled at m if ∀ pj ∈•
ti,m[pi] > 0; and its enabling degree is defined
as enab(ti,m) = minpj∈•ti

m[pj]
Pre[pj ,ti]

. The firing
of ti in a certain positive amount α ≤ enab(ti,m)
leads to a new markingm′ = m+αC[P , ti], where
C = Post− Pre is computed as in the discrete
case.

If m is reachable from m0 by firing the
finite sequence σ of enabled transitions, then
m = m0 + C−→σ is named the fundamental Eq.
where −→σ ∈ {R+ ∪ 0}|T | is the firing count vector,
i.e −→σ [tj] is the cumulative amount of firings of tj in
the sequence σ.

Definition 2.4 A timed continuous Petri net (TCPN)
is a time-driven continuous-state system described
by the tuple (N ,λ,m0) where (N ,m0) is a
continuous PN and the vector λ ∈ {R+ ∪ 0}|T |
represents the transitions rates determining the
temporal evolution of the system.

Transitions fire according to certain speed,
which generally is a function of the transition
rates and the current marking. Such function
depends on the semantics associated to the
transitions. Under the infinite server semantics
[23] the flow through a transition ti (the transition
firing speed) is defined as the product of its rate,

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

A Flexible Framework for Real-Time Thermal-Aware Schedulers using Timed Continuous Petri Nets 419

ISSN 2007-9737

λi, and enab(ti,m), the instantaneous enabling
of the transition, i.e., fi(m) = λienab(ti,m) =

λi min
pj∈•ti

m[pj]
Pre[pj ,ti]

(through the rest of this paper, for

the sake of simplicity the flow through a transition
ti is denoted as fi).

The firing rate matrix is denoted by Λ =
diag(λ1, ...,λ|T |). For the flow to be well defined,
every continuous transition must have at least one
input place, hence in the following we will assume
∀t ∈ T , |•t| ≥ 1. The “min” in the above definition
leads to the concept of configuration.

A configuration of a TCPN at m is a set of
arcs (pi, tj) such that pi provides the minimum
ratio m[p]/Pre[p, ti] among the places p ∈•
ti at the given marking m. We say that
pi constrains tj for each arc (pi, tj) in the
configuration. A configuration matrix is defined for
each configuration as follows:

Π(m) =

{ 1
Pre[i,j] if pi is constraining tj

0 otherwise.
(1)

The flow through the transitions can be written
in vectorial format as f(m) = ΛΠ(m)m. The
dynamical behaviour of a PN system is described
by its fundamental equation:

ṁ = CΛΠ(m)m. (2)

In order to apply a control action to (2), a term
u such that 0 ≤ ui ≤ fi(m) is added to every
transition ti to indicate that its flow can be reduced.
Thus the controlled flow of transition ti becomes
wi = fi − ui. Then, the forced state equation is:

ṁ = C[f(m)− u] = Cw
0 ≤ ui ≤ fi(m).

(3)

2.3 System Definition

The task model accepted by this framework
follows the three-parameter task model ([7]),
but is extended to include energy consumption
parameters. Each periodic real-time task τi is
described by a quadruplet τi : (cci,ωi, di, ei), where
cci is the worst-case execution time in cycles,di is
the deadline, ωi is the period, and ei is the task
energy consumption.

Fig. 1. Framework Architecture

The set of periodic tasks T = {τ1, ..., τn}
are executed on a set of identical processors
P = {CPU1, . . . ,CPUm} with an homogeneous
clock frequency F ∈ F = [F1, ...,Fmax]. The
hyper-period is defined as the period equal to
the least common multiple of periods H =
lcm(ω1,ω2, . . . ,ωn) of the n periodic tasks.

A task τi executed on a processor at frequency
F , requires ci = cci

F processor time at every ωi
interval. The system utilization is defined as the
fraction of time during which the processor is busy
running the task set i.e., U =

∑n
i=1

ci
ωi

. Herein we
consider that the execution of real-time tasks in the
system is preemptable.

Fig. 2. Kernel of the simulator

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

Gaddiel Desirena López, Lorena Rubio Anguiano, Antonio Ramírez Treviño, José Luis Briz Velasco420

ISSN 2007-9737

3 Framework Architecture

The simulation framework has been programmed
in MATLAB R2018a c© ([20]) . It is distributed as
open source software as-is ([14]). Its modular
design provides flexibility to test a wide variety
of schedulers and platforms. It includes a signal
routing interface allowing switching among different
user-defined scheduling algorithms.

This framework makes easier to evaluate a large
number of different scenarios, where the platform
(hardware), the set of tasks, and schedulers can
be defined by the user through a Graphical User
Interface (GUI).

Fig. 1 shows the main modules of the frame-
work: Configuration, UUnifast, Kernel Simulation,
Scheduler and Results. First, the user introduces
the set of tasks, platform, and the scheduler in
the configuration module. After the completion of
the configuration stage, the simulation is executed.
Later the results are presented to the user. The
following subsections describe these modules.

3.1 Configuration Module

This module allows the introduction of all the
information required by the framework. It is
organized in four sections: a) Task definition,
b) CPU definition, c) Thermal definition, and d)
Scheduler definition. The order in which the
information is introduced is irrelevant. The user can
resort to default values or turn-off some sections,
like the thermal definition.

a) The Task definition section allows two different
ways to introduce the information. One
way is to manually enter the number of
tasks along with their parameters. Another
way is to let the algorithm UUniFast ([4])
automatically generate a task set with the
desired characteristics.

b) The CPU definition section requires two
parameters: the number of CPUs and their
frequency scale. The frequency scale is a
set of normalized frequencies at which the
platform could operate, where 1 indicates the
highest frequency. The framework assumes
homogeneous CPUs, a feature that will be
relaxed in future releases.

c) The thermal definition section requires the
Printed Circuit Board (PCB) and CPU di-
mensions as in Fig(3). Also requires the
isotropic thermal properties: density, specif
heat capacity, thermal conductivity coefficient,
as well as the ambient temperature and the
maximum operating temperature.

d) The Scheduler definition section is generic.
The user either, can select one from a set
of pre-programmed schedulers, or can define
his/her own scheduler.

Fig. 3. PCB reference for thermal definition

The user should consider signals like CPU
temperature, system utilization, energy consump-
tion, (or a subset of them) to design her/his
own scheduler. At every time step, the section
generates a matrix of size Number of tasks
× Number of CPUs, where the ij − th entry
represents the allocation of the i − th task to the
j − th CPU.

3.2 UUniFast Submodule

The user can opt for the UUniFast algorithm ([4])
to generate the task set in the configuration stage,
indicating the number of tasks to be generated,
the system utilization U and a range for the task
periods. The output is a feasible real-time task set
with random task periods, WCETs, deadlines and
consumed energy. UUniFast generates one set of

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

A Flexible Framework for Real-Time Thermal-Aware Schedulers using Timed Continuous Petri Nets 421

ISSN 2007-9737

tasks at a time. It allows to stress the scheduler
under analysis with different set of tasks.

3.3 Kernel Simulation Module

The Kernel module builds up a global simulation
model according to the task set, CPUs, thermal
and energy parameters and the selected sched-
uler, and runs the simulation.

The model represents task, CPU and thermal
modules by a set of ordinary differential equations,
and generates the signals to/from the scheduler.
The scheduler can be represented either as a
continuous or a discrete system. Accordingly, the
scheduler can be modelled by the paradigm of
differential equations or finite automata.

Next subsections describe how to build module’s
models. Later, we explain how the modules are
merged into a global model.

3.3.1 Task Arrival and CPU’s Submodule

The TCPN model representing the Task arrival and
CPU’s Module (Fig. 4) was first introduced in [17]
and evaluated in [16]. Here we present a brief
explanation of the TCPN model and the differential
equations that represent the behaviour. The task
module is composed by places pwi , pcci and pdi and
transitions twi . Places pwi , pcci and pdi represent that
task τi belongs to the set of tasks, the CPU cycles
of task τi that are arriving to the system, and the
deadline of τi, respectively. λwi = 1

ωi
represents

the arriving rate of task τi.

...

...

...

...

T
C

P
N

 m
o
d
u
le

 f
o
r

T
C

P
N

 m
o
d
u
le

 f
o
r

......

T
C

P
N

 m
o
d
u
le

 f
o
r

ta
s
k
s

C
P

U
s

Fig. 4. Task and CPU TCPN module

The CPU module is composed of places pbusyi,j ,
and pidlej , and transitions talloci,j , and texeci,j . The
marking in place pbusyi,j represents the amount of
task τi that was allocated to CPUj . The marking in
place pidlej represents that CPUj is idle. The firing
of transition talloci,j represents that task τi is being
allocated to CPUj , and the firing of transition texeci,j

represents that task τi is being executed by CPUj .

The differential Eqs. (4) and (5) representing
the behaviour of the TCPN in Fig. (4) can be
derived considering the following four vectors as
the marking and transition vectors, respectively, of
the task module, and the marking and transition
vectors, respectively, of the CPU module:

mT = [mT (pw1), mT (pcc1), mT (pd1), ..., mT (pwn),

mT (pccn), mT (pdn)]T ,

TT = [tw1 , ..., twn]T ,

and

mP = [mP(pbusy
1,1), mP(pidle1), ..., mP(pbusy

n,m),

mP(pidlem)]T ,

TT = [talloc1,1 texec1,1 , ..., tallocn,m , texecn,m]T .

Eq. (4) models task arrival. mT describes
how task are arriving to the system over time,
and walloc = [1w

alloc
1 , . . . , 1w

alloc
n , . . . ,mw

alloc
n]

represents the allocation of tasks to CPUs. And
Eq. (5) describes how tasks are allocated to
CPUs, where mP represents the reservation of
CPUs to the allocated tasks. It is very important to
realize that signal walloc must be computed by the
scheduler. This signal is an input to the system and
indicates when a task must be allocated to a CPU:

ṁT = CT ΛTΠT (m)mT − Calloc
T walloc, (4)

ṁP = CPΛPΠP(m)mP + Calloc
P walloc. (5)

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

Gaddiel Desirena López, Lorena Rubio Anguiano, Antonio Ramírez Treviño, José Luis Briz Velasco422

ISSN 2007-9737

3.3.2 Task Execution Module

The task execution module is represented by
places pexeci,j depicted in Fig. 4. Considering
the vector:

mexec = [mexec(p
exec
1,1), ..., mexec(p

exec
n,m)]T ,

representing the marking of the places of the
task execution module (for easily representation
mexec
i,j = mexec(p

exec
1,1)), then the task execution

behavior is represented by Eq. (6):

ṁexec = APmAP , (6)

where AP is built from CPΛPΠP(m)mP
considering only rows corresponding to places
pbusyi,j and columns corresponding to transitions
texeci,j ; other rows and columns are discarded.
Marking mAP considers the marking in places
pbusyi,j ; other markings are discarded.

The marking of these places represent the
amount of task τi that is executed by CPUj . This
signal is available for any scheduler.

3.3.3 Thermal Module

This work considers the thermal model presented
in [17], the model was evaluated under comparison
with simulations in ASYS R©. This model rewrites
the thermal partial differential equation by a set
of ordinary thermal differential equations. It
is as precise as a Finite Element approach
and has the advantage that a state model is
derived from the analysis. It also avoids the
calibration stages of RC thermal approaches, and
only requires the isotropic thermal properties of
the materials: density, specif heat capacity and
thermal conductivity coefficient.

In this section we present a brief explanation,
for a deeper insight please refer to [17] and
[16]. The thermal module is composed of
several thermal submodules, representing thermal
conduction, convection and heat generation. The
arc from transition texec1,1 to place pcom1

1 represents
heat generation due to task execution.

T
∞

T1
TkT2

T3

...

T
C

P
N

T
h

er
m

al
 M

o
d

el
P

o
w

er

g
en

er
et

io
n

... ...

Fig. 5. Thermal module

Fig. 5 depicts the thermal module. Following
the numbering of places and transitions, the tem-
perature behaviour of the system is represented by
Eq. (7a):

ṁT =CT ΛT ΠT (m)mT

+CaΛaΠa(m)ma + Cexec
P fexec, (7a)

ṁa =0. (7b)

mT is the distribution of temperature over the
system elements, ma is the ambient temperature
and it is considered constant, and fexec is a
variable depending on task allocation and the
frequency at which CPUs are executing tasks.
CPU temperature is available for scheduling
purposes. Temperature depends on the task
execution and frequency. In steady state, this
is tantamount to say that temperature depends
on task allocation jw

alloc
i and frequency. As

mentioned above, these parameters are coded in
fexec.

At each simulation step, the Thermal model
reads the new system state and the ambient
temperature to compute the new CPU temperature.
The main output signals of the Kernel simulator are
the task execution vector (mexec) and the CPUs
temperature (mT) at each simulation step. The
input (output) signals are received (sent) to the
Scheduler module in order to obtain a feedback
signal for the next step.

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

A Flexible Framework for Real-Time Thermal-Aware Schedulers using Timed Continuous Petri Nets 423

ISSN 2007-9737

Tasks parameters

Manual

Number of Tasks
3

Tasks WCET
2 3 3

Tasks period
4 8 12

Tasks energy

consumption
6.4 8 9.6

UUnifast

Number of Tasks
3

Utilization for the

taskset
1.3

Interval for periods
[5 10]

Generate task set

UUnifast
ON/OFF

Processors parameters

Number of CPUs
2

Clock frecuency
1

ON/OFF

Thermal parameters

Help

Board
X(mm) 50

Y(mm) 50

Z(mm) 1

8933

Cp (J/Kg °K) 385

k (W/m °C) 400

Environment

h (W/mm^2°C)
0.001

Maximum temperature (°C)
110

Environment temperature (°C)
45

Simulation

Mesh step (mm)
2

dt (s)
0.01

CPUs

X(mm) 10

Y(mm) 10

Z(mm) 2

)
2330

Cp (J/Kg

°K)
712

k (W/m °C) 148

CPU distribution

Auto

Custom

ON/OFF

Select Scheduler

Scheduler definitionProblem definitionProblem definition Scheduler definition

Tasks parameters

Manual

Number of Tasks
3

Tasks WCET
2 3 3

Tasks period
4 8 12

Tasks energy

consumption
6.4 8 9.6

UUnifast
ON/OFF

Processors parameters

Number of CPUs
2

Clock frecuency
1

ON/OFF

Thermal parameters

Help

Board
X(mm) 50

Y(mm) 50

Z(mm) 1

8933

Cp (J/Kg °K) 385

k (W/m °C) 400

Environment

h (W/mm^2°C)
0.001

Maximum temperature (°C)
110

Environment temperature (°C)
45

Simulation

Mesh step (mm)
2

dt (s)
0.01

CPUs

X(mm) 10

Y(mm) 10

Z(mm) 2

)
2330

Cp (J/Kg

°K)
712

k (W/m °C) 148

CPU distribution

Auto

Custom

ON/OFF

Select Scheduler

Scheduler definitionProblem definitionProblem definitionProblem definition Scheduler definition

a) b)

Fig. 6. Main tab GUI. a) Manual mode, b) UUnifast mode

3.4 Scheduler Module

The scheduler module allows to select, at
configuration time, one of the scheduling policies
available in the framework, or any scheduler
defined by the user. The TCPN The signals
available to the scheduler from other modules are
mexec
i,j representing the amount of τi executed by

CPUj , and mTj
the CPUj temperature. The

signals that other modules require from the
scheduler are the task allocations signals jw

alloc
i .

The scheduling policies available in the frame-
work are an RT Global Earliest Deadline First
(G-EDF) ([1]), an RT fluid scheduler(RT-
TCPN)([15]), and an RT thermal-aware fluid
scheduler (RT-TCPN Thermal aware) for Dynamic
Priority Systems (DPS) ([16])). The user can
define a new scheduler as a continuous or discrete
scheduler (Sec.5).

3.4.1 Custom Scheduler

This section describes how to implement a custom
schedule. Algorithm 1 provides the executive cycle
of the simulator. It includes the scheduler (user
defined or pre-programmed one) in line 4.

The main input signals, from the simulation
environment, that the user might use, are

the CPU temperature, executed tasks, current
CPU frequency and consumed energy, also the
secondary signals mbusy (the CPU state), and
all task and CPU parameters are available for
scheduling purposes. The output signals that the
scheduler module must deliver to the simulation
engine are the walloc and frequency. It is not
needed that all the input/output signals be used by
the scheduler; the only mandatory signal that the
scheduler must deliver to the system is walloc. For
presentation purposes, this subsection renames
the variables x1 = YT CPU temperature, x2 =
mexec executed tasks, x3 = F current CPU
frequency and also the secondary signals x4 =
mbusy.

If the user describes the scheduler as a
continuous one, then he/she must write the signal
walloc as:

ẇalloc =
∑
i

Aixi.

If the user describes the scheduler as a discrete
one, then he/she must write the signal walloc as:

walloc(ζ) = Φ(x1, ...,x4).

In both cases, the functions represented by the
matrices Ai or function Φ, are computed based
on the scheduler objectives and task and CPU

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

Gaddiel Desirena López, Lorena Rubio Anguiano, Antonio Ramírez Treviño, José Luis Briz Velasco424

ISSN 2007-9737

parameters, as well as the current state of the
system. It is the user responsibility the design of
such a functions.

Notice that the simulator is time driven, thus,
although in the discrete case the walloc signal
depends on the event arrival, it is represented as
a function of time the make it compatible with the
whole simulation.

Finally, once the scheduler is defined, it is
integrated to the simulation engine and used at
each simulation step.

ALGORITHM 1: Simulation algorithm

Input: The TCPN model, the set of tasks T , the
hyperperiod H.

Output: The schedule
walloc = [1walloc1 , ..., jw

alloc
i , ...,mwallocn]

1 Initialize ζ = 0, jwalloci = 0;

2 while ζ ≤ H do
3 Simulate the TCPN model from ζ to ζ + step with

jw
alloc
i = 0 as an input; /* Solve Eqs. (6) to

compute mexec */

4 Obtain the schedule jwalloci from the custom
scheduling policy

5 ζ = ζ + step; /* Update time */

6 end

3.5 Building the Global Model

A full system in the simulation framework consists
of a set of tasks, a set of CPUs on a platform, and a
scheduler (as an input), represented by separated
models. In order to simulate a full system, these
models must be gathered into a global model. In
the case of a continuous scheduler, the global
model is simulated by solving the system:

Ṁ = AM + Bwalloc + B′ma,
Y = SM ,

(8)

where M = [mT ,mP ,mT]T , and the matri-
ces are:

A =

 CTΛTΠT 0 0
0 CPΛPΠP 0
0 Cexec

P ΛexecΠexec CTΛTΠT

,
(9)

B =

 Calloc
T

Calloc
P
0

 B′ =

 0
0

CaΛaΠa

 , (10)

S =

 0 0 0
0 AP 0
0 0 ST

. (11)

AP correspond to the output matrix for task
execution and ST represents the temperature
output matrix. Thus the output vector Y =
[mexec,mT] contains the task execution and the
temperature of each processor. If the thermal
module is not selected for simulation the global
model is slightly different: vector M will only
contain M = [mT ,mP], every matrix (Eq.9 - 11)
will lose its last row, and Eq.(9) will also lose its last
column, and the output vector Y = [mexec] will
only contain the task execution.

3.6 Results Module

After a simulation run, the Results module
generates plots showing the allocation and
execution of jobs to CPUs and the CPUs
temperature evolution, as in Fig. 10 and Fig. 11, by
using the tools and functions contained in MATLAB
R2018a c©(ie. Heat maps).

4 User Interface

Fig. 6 shows the main window of the simulator GUI.
There are three areas, which contain information
about Tasks parameters, Processors parameters
and Thermal parameters.

The user can manually define the parameters of
the tasks set in the area entitled Tasks parameters.
The parameters to be defined are the number of
tasks, and the value of the WCET, task period
and task energy consumption per each task (see
Fig. 6 a)). Alternatively, a random set of tasks
can be configured by checking the UUniFast check
box (Fig. 6 b)), setting the number of tasks, the
utilization of the task set and the interval of periods,
and then clicking the button Generate task set.

The area entitled Processors parameters allows
to set the number of CPUS and the homogeneous

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

A Flexible Framework for Real-Time Thermal-Aware Schedulers using Timed Continuous Petri Nets 425

ISSN 2007-9737

clock frequency. Last, the area Thermal
parameters consists of three subareas. The first
two correspond to the geometry (length X, height
Y , and width Z measurements) and material
properties (thermal conductivity k coefficients,
density ρ, specific heat capacities Cp) of the board
and CPUs.

The third subarea is for entering the mesh
geometry (Mesh step) and the accuracy (dt) of
the solutions obtained by the TCPN Thermal
model ([17]). Once these parameters have been
set, the next step is to select an scheduling
policy by clicking the button Select Scheduler
in the Scheduler selection tab (Fig. 7). The
available scheduling policies appear in a selection
list. User-defined scheduling policies will show
up in this list too (Fig. 7 b)) by following the
installation guidelines. A scheduler framework
shows the structure of the scheduler for each
selected scheduler policy.

The last step consists in clicking the button
Compute Schedule to run the simulation. After a
simulation run, the GUI allows to generates plots
of the allocation and execution of task’s jobs to
CPUs and the CPUs temperature evolution. Fig.
7 b) shows the available buttons are: Save data,
which save all the simulation data into a file, Plot,
which plots task execution and CPU temperature
evolution, and Heat map, which is only functional if
the user configured the thermal parameters before
the simulation.

5 Available Schedulers

This section is intended to show the available
schedulers and their implementation in the
framework. We only provide global multiprocessor
schedulers by the reasons explained in Section 2.
The scheduling policies available in the framework
are an G-EDF ([1]), an RT fluid scheduler
RT-TCPN ([15]), and an RT-TCPNThermal aware
scheduler that are describing below.

5.1 G-EDF

This scheduler implements a global EDF (G-EDF)
algorithm. It is a global job-level fixed priority
scheduling algorithm for sporadic task systems,
which is optimal for implicit-deadline tasks with
regard to soft RT constraints [2]. Jobs are allocated
to CPUs from a single queue. The highest priority
is assigned to the job with the earliest absolute
deadline. The signal jw

alloc
i must be discrete.

At each simulation step the scheduler can be
written as: walloc = Φ(mexec). According to
the EDF algorithm, the scheduling events are task
activations and task completions, the only points
at which task preemption can occur. The discrete
function Φ(mexec) is implemented by algorithm 2.

ALGORITHM 2: G-EDF
Input: TCPN model, T , the hyperperiod H.
Output: Schedule

walloc = [1walloc1 , ..., jw
alloc
i , ...,mwallocn]

1 Initialize i = 1, sd = sdi, ζ = 0, ∀τi ∈ T and
∀CPUj ∈ P;

2 while ζ ≤ H do
3 obtain the highest priority task τi using the EDF

priority based on mexeci,j (ζ)

4 Set jwalloci = 1; /* Assign the highest priority

task τi to CPUj */

5 Simulate the TCPN model from ζ to ζ + step;
/* Solve Eqs. (6) to compute mexec */

6 ζ = ζ + step; /* Update time */

7 end

5.2 RT-TCPN

RT-TCPN is a scheduler based on the TCPN
model presented in [15]. It is composed of a
global fluid scheduler and the discretization of the
fluid scheduler. The fluid schedule computation is
limited to every deadline, whereas preemption and
context switch occur at every quantum, at which
we check the difference between the actual and
the expected fluid execution. RT-TCPN obtains
a discrete schedule that closely tracks the fluid
one (mexec) by computing a schedule up to the
hyperperiod ([3]).

The algorithm considers the ordered set of all
tasks’ jobs deadlines to define scheduling intervals,
as in deadline partitioning ([18]). Each task τi

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

Gaddiel Desirena López, Lorena Rubio Anguiano, Antonio Ramírez Treviño, José Luis Briz Velasco426

ISSN 2007-9737

a) b)

Fig. 7. Scheduler selection tab GUI

must be executed ni = H
ωi

times within the
hyperperiod H. Thus every q ∗ ωi, where q =
1, ...,ni is a deadline that must be considered in
the analysis. These deadlines can be gathered
and ordered in the set SDi = {sd1i , ..., sdni

i }. A
general set of deadlines is defined as SD = SD0 ∪
... ∪ SD|T | where SD0 = {0}. The elements
of SD can be arranged in ascendant order and
renamed as SD = {sd0, ..., sdα}, where α is
the last deadline. We define the the quantum
Q as in [15]. The fluid execution FSC =
[1FSCτ1 , ..., jFSCτi , ...,mFSCτn] is a vector with
number of tasks × number of CPUs entries. The
signal jFSCτi stands for the desired allocation of
the i − th task to the j − th CPU at time ζ. This
function can be computed as:

jFSCτi(ζ) =
jβi × cci

H
(ζ), (12)

where jβi is an unknown parameter that
represents the number of jobs of task τi which are
assigned to CPUj per time unit. This value is used
to compute a distributed fluid schedule function
that considers temporal constraints, according to
an offline stage that solves the following linear
programming problem:

min
m∑
j=1

∑
τa∈T

jβa,

s.t.
m∑
j=1

jβn = H
ωn

∀i = 1, . . . ,n,

}
,

∑
τa∈T

cca×mβa
H

≤ 1 ∀j = 1, . . . ,m
}
.

(13)

The actual execution mexec
i,j of τi in CPUj

must be equal to jFSCτi . In the on-line

stage a sliding mode controller yields an output
signal jw

alloc
i that is proportional to the error

(difference between jFSCτi(ζ) and mexec
i,j). The

formal proof of this controller is given in [15].
The scheduler (jwalloci) meets all deadlines
assuming an infinitesimal share of the CPUs
because its fluid nature, ans therefore must be
discretized. The discrete scheduler must be
written as: W alloc = Φ(mexec,FSC), where
Φ(mexec,FSC) is described by Algorithm 3. The
computed discrete schedule W alloc matches the
fluid schedule at every deadline sdk ∈ SD. Since
these time points are the deadlines of jobs, then
the algorithm ensures that the discrete schedule
meets all deadlines of all tasks.

Fig. 8 depicts the scheme of the algorithm
implemented in this framework. The dotted box A
contains a set of signals that represent the normal
behavior of the system. Signal A.1 describes the
function jFSCτi(ζ) obtained in the off-line stage,
and is used as the reference for the on-line stage.
In the on-line stage the controller yields an output
signal (jwalloci , named A.2 in Figure 8). The
controller output is integrated by the TCPN model.
Signal A.3 describes the output of this model.
Finally, the algorithm RT-TCPN uses the difference
between mexec

i,j (the expected executed amount
of τi in CPUj) and Mexec

i,j (the actual executed
amount of τi in CPUj) to compute jW

alloc
i , i.e. the

on-line allocation of τi to CPUj at every quantum
Q.

5.3 RT-TCPN Thermal Aware

The schedule computation in this algorithm
encompasses temporal and thermal constraints.
The temperature of the chip must be kept under

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

A Flexible Framework for Real-Time Thermal-Aware Schedulers using Timed Continuous Petri Nets 427

ISSN 2007-9737

Fig. 8. RT-TCPN Scheme

ALGORITHM 3: RT-TCPN
Input: T , the ordered set SD. The quantum Q. The fluid

schedule jFSCτi .
Output: The discrete schedule

Walloc = [1Walloc
1 , ..., jW

alloc
i , ...,mWalloc

n]
1 Initialize i = 1, sd = sdi, ζ = 0, Mexec

i,j (ζ) = 0 ∀τi ∈ T
and ∀CPUj ∈ P;

2 for ζ ≤ H do
3 All tasks are preempted from the processors;
4 REi,j(ζ) = jFSCτi (sd)−Mexec

i,j (ζ) ; /* Compute

remaining jobs */

5 ETj(ζ) = {τi|REi,j(ζ) > 0∀CPUj ∈ P} ;
/* Compute the set of tasks to be executed */

6 PRi,j(ζ) = mexeci,j (ζ)−Mexec
i,j (ζ) ; /* Compute the

priority for every task τi in ETj(ζ) */

7 for j = 1 to m do
8 jωa 0, 1 ≤ j ≤ m, 1 ≤ i ≤ a ;
9 Select the task τa for CPUj with the highest

priority value in ETj(ζ);
10 jW

alloc
a = 1 ;

11 Remove the task τa from ETk(ζ) for all
1 ≤ k ≤ m and k 6= j ;

12 Mexec
a,j (ζ +Q) =Mexec

a,j (ζ) +Q× jωa Remove
τa from ETj ;

13 end
14 ; /* Solve Eqs. (6) to compute mexec */

15 ζ = ζ +Q; /* Update time */

16 if ζ == sd then
17 i = i+ 1, sd = sdi
18 end
19 end

a temperature threshold Tmax that depends
on system design requirements. The fluid
schedule function introduced in [3] is extended to
include thermal restrictions. This is achieved by
considering the steady state of Eq. 7a, i.e. if the
schedule is periodic, fluid and evenly distributed
over the hyperperiod, then the temperature must
reach a steady state. Thermal Eqs. (7a and 7b)
can be rewritten as:

ṀT = ATMT +BTw
alloc +B′Tma,

YT = S′MT ,
(14)

AT corresponds to the system matrix, BT is
the input matrix, and B′T conforms the matrix
associated to the ambient temperature (ma which
is considered constant). These matrices are:

AT =

[
CT ΛT ΠT Cexec

P ΛexecΠexec

0 CPΛPΠP ,

]
(15)

B′T =

[
CaΛaΠa

0,

]
BT =

[
0

Calloc
P .

]
(16)

Thus, in a thermal steady state ṀT = 0,
MT and YT are respectively renamed as MTss

and YTss . indicating a system steady state
temperature, which can be computed as follows:

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

Gaddiel Desirena López, Lorena Rubio Anguiano, Antonio Ramírez Treviño, José Luis Briz Velasco428

ISSN 2007-9737

Fig. 9. RT-TCPN Thermal-Aware Scheme

MTss = −A−1
T (BTw

alloc +B′Tma),
YTss = S′MTss .

(17)

The steady state temperature YTss
[k] of CPUk

must be less than or equal to its maximum
temperature level i.e., YTss

[k] ≤ Tmaxk
so as not to

violate the thermal constraint. In a vectorial form:
S′MTss ≤ Tmax.

The thermal constraint is derived by combining
the last expression and Eq. (17).

−S′A−1
T BTw

alloc ≤ Tmax + S′A−1
T B′Tma.

(18)

The task allocation vector walloc depends on
the unknown parameter jβi. These parameters
are used to compute the distributed fluid schedule
function that considers thermal and temporal
constraints, according to the following linear
programming problem:

min
m∑
j=1

∑
τa∈T

jβa

s.t.,

−SA
−1
T BT

[∑
τa

1βacca
H

, . . . ,
∑
τa

mβacca
H

]T
≤

Tmax + SA
−1
T B′Tma

 ,

m∑
j=1

jβn = H
ωn

∀i = 1, . . . ,n

}
,

∑
τa∈T

cca×mβa
H

≤ 1 ∀j = 1, . . . ,m
}
.

(19)

The first constraint is the thermal constraint.
The other two constraints are a straightforward
extension of the time and CPU utilization used
in the RT-TCPN algorithm for the multiprocessor
case. The required fluid schedule function
jFSCτi(ζ) is defined similarly as Eq. (12).
The temporal and thermal requirements are
accomplished as long as the tasks are executed
according to this function. Task execution is
represented by variable mexec

i,j (ζ), hence the task
execution error is defined as ei,j(ζ) = jFSCτi(ζ)−

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

A Flexible Framework for Real-Time Thermal-Aware Schedulers using Timed Continuous Petri Nets 429

ISSN 2007-9737

mexec
i,j (ζ). If ei,j(ζ) = 0, then tasks are executed

at the adequate rate, and the time and thermal
constraints are met. Therefore, this error can
be kept equal to zero by appropriately selecting
jw

alloc
i (ζ). We propose a sliding mode controller

for this purpose. The formal proof for this controller
is beyond the scope of this paper. We provide the
following key hints, nonetheless.

Considered the sliding surface:

Si,j(ζ) =
K1

λexeci,j

ei,j(ζ) +
jβi × cci
Hλexeci,j

−mbusy
i,j , (20)

jw
alloc
i (ζ) = jŵ

alloc
i (ζ) + K1

λexec
i,j

jβi×cci
H , (21)

where jŵ
alloc
i (ζ) = K2sign(Si,j(ζ)) and sign(x) =

1 if x ≥ 0; 0 otherwise.
Figure 9 shows how the implemented algorithm

works. It is composed of the off-line and
online stages. Based on an LPP, the off-line
stage computes the functions jFSCτi(ζ) to meet
the temporal and thermal constraints. The
on-line stage use these functions as the target
for task execution. The sliding-mode controller
continuously allocates tasks to CPUs to ensure
that the task execution tracks the functions
jFSCτi(ζ). The dotted box A in figure 9 shows the
set of signals that represent the normal behavior
of the system. Box B depicts a disturbance, an
unexpected behavior of the system such as a CPU
detention. Signal B.1 describes the jFSCτi(ζ), as
in the normal case. If a CPU detention occurs
at time ζ1, then the difference between jFSCτi(ζ)
and the actual execution of τi in CPUj starts to
increase at this time. Thus the controller output
signal (jwalloci , named B.2) also starts to increase
at time ζ1. The controller output is integrated by
the TCPN model (Eq. 8) producing an output mexec

i,j

(signal B.3) that is greater than jFSCτi(ζ). Finally,
the algorithm RT-TCPN Thermal aware computes
jW

alloc
i , which also increases at time ζ1. When the

CPU resumes at time ζ2, the controller allocates
tasks to CPUs more often than in the normal case,
using the CPU idle periods until normal operation is
reached at time ζ3. Approaches that do not include
a continuous controller are not able to recover from
CPU detentions or other disturbances that can
temporarily stop task execution.

6 Example

We illustrate the usage of the simulation framework
with the following experiments. First, we compare
the temperature variations of the simulated system
as generated by the available schedulers.

In the experiments we assume a platform
composed of two homogeneous 1cm× 1cm silicon
microprocessors mounted over a 5cm×5cm copper
heat spreader as in [17]. The thickness of
the silicon microprocessors and the copper heat
spreader are 0.5mm and 1mm respectively.

The experiment considers the task set T =
{τ1, τ2, τ3}. The maximum operating temperature
of the cores is set at Tmax1,2 = 80oC. The temporal
parameters of each task are its WCET (in CPU
cycles), period ω and deadline d (with ω = d in
this case), resulting in τ1 = (2× 109, 4, 4, 35), τ2 =
(3× 109, 8, 8, 40), τ3 = (3× 109, 12, 12, 45), and the
consumed energy e.

Fig. 10 depicts the temperature obtained by the
schedulers for both CPUs. G-EDF and RT-TCPN
obtain a feasible schedule, however the resulting
temperatures violate the thermal constraint. In
contrast, the RT-TCPN Thermal scheduler meets
both thermal and temporal requirements. Fig. 11
presents the heat map obtained by the simulator.

7 Conclusion and Future Work

Designing, testing and comparing RT scheduling
methods on multiprocessors is a gruesome
and time consuming chore, all the more when
thermal restrictions are considered. Resorting
to a real system implementation is overkilling
during the early design stages. We have
developed a simulation framework which en-
compasses modules for defining and modelling
tasks, CPUs, thermal properties and three global
RT schedulers out-of-the box. It is avail-
able at https://www.gdl.cinvestav.mx/art/uploads/
SchedulerFrameworkTCPN.zip and it is distributed
as open source software as-is.

The main contribution compared with different
real time simulation tools relies on its capability
of handling temperature analysis over different
scheduling policies, which can be very useful in
order to detect thermal management problems

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

Gaddiel Desirena López, Lorena Rubio Anguiano, Antonio Ramírez Treviño, José Luis Briz Velasco430

ISSN 2007-9737

time (sec)

0 5 10 15 20

C
P

U
1

40

50

60

70

80

90

100
T

GEDF

CPU1
T

TCPN

CPU1
T

TCPNTher

CPU1
T

max

CPU1

time (sec)

0 5 10 15 20

C
P

U
2

40

50

60

70

80

90

100
T

GEDF

CPU2
T

TCPN

CPU2
T

TCPNTher

CPU2
T

max

CPU2

Fig. 10. Temperatures comparison obtained by the implemented schedulers

a) b) c)

Fig. 11. Heat map obtained by a) G-EDF, b) RT-TCPN c) RT-TCPN Thermal Aware

that can be solved trough a correction in the
scheduling algorithms.

We are working to include a number of
improvements such as simpler procedures to
replace or customize the thermal, task and CPUs
models, additional algorithms to generate task sets
and thermal-energy aware schedulers. Following
the trend of some current multiprocessors, the
framework will also include models for heteroge-
neous CPUs with per-CPU frequency adjustments.

Acknowledgements

This work was partially supported by grants
TIN2016-76635-C2-1-R (AEI/FEDER, UE), gaZ:
T48 research group (Aragón Gov. and European
ESF), and HiPEAC4 (European H2020/687698).

References

1. Baker, T. P. (2005). A comparison of global and
partitioned EDF schedulability tests for multiproces-
sors. International Conf. on Real-Time and Network
Systems.

2. Baruah, S., Bertogna, M., & Butazzo, G. (2015).
Multiprocessor Scheduling for Real-Time Systems.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

3. Baruah, S. K., Cohen, N. K., Plaxton, C. G.,
& Varvel, D. A. (1996). Proportionate progress:
A notion of fairness in resource allocation.
Algorithmica, Vol. 15, No. 6, pp. 600–625.

4. Bini, E. & Buttazzo, G. C. (2005). Measuring
the performance of schedulability tests. Real-Time
Systems, Vol. 30, No. 1-2, pp. 129–154.

5. Brandenburg, B., Block, A., Calandrino, J.,
Devi, U., Leontyev, H., & Anderson, J. (2007).
LITMUSRT: A status report. Proceedings of the 9th
real-time Linux workshop, pp. 107–123.

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

A Flexible Framework for Real-Time Thermal-Aware Schedulers using Timed Continuous Petri Nets 431

ISSN 2007-9737

6. Brandenburg, B. B. & Gül, M. (2016). Global
scheduling not required: Simple, near-optimal
multiprocessor real-time scheduling with semi-
partitioned reservation. IEEE Real-Time Systems
Symposium (RTSS 2016), pp. 99–110.

7. Buttazzo, G. (2011). Hard real-time computing
systems: predictable scheduling algorithms and
applications, volume 24. Springer Science &
Business Media.

8. Calandrino, J. M., Anderson, J. H., & Baum-
berger, D. P. (2007). A hybrid real-time schedul-
ing approach for large-scale multicore platforms.
Proceedings of the 19th Euromicro Conference on
Real-Time Systems, ECRTS ’07, IEEE Computer
Society, Washington, DC, USA, pp. 247–258.

9. Casini, D., Biondi, A., & Buttazzo, G. (2017).
Semi-Partitioned Scheduling of Dynamic Real-Time
Workload: A Practical Approach Based on
Analysis-Driven Load Balancing. Bertogna, M.,
editor, 29th Euromicro Conference on Real-Time
Systems (ECRTS 2017), volume 76 of Leibniz
International Proceedings in Informatics (LIPIcs),
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, pp. 13:1–13:23.

10. Chandarli, Y., Fauberteau, F., Masson, D.,
Midonnet, S., & Qamhieh, M. (2012). Yartiss:
A tool to visualize, test, compare and evaluate
real-time scheduling algorithms. WATERS 2012,
UPE LIGM ESIEE, pp. 21–26.

11. Chéramy, M., Hladik, P.-E., & Déplanche, A.-M.
(2014). Simso: A simulation tool to evaluate
real-time multiprocessor scheduling algorithms.
5th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time
Systems (WATERS), pp. 6–p.

12. David, R. & Alla, H. (2008). Discrete, continuous
and hybrid Petri nets. Control Systems, IEEE,
Vol. 28, No. 3, pp. 81–84.

13. Desel, J. & Esparza, J. (1995). Free Choice Petri
Nets. Cambridge Tracts in Theoretical Computer
Science 40.

14. Desirena, G., Rubio, L., Ramirez, A., & Briz,
J. (2019). Thermal-aware hrt scheduling simulation
framework.

15. Desirena-Lopez, G., Briz, J. L., Vázquez,
C. R., Ramı́rez-Treviño, A., & Gómez-Gutiérrez,
D. (2016). On-line scheduling in multiprocessor
systems based on continuous control using timed
continuous petri nets. 13th International Workshop
on Discrete Event Systems, pp. 278–283.

16. Desirena-Lopez, G., Ramı́rez-Treviño, A., Briz,
J. L., Vázquez, C. R., & Gómez-Gutiérrez, D.
(2019). Thermal-aware real-time scheduling using
timed continuous petri nets. ACM Transactions
on Embedded Computing systems. To appear,
accepted Apr. 2019.

17. Desirena-Lopez, G., Vázquez, C. R., Ramı́rez-
Treviño, A., & Gómez-Gutiérrez, D. (2014).
Thermal modelling for temperature control in
MPSoC’s using fluid Petri nets. IEEE Conference
on Control Applications part of Multi-conference on
Systems and Control.

18. Funk, S., Levin, G., Sadowski, C., Pye, I., &
Brandt, S. (2011). Dp-fair: a unifying theory for
optimal hard real-time multiprocessor scheduling.
Real-Time Systems, Vol. 47, No. 5, pp. 389–429.

19. Kato, S. & Yamasaki, N. (2007). Real-time schedul-
ing with task splitting on multiprocessors. Proceed-
ings of the 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and
Applications, RTCSA ’07, IEEE Computer Society,
Washington, DC, USA, pp. 441–450.

20. MATLAB (2018). version 9.4 (R2018a). The
MathWorks Inc., Natick, Massachusetts.

21. Oh, D.-I. & Bakker, T. (1998). Utilization bounds
for n-processor rate monotone scheduling with static
processor assignment. Real-Time Systems, Vol. 15,
No. 2, pp. 183–192.

22. Rubio-Anguiano, L., Desirena-López, G.,
Ramı́rez-Treviño, A., & Briz, J. (2018).
Energy-efficient thermal-aware scheduling for
rt tasks using tcpn. IFAC-PapersOnLine, Vol. 51,
No. 7, pp. 236–242.

23. Silva, M., Júlvez, J., Mahulea, C., & Vázquez,
C. R. (2011). On fluidization of discrete event
models: observation and control of continuous Petri
nets. Discrete Event Dynamic Systems, Vol. 21,
No. 4, pp. 427–497.

24. Silva, M. & Recalde, L. (2007). Redes de Petri
continuas: Expresividad, análisis y control de una
clase de sistemas lineales conmutados. Revista
Iberoamericana de Automática e informática Indus-
trial, Vol. 4, No. 3, pp. 5–33.

25. Singhoff, F., Legrand, J., Nana, L., & Marcé, L.
(2004). Cheddar: a flexible real time scheduling
framework. ACM SIGAda Ada Letters, volume 24(4),
ACM, pp. 1–8.

26. Srinivasan, J., Adve, S. V., Bose, P., &
Rivers, J. A. (2005). Exploiting structural duplication

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

Gaddiel Desirena López, Lorena Rubio Anguiano, Antonio Ramírez Treviño, José Luis Briz Velasco432

ISSN 2007-9737

for lifetime reliability enhancement. Computer
Architecture, 2005. ISCA’05. Proceedings. 32nd
International Symposium on, IEEE, pp. 520–531.

Article received on 24/10/2018; accepted on 16/02/2019.
Corresponding author is Gaddiel Desirena López.

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 417–433
doi: 10.13053/CyS-23-2-3204

A Flexible Framework for Real-Time Thermal-Aware Schedulers using Timed Continuous Petri Nets 433

ISSN 2007-9737

