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Abstract. With the increase in an average user’s
dependence on their mobile devices, the reliance on
collecting user’s browsing history from mobile browsers
has also increased. This browsing history is highly
utilized in the advertising industry for providing targeted
ads in the purview of inferring user’s short-term interests
and pushing relevant ads. However, the major limitation
of such an extraction from mobile browsers is that
browsing history gets reset when the browser is closed
or when the device is shut down/restarted; thus
rendering existing methods for identification of user’s
short-term interests on mobile devices, ineffective. In
this paper, we propose an alternative method to identify
such short-term interests by analysing user’s mobile
app adoption (installation/uninstallation) patterns over a
period of time. Such a method can be highly effective
in pinpointing the user’s ephemeral inclinations like
buying/renting an apartment, buying/selling a car or a
sudden increased interest in shopping (possibly due to
a recent salary bonus, he received). Subsequently,
these derived interests are also used for targeted
experiments. Our experiments result in up to 93.68%
higher click-through rate in comparison to the ads shown
without any user-interest knowledge. Also, up to 51%
higher revenue in the long term is expected as a result of
the application of our proposed algorithm.
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1 Introduction

A decade-old advancement in the field of
smartphones has made smartphones handy for
every user. With the increase in an average user’s
dependence on their mobile devices, his depen-
dence on traditional websites, typically browsed via
personal computers, is decreasing. Consequently,
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the focus of the advertising industry has also
started to migrate from the web towards mobile
devices. However, existing methodologies like
cookies, which are used to provide a personalized
experience or push targeted advertisements, are
not applicable to the mobile ecosystem. The
reason is that these cookies are reset, every
time the browser is closed or when the phone is
shut down/restarted. Additionally, they cannot be
shared across apps. Therefore, such traditional
methods make mobile marketers handicapped in
knowing the user’s interests.

To tackle this, the mobile advertisement industry,
these days, is relying on Data Management
Platform (DMP), which collects all of the user’s
cookies or events coming as first / second / third
party data and infers the short-term interests of
users. These interests are then used by Demand
Side Platforms (DSP’s) or advertising agencies to
push targeted ads (formally known as creatives).
However, not every advertiser agency or DSP has
the luxury of using such DMPs, primarily due to
cost restrictions.

In this paper, we propose an alternative method
to identify the short-term interests of a user
by carefully analysing their mobile app adoption
(installation/uninstallation) patterns over a period
of time and subsequently, supply these extracted
interests to DSPs, that use them to suggest
relevant ads for the user. This significantly
increases the CTR (Click-Through Rate) of the
suggested ads. Our method relies on the key
realization that users constantly install and remove
mobile-apps on need basis [6, 8], making this data
stream valuable and a potential source to deduce
their short-term needs, interests or inclinations.
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Our system first collects the installed-apps list of
a mobile-user in a repetitive interval and then
extracts installation/uninstallation patterns from it.
This installed-apps list contains the applications
downloaded and installed by the user, some
of which may be pre-installed by the device
manufacturer. Features like app-description are
then utilized to find the user’s interests using
various natural language processing (NLP) based
unsupervised methods.

A shortcoming of such an approach is that
periodic access to a user’s installed apps might
seem invasive to an individual’s privacy. To avoid
such an invasion, we have taken a number of
measures. These measures include anonymizing
user-identifiers end-to-end and collecting data of
only those users who have given consent for
data collection and analysis, which they often
do to avail intelligent services offering enhanced
features. We, therefore, answer all privacy-related
questions raised by [10] and address this issue.

The rest of the paper is organized as follows.
In Section 2, we discuss the related works and
advancements that have been done in this area.
We discuss both the relevant techniques as well as
the commercial applications in this field. In Section
3, we give an overview of our system architecture,
the modules and their functions. In Section 4, we
give a detailed description of the datasets used,
followed by results and discussions. In Section
5, we show how our proposed methodology would
impact the revenue and CTR of an organization, if
applied in the real world.

2 Related Work

Identifying a user’s interests helps the advertising
industry in pushing creatives that align with his
preferences. Further, identifying his short-term
interests allows the advertising industry to un-
derstand when and where the audience wants
to engage, the content with which they want to
interact, and then select the right place at the right
time to push these creatives. This ultimately boosts
the Click Through Rates (CTR) and Conversion
Rate (CR) of the creatives displayed to the
user [12].

In previous works, there are predominantly two
concepts employed to identify a user’s short-term
interests. The first one explores recommendation
based on search keywords, which are collected
using cookies or events coming as first / second /
third part-data and are used to infer the short-term
interests of users [7]. The main limitation of
cookies on mobile browsers is that they reset
when the browser is closed or when the phone
is shutdown / restarted [11]. Also, as discussed
before, they cannot be shared across apps.
Furthermore, such approaches cannot be applied
to new users or users who like browsing in
incognito mode, as such users data is not available
with the marketers.

Another concept that is related to identifying
the user’s short-term interests is using a snapshot
of his installed apps. To the best of our
knowledge, research on identifying short-term
interests from mobile app adoption pattern has
not been conducted. However, some research on
predicting user traits [15, 16] like gender, language,
country, religion etc., has been done. These works,
typically take a single snapshot of installed apps
as input and use supervised learning to categorize
users into their traits. Similarly, numerous studies
have tried to find a user’s traits, such as, whether
the user is single, a parent, his mother tongue,
the next app that he is going to install and his
life-events [1, 8]. These studies predict a static
user property (his traits). Recommending system
models using only such user traits to identify user
interests have lesser accuracy in comparison to the
models using search keywords (discussed in the
previous paragraph) [4]. Thus, existing methods
that identifies user traits cannot be directly applied
to identify the user’s short-term interests.

Some of the commercial solutions related to
identifying a user’s interests are provided by
Lotame1, Oracle BlueKai DMP2, Adobe Audience
Manager3 and Salesforce DMP (formerly Krux)4.
These solutions typically organize the marketers’

1https://www.lotame.com/
2https://www.oracle.com/marketingcloud/products/data-

management-platform/index.html
3https://www.adobe.com/in/analytics/audience-

manager.html
4https://www.salesforce.com/
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audience data into categories and taxonomies
of user-interests and segment the audience to
generate various insights.

3 Design and Algorithm

In this section, we explain how we calculate
the short-term interests of a user, using his
installed/uninstalled apps. Our aim is to retrieve
semantically and linguistically important words
related to a given app using the app’s description
(referred to as app-description from here on)
available from google play store. Our approach
consists of various methodologies, all of which are
used independently to extract the most important
words out of text. We use TF-IDF (Term
Frequency-Inverse Document Frequency), YAKE
(Yet Another Keyword Extractor), LDA (Latent
Dirichlet Allocation), TextRank, TopicRank and
Graph methods to achieve this, as shown in Fig.
1. We associate these important words, extracted
out of the apps that the user installed over a period
of time, as his short-term interests, over that period
of time. Similarly, the important words extracted out
of the apps that the user uninstalled are considered
as events that the user is no longer interested
in. All our methodologies are implemented in
Python, using various inbuilt and external tools and
libraries.

3.1 Preprocessing

Preprocessing an app’s description (mostly in
the form of a paragraph, comprising of multiple
sentences) consists of various steps. First, we
remove stopwords using nltk5 corpus. Next,
we remove punctuations with the help of string
punctuations. The third step is removing non-
alpha-numeric characters (including non-English
languages) using regex. We also find the POS
(Parts Of Speech) tags of each of the words in
every sentence in the original paragraph using
nltk, and store these tags in a dictionary, for later
use. Finally, we remove words, that occur very
frequently across all app-descriptions using IDF
(Inverse Document Frequency). The threshold

5Natural Language Toolkit [http://www.nltk.org/], Version 3.3

used for this step is 5%. In other words, all
words that occur at least once in more than 5%
of a randomly chosen app-descriptions set (of size
1000) are removed in this step. Also, before
finding their frequency across all app-descriptions,
we lemmatize all words in the app-description. This
is done using nltk’s WordNetLemmatizer.

3.2 Interest Identification using TF-IDF

The first methodology, we use is the standard
TF-IDF (Term Frequency-Inverse Document Fre-
quency) technique. It is used to find out
the importance of each word in a collection of
documents. After preprocessing, as explained
above, we calculate TF by finding the frequency
of each word and dividing it by the total number
of words in the app-description. IDF is calculated
by taking the logarithm of a fraction, whose
numerator is the frequency of a word, across all
app-descriptions, and the denominator is the total
number of app-descriptions. Finally, the TF-IDF
metric is calculated by multiplying the TF and IDF
values. The output of this step is a metric of the
importance of each word in the app-description.
We then use the stored POS tags, calculated
in the previous step, to filter out the nouns in
the app-description and output the ones with the
highest TF-IDF values.

3.3 Interest Identification using YAKE

The next approach uses Yet Another Keyword
Extractor (YAKE) [5], which is a statistical method
for multi-lingual keyphrase extraction. Being an
unsupervised method, YAKE avoids the problem
of the long training process of other supervised
methods and does not depend on any dictionaries
for topic extraction. We implement the YAKE
algorithm using the pke library [2] in python. After
preprocessing the input text using the techniques
mentioned in section 3.1, we load it as a document
in a pke YAKE extractor instance. After this,
we select 1-3 grams as keyphrase candidates
and remove the candidates terminating with a
stopword on either side. Next, the candidates are
scored using various features extracted from the
cleaned input such as word position (since most
important words are usually in the beginning), word
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Fig. 1. Steps involved in Short-term interest identification

frequency (the more the word occurs, the better)
and other useful features defined in the YAKE
algorithm. Finally, we choose 20 words with the
lowest scores since they are the most important
ones.

3.4 Interest Identification using LDA

In this approach, we use Latent Dirichlet Allocation
(LDA), which is one of the most popular
topic-modelling techniques and exploits the fact
that every document is originally based on a
combination of topics. It tries to backtrack and
extract these constituent topics and also outputs
a list of relevant words, corresponding to each
topic. We use the gensim [14] library in python
to implement LDA. First, we break down the
app-description into a list of sentences, and then
correspondingly, each sentence into a list of
words. We use this corpus as input to gensim
to create a dictionary of words, and subsequently,

a document-term matrix, which is then fed to the
LdaModel to find topics. The number of topics
selected is 1 (as usually each sentence in app
description talks about 1 topic) and the number of
passes is 50 (as app-description is usually small,
therefore more passes were required). The output
of this step is a list of 100 most important words
in the app-description, sorted by their degree of
associativity to the topic predicted. We then filter
the top 20 nouns from these words (picked on
the basis of their importance), using the POS tags
stored in the preprocessing step and output them
as the most important topics in the passage.

3.5 Interest Identification using TextRank

In this approach, we use TextRank [13], which is
a graph-based method for keyword extraction. It
implements the idea of voting of a vertex by its
adjacent vertices. The vertex having the highest
number of votes is the most significant vertex. The
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score associated with a vertex is calculated using
its own number of votes, and the score assigned
to the vertices casting these votes. Again, we
use the pke library in Python to implement this
model. In this implementation, nodes are words
of certain part-of-speech (nouns and adjectives)
and edges represent the distance between word
occurrences. Nodes are then ranked by the
TextRank graph-based ranking algorithm. A
window size of 3 is chosen and the top 5% vertices
are used for phrase generation. Finally, the top 20
words with the highest weights are selected and
output as the most important words in the text.

3.6 Interest Identification using TopicRank

In this approach, we employ TopicRank [3], which
is an unsupervised and a graph-based keyphrase
extraction method. Unlike TextRank, this method
generates a graph of topics instead of words. Each
topic is a collection of similar single and multi-word
expressions. The advantage of generating a graph
of topics is that the semantic relations between
topics are better captured and the graph is more
concise. To implement this method, we first
preprocess the input data and load it into the pke
library [2] TopicRank instance. Then, we select the
important topics as groups of similar noun phrases
and adjectives in the document using the inbuilt
candidate selection method. Next, candidate
ranking is done using random walk algorithm.
Finally, the top 20 words with the highest weights
are output.

3.7 Interest Identification using Graph

The final approach involves constructing a word
co-occurrence network (or graph) using the
app-description. Co-occurrence networks/graphs
are the collective interconnections of terms based
on their paired presence within a specified unit
of text. Co-occurrence networks are generated
by connecting pairs of terms using a set of
criteria defining co-occurrence. Hence, the terms
are nodes on the graph and the edges are
co-occurrence between those terms. For us, it
will be an occurrence in a similar sentence. The
system goes through two phases for generating
a co-occurrence network: the Graph construction

phase and selecting the top 20 nodes from the
graph constructed.

In the graph construction phase, first, we
split the app-description into sentences. For
each sentence, we define co-occurrence between
words, which corresponds to an edge between the
co-occurrence words. We defined three types of
co-occurrence between a pair of words. According
to the first type, two words co-occur if they occur
in the same sentence. The second type implies
co-occurrence when two words occur in the same
sentence and are neighbors. Lastly, the third
co-occurrence means two words occurring in the
same sentence and being at a max distance of
two. For example, in the sentence “stock market
is booming high”, < “stock”, “high” > and <
“stock”, “booming” > co-occur by definition 1. Also,
< “stock”, “market” > co-occur by definition 2
and 3. In order to realize all such possibilities,
we generated three separate graphs based on
different co-occurrences. We also removed all
self-loops present in the graph.

Next, we consider words (nodes) from our
co-occurrence graph using various graph metrics.
Various graph metrics considered for experimen-
tation are Degree, Page Rank, Betweenness
centrality and Closeness centrality. We took
the top 20 words, based on the aforementioned
graph metrics. All the graph operations including
construction and metric calculations are done
using networkX [9] in python.

4 Results

As mentioned before, we take the top 20 most
important words as the output of each of the
methodologies explained above. In this section,
we explain how we evaluate these methodologies.
Our project work in the ads domain allows us to
access the current apps installed in the user’s
Android phone. Using this data, we find all
installed and uninstalled apps of users during a
fixed period of time (July 1 to July 15, 2018,
in our case). We then apply each approach
explained above to find the 20 most important
words out of the app-descriptions of each of these
installed/uninstalled apps. These words act as
short-term interests (or dislikes, in the case of
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uninstalls) of the user. Our evaluation methods
compute an estimator of the potential increase in
CTR that could be generated by the application
of this new methodology. The experiments are
conducted on a dataset of real users in an offline
manner after imitating a real-time environment.
During imitation, we have considered all eligible
bids (including losing bids in the ad-bidding
process) for each advertisement request. Each bid
object contains the advertiser’s unique identifier,
the advertised product description and bidding
price.

Now, we need a dataset that acts as ground truth
to assess our output. Another dataset available to
us, as part of our project, is the CTR-dataset (Click
Through Rate-dataset) of around 1 million users.
We use it to identify the clicks and the impressions
of the ads shown to the user from July 7 to July 21,
2018. The reason this period of time is chosen is
that we assume that on an average, the short-term
interests of the user in the period July 1 to July 15,
will be at their peak on July 7th.

Therefore, the probability of him clicking an ad
of the similar category (as his installed apps)
will be the highest during July 7th to July 21st
(chosen because his short-term interests might
persist for around 7 more days after he’s finished
installing/uninstalling apps between July 1st and
July 15). Since we consider the event that a user
clicks on an ad of a particular category as an
indicator of his short-term interests, this dataset
can act as ground-truth.

Next, we calculate the CTR (CTR1) for
all creatives (or ads) that are similar to his
installed/uninstalled apps. This similarity is
calculated by finding the top 20 words for both
the ads and the installed apps, using the various
approaches discussed above, and then using nltk
wordnet to find synonyms (Two apps are similar if
their app-descriptions have at least two common
words/synonyms). CTR1 represents what the
CTR would have been if the creatives were
chosen according to the results predicted by our
methodologies. We also calculate CTR (CTR2) of
the ads that are dissimilar to the user’s installed
apps. CTR2 represents the probability of a user
clicking an ad if our approach is not used.

The evaluation is based on the hypothesis that
for a particular user and his short-term interests
identified based on installed apps, CTR1 >
CTR2 (since if our methodologies are used, the
CTR is expected to increase, as the ads now
have become more personalized/interesting to the
user). Similarly, for interests identified based on
uninstalled apps, our hypothesis is CTR1 < CTR2

(since our methodologies are used, in this case,
to identify ads that are not of interest to the user
anymore). The average CTR1 and CTR2 over
34,908 users for install-based interest identification
and 28,226 users for uninstall-based interest
identification, computed this way is depicted in
Table 1 and 2. The CTR increase column denotes
how much the CTR increased from CTR2 to CTR1

in case of Table 1, and CTR1 to CTR2, in case of
Table 2.

Additionally, our algorithm is not applicable
to all the bids. (For some bids, the top
keywords identified did not match with any of the
user’s installed/uninstalled apps’ top keywords).
Hence, we have also tabulated the percentage
of bids (denoted as applicable bids), for which
different methods were applicable. As can be
observed from Table 1, the TextRank model
shows the maximum CTR increase of 93.68%
for interests identified based on installed apps,
but its applicability is low. Similarly, In Table 2,
the Closeness Centrality ranking method of
type 2 shows the maximum CTR increase of
113.58% for uninstallation-apps based non-interest
identification, with a relatively low applicability. To
increase the applicability while maintaining the
increase in CTR, we have implemented various
priority-based Hybrid models, comprising of 3
models having the maximum increase in CTR
and one model having high applicability. In
a hybrid model, we try to find the common
keywords between a user’s identified interests
(installs/uninstalls) and the incoming bids, using
the the highest-priority model (LDA, for instance,
in case of installs).

If this model fails, the next model is tried
out to find these common words and so on.
Table 3 and 4 denote the various hybrid models
implemented. Each model comprises of 4
constituent models as discussed above. The
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Table 1. CTR enhancement for interests identified based on installed apps

Method CTR1
(%age)

CTR2
(%age)

Increase in CTR
(%age)

Applicable Bids
(%age)

TF-IDF 4.99 3.37 48.07 61
YAKE 4.09 3.57 14.57 64
LDA 5.28 2.79 89.20 40
TextRank 5.52 2.85 93.68 24.6
TopicRank 5.34 3.28 62.8 64.7
Degree
graph
ranking

Co-occ. type 1 4.52 3.69 22.49 78.8
Co-occ. type 2 4.51 3.49 29.23 78.6
Co-occ. type 3 4.64 3.42 35.67 80.6

PageRank
graph
ranking

Co-occ. type 1 4.38 3.87 13.18 79.9
Co-occ. type 2 4.51 3.50 28.85 81.3
Co-occ. type 3 4.50 3.50 28.57 79.8

Betweenness
centrality
ranking

Co-occ. type 1 4.61 3.29 39.74 77.6
Co-occ. type 2 4.71 3.26 44.48 78.8
Co-occ. type 3 4.66 3.29 41.64 78.4

Closeness
centrality
ranking

Co-occ. type 1 4.52 3.79 19.26 76.6
Co-occ. type 2 4.52 3.86 17.09 80.3
Co-occ. type 3 4.71 3.31 42.29 82.1

Table 2. CTR enhancement for interests identified based on uninstalled apps

Method CTR1
(%age)

CTR2
(%age)

Increase in CTR
(%age)

Applicable Bids
(%age)

TF-IDF 3.13 3.98 27.16 75.89
YAKE 3.22 4.53 40.68 72.21
LDA 3.54 4.76 34.46 85.26
TextRank 3.29 5.15 56.53 74.00
TopicRank 3.23 4.71 45.82 78.84
Degree
graph
ranking

Co-occ. type 1 2.92 5.80 98.63 60.42
Co-occ. type 2 2.95 5.83 97.62 60.63
Co-occ. type 3 2.91 5.89 102.41 63.89

PageRank
graph
ranking

Co-occ. type 1 2.95 5.62 90.51 60.03
Co-occ. type 2 2.89 5.93 105.19 63.26
Co-occ. type 3 2.91 5.88 102.61 66.03

Betweenness
centrality
ranking

Co-occ. type 1 2.93 5.77 96.92 60.03
Co-occ. type 2 2.94 5.83 98.30 62.63
Co-occ. type 3 2.96 5.51 86.15 59.47

Closeness
centrality
ranking

Co-occ. type 1 2.98 5.97 100.33 60.63
Co-occ. type 2 2.87 6.13 113.58 68.06
Co-occ. type 3 2.94 6.11 107.82 60.21

hybrid model, LDA TopicRank TextRank Degree-
3, for instance, consists of the LDA, TopicRank,
TextRank and the degree graph (Co-occurrence

type 3) models. A significant improvement can
be seen in the applicability of the bids (85.6%
and 82%, respectively) in the hybrid models, while
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Table 3. CTR enhancement for interests identified based on installed apps using priority-based Hybrid models

Hybrid Method CTR1
(%age)

CTR2
(%age)

Increase in
CTR (%age)

Applicable Bids
(%age)

LDA TopicRank TextRank
Degree-3 6.822 3.674 85.65 85.6

LDA TopicRank TextRank
PageRank-2 6.773 3.701 82.97 86.8

LDA TopicRank TextRank
BwCent-2 6.934 3.647 90.13 85.6

LDA TopicRank TextRank
ClCent-3 6.772 3.671 84.47 85

Table 4. CTR enhancement for interests identified based on uninstalled apps using priority-based Hybrid models

Hybrid Method CTR1
(%age)

CTR2
(%age)

Increase in
CTR (%age)

Applicable Bids
(%age)

Degree-3 PageRank-2
ClCent-2 TF-IDF 3.239 6.698 106.75 79.6

Degree-3 PageRank-2
ClCent-2 LDA 3.365 7.085 110.52 88.6

Degree-3 PageRank-2
ClCent-2 TopicRank 3.277 7.27 121.82 82

maintaining an impressive CTR increase (90.13%
and 121.82%, respectively), as shown in Table3
and 4.

5 Impact on Revenue

In the advertising industry, there are majorly three
players from a pricing perspective. The first
ones are the advertisers who want to acquire
new users via advertisement. Second, there are
publishers who have a dedicated space where the
advertisement can be shown to the user, formally
known as an ad inventory. And lastly, there are
intermediaries (mostly DSPs) making the match
via the bidding process. The advertisers usually
want to pay for per-user action (a click or an
app install), which is formally known as Cost per
Action (CPA) and the publishers want to earn per
impression, formally known as Cost per Mile (CPM)
impression.

Hence, the intermediaries also need to perform
arbitrage. We define arbitrage as a process
of converting CPA to CPM. The prevalent

methodologies applied for performing arbitrage
predict the CTR for each bid, which can then
be used as CPA*CTR to get CPM (assuming
intermediary is not taking any cut out of it). For
example, consider the case when an advertiser
has an ad budget of $10 per click and the
intermediary predicted that the CTR for the
advertisement is 0.1 for a user’s request. In such a
scenario, the intermediary may bid for $1 ($10*0.1)
for an ad space and the advertisement would be
selected for display, if $1 is the highest-priced valid
bid received.

From the last decade, publishers also like to
provide targeted advertisements, even at the cost
of initial revenue loss, as it improves the long-term
value of their brand by not cluttering their ad space.
In the process, an initial revenue loss would likely
result as the highest-priced bid might not be the
most liked bid by the user (identified using our
methodology).

This initial revenue loss is tabulated in Table 5,
where we have shown the initial revenue impact
on publishers after applying various methodologies
proposed in this paper.
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Table 5. Real time impact on application of our algorithm

Method
Initial

Impact
(%age)

Increase
in CTR
(%age)

Applicable
Bids

(%age)

Estimated
Long-term

Impact(%age)
TF-IDF -20.1435 48.07 61 18.60584
YAKE -13.6853 14.57 64 21.83496
LDA -22.5013 89.2 40 37.21169
TextRank -23.1164 93.68 24.6 51.102
TopicRank -17.9908 62.8 64.7 29.1184
Degree
graph
ranking

Co-occ. type 1 -13.1727 22.49 78.8 7.842132
Co-occ. type 2 -9.48232 29.23 78.6 13.12148
Co-occ. type 3 -8.14967 35.67 80.6 17.68324

PageRank
graph
ranking

Co-occ. type 1 -13.4803 13.18 79.9 5.894413
Co-occ. type 2 -9.53357 28.85 81.3 11.48129
Co-occ. type 3 -9.78985 28.57 79.8 11.22501

Betweenness
centrality
ranking

Co-occ. type 1 -10.0974 39.74 77.6 17.32445
Co-occ. type 2 -15.223 44.48 78.8 15.42799
Co-occ. type 3 -9.53357 41.64 78.4 19.52845

Closeness
centrality
ranking

Co-occ. type 1 -13.1727 19.26 76.6 9.431061
Co-occ. type 2 -13.3778 17.09 80.3 5.996929
Co-occ. type 3 -11.0712 42.29 82.1 17.99077

Table 6. Long-term impact on publishers revenue

Part A : Without application of our algorithm

Advertiser’s ad Intermediary’s Publisher’s revenue
budget per click predicted CTR per impression

Advertiser1 $12 0.1 $12*0.1=$1.2
Advertiser2 $10 0.1 $10*0.1=$1.0

Part B : On application of our algorithm on the second advertiser’s bid

Advertiser’s ad Intermediary’s Publisher’s revenue
budget per click predicted CTR per impression

Advertiser1 $12 0.10000 $12*0.10000=$1.2000
Advertiser2 $10 0.14467 $10*0.14467=$1.4467

In this table, we have computed the revenue
loss on 1 million user requests containing an
ad inventory of three different publishers. For
computing the estimated long-term impact, the
increase in CTR (%age) and applicable users
(%age) metrics have been taken from Table 1.

In Table 6, through an example, we try to explain
how the revenue has increased in the long-term
for the publishers in Table 5. We consider two

advertisers, having an ad budget of $12 and $10
per click respectively, who want to get 100 clicks
each for their advertisements.

The intermediary has set the default CTR (to
convert CPA to CPM) for both the advertisements
as 0.1 (in the absence of any system to identify
user interests).

Additionally, assume that the publisher has an
ad inventory of 1000. Therefore, the publisher
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will earn $1200 (=$1.2 cost per impression * 1000
impressions), when our system is not in place.

Now, suppose that the second ad is more
aligned to the user’s interests (as predicted by
our algorithm), as a result of which it is chosen
by the publisher instead of the first one. In this
case, the publisher will initially earn $1000, which
would mean an initial loss of $200 for every 1000
impressions. However, in the long term, the second
advertiser’s target of reaching 100 clicks would
be achieved after only 691 impressions (assuming
a 44.67% average increase in CTR and 100%
applicability from Table 5). In this case, the
predicted CTR would be 0.14467, which is why the
number of impressions needed would be 100 clicks
divided by 0.14467, which comes to approximately
691 impressions. Since the goal of the second
advertiser (of achieving 100 clicks) has been
achieved in fewer than 1000 impressions, it will not
participate anymore in the bidding process, which
leaves the ad space for 309 impressions available
to the publisher. The publisher can then show
the first advertiser’s ad in this ad space, which
will generate an additional revenue of $371 (=309
impressions*$12 per click*0.1 predicted CTR).

Hence, the total revenue of $1000 + $371 would
be earned by the publisher, which is $171 more
than the revenue earned when our system was
not deployed. Since, in real-world scenarios,
publishers display millions of impressions per
month, applying our algorithm could have a
significant impact on the long-term revenue of the
publishers.

6 Conclusion and Future Work

In this paper, we propose various methodologies
to identify the short-term interests of a user
by analysing his mobile app adoption (instal-
lation/uninstallation) patterns over a period of
time. Such a method can be highly effective
in pinpointing the user’s ephemeral inclinations.
Our experiments result in around 94% higher
click-through rate (in case of installed-apps based
interest identification using TextRank algorithm)
and around 113% higher click-through rate (for
uninstalled-apps based non-interest identification
using the closeness-centrality ranking method of

graphs), in comparison to the ads shown without
any user-interest knowledge.

Further, we implement several hybrid models
having both a high CTR increase and bid-
applicability (as high as 121.82% and 82%, in
the dislike-identification case). Also, around 51%
higher revenue in the long-term is expected as a
result of the application of our proposed algorithm.
In future, we would optimize our methodologies to
decrease their execution-times, since our priority in
this paper was achieving a higher CTR increase.

Also, we would work on unifying various
installation and uninstallation-based models to
make the overall system better personalized to the
user’s interests.
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