ISSN 2007-9737

KeyVector: Unsupervised Keyphrase Extraction
Using Weighted Topic via Semantic Relatedness

Alymzhan Toleu, Gulmira Tolegen, Rustam Mussabayev

Institute of Information and Computational Technologies, Aimaty,
Kazakhstan

{alymzhan.toleu, gulmira.tolegen.cs, rmusab}@gmail.com

Abstract. Keyphrase extraction is a task of automatically
selecting topical phrases from a document. We present
KeyVector, an unsupervised approach with weighted
topics via semantic relatedness for keyphrase extraction.
Our method relies on various measures of semantic
relatedness of documents, topics and keyphrases in
the same vector space, which allow us to compute
three keyphrase ranking scores: global semantic
score, find more important keyphrases for a given
document by measuring the semantic relation between
documents and keyphrase embeddings; topic weight,
pruning/selecting the candidate keyphrases on the topic
level; topic inner score, ranking the keyphrases inside
each topic. Keyphrases are then generated by ranking
the values of combined three scores for each candidate.
We conducted experiments on three evaluation data sets
of different length documents and domains. Results
show that KeyVector outperforms state of the art
methods on short, medium and long documents.

Keywords. Keyphrase extraction, clustering, topic
modeling, semantic relatedness, text mining.

1 Introduction

Keyphrase extraction aims to automatically extract
keyphrases from a document and ensure the
selected keyphrases covey the main topic of
the document. Key phrases are an essential
component for solving the tasks of information
retrival [17, 21, 9, 19], summarization [6], text
mining and topic modeling [2]. Word/phrase
embeddings are distributed representations of text
in an n-dimensional space. In such space,
the semantic/syntactic features of words can be
captured by the embeddings, and the machine

learning algorithms could reach better results in
natural language processing (NLP) tasks by group-
ing words/phrases. Owing to its importance, the
embedding becomes necessary for solving many
NLP tasks [16, 22, 23] better nowadays. Many
graph and topic-based approaches (TextRank [15],
SingleRank [24], TopicRank [4]) for keyphrase
extraction have been proposed to use internal
and external discrete features such as positional
features, word frequency, co-occurrences and
some other Wikipedia-based statistical features.
Instead of relying on either internal or external
discrete features, in this paper, we present
KeyVector, an unsupervised keyphrase extraction
method by computing the semantic relatedness of
words/phrases through embeddings.

Our approach has several advantages over
existing state of the arts.

(1) Global semantic score. Embedding the
sentences, candidate keyphrases into the same
vector space, which allows us to compute their
semantic relatedness more efficiently than discrete
features. Based on the embeddings, we propose to
use the global semantic score that is the semantic
relatedness between document and keyphrases.

(2) Weighted topics. Ranking a large number of
candidate keyphrases is often tricky. Intuitively, it
is more efficient if we group the candidates into
topics by their embeddings, then ranking them on
the topic or global level. To do this, we compute
representation for each topic after the clustering
process and assign a weight for each topic by
measuring the semantic relatedness between topic
and documents. We show that the technique of
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weighted topic influences the process of keyphrase
selection.

(3) For each candidate inside each topic, we
propose to compute a local ranking score, and we
refer to it as topic inner semantic score. We use
three standard data sets of different document size
and domain to evaluate KeyVector.

We compare KeyVector to five different state
of the art approaches. Experiments show
that KeyVector outperforms other baselines on
short/medium/long documents. It yields better
results for both short and long documents.
It indicates that KeyVector has better stability
in its performances against the various length
of documents compared to other topic-based
approaches.

The rest of the paper is organized as follows:
Section 2 presents the existing methods for the
keyphrase extraction task; Section 3 describes
the details of KeyVector; Section 4 describes the
evaluation process and report the experimental
results; Section 5 concludes this work.

2 Related Work

In general, keyphrase extraction methods can be
classified into two groups: supervised and unsu-
pervised approaches. In supervised approaches
[14, 10], the problem of keyphrase extraction is
regarded as a binary classification task and learn
models from training data. Many details about
the supervised methods and statistical features for
keyphrase extraction can be found in the survey
[7]. Here, we focus on unsupervised approaches
that often have two ways: corpus-dependent
and corpus-independent. The former requires all
documents to do the extraction of keyphrases, and
the TFIDF [20] is the simple, widely used approach
contains two features: term-frequency and inverse
document frequency. Methods belonging to the
latter like TextRank [15], KeyCluster [13] TopicRank
[12] and EmbedRank [1], including our proposed
method, requires no other documents than the one
document from which to extract keyphrases.

TextRank [15] is the well-known graph-based
approach, and it builds a graph from one
document. Each node of the graph corresponds
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to candidate keyphrases and the edge connects
two candidates.

For each node, calculate the score from
other nodes connected by the edges. The
top-ranked nodes from the graph are then
selected as keyphrases. KeyCluster [13] is
the clustering-based approach that clustering
semantically similar candidates using statistical
features such as word co-occurrences and
positional features etc. The main idea of this
method is that a candidate is to be selected as
keyphrase if the candidate close to the centroid of a
cluster. The clusterized candidates can be viewed
as topics that a document covers. The drawback
of this method is that those unimportant topics in
the document could be selected as keyphrases,
which is limiting the quality of the resulting sets
of keyphrase. TopicRank [12] was proposed to
overcome the weakness of the KeyCluster. In order
to ensure that extracted keyphrases cover the main
topics, this method uses Latent Dirichlet Allocation
[2] to generate topics for a document and uses
TextRank multiple times for a document and once
for the generated topics.

EmbedRank [1] is an embedding-based ap-
proach that computes the document embedding
and the embedding of each candidate phrase
separately. The embeddings are obtained from the
popular Doc2vec [11] and Sent2vec [18] models.
The top keyphrases are selected by ranking
the candidate phrases according to their cosine
distance to the document embedding. EmbedRank
is comparable to KeyVector, but they are different
in several points: 1) the global semantic score is
used to compute the semantic relation between
sentences and keyphrases. 2) weighted topics are
applied to do global pruning for the candidates that
unlikely to be keyphrase. 3) topic inner score is
used to rank the keyphrases in each topic.

3 KeyVector: Automatic Keyphrase
Extraction

In this section, we introduce KeyVector, a novel
weighted topic keyphrase extraction method via
semantic relatedness, which is designed to handle
the problematic situation of the task when each of
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the documents has a large number of candidate
keyphrases to rank.

Before describing the method, let us clarify
the elements described in the following sections.
Keyphrase, it is made up of one or multiple
words. Candidate keyphrase, it is extracted for
each document by using heuristic rules (Section
4.2) and each document has a large number of
candidates. Gold Keyphrases, they are given by
the annotators or authors of data sets. Topic, it
consists of a set of candidate keyphrases and each
document contains several topics. It also treated
as cluster/group.

The method consists of three main steps: 1)
project both sentences and candidate keyphrases
into the same and high dimensional space to
compute their semantic relatedness. 2) compute
the weights to topics by clustering the candidate
keyphrases of each document. 3) Obtaining
the ranking scores by measuring the semantic
relatedness between the candidate with the
sentences, and the inner semantic score of each
candidate in a topic plus topic weights.

The global architecture of KeyVector is given
in Fig 1. The process of keyphrase extraction
is from words (w) to sentence (s), then to
keyphrase (p). The edge arrows between words
and sentences mean that the embeddings of
each sentence are computed by averaging each
word embeddings. The edge arrows between
sentences and candidate mean the computation of
the semantic relatedness between them.

3.1 Embedding the Sentences and Phrases

Representing text such as words, sentences
and documents into vector representation, which
allows the model to capture the semantic
relatedness via word/phrase vectors within the
shared high-dimensional vector space. We use
this property to rank the candidate keyphrases,
which allow us to partially capture the semantics
between text and candidate keyphrase to meet the
informativeness of keyphrase.

We represent each sentence and candidate
phrase into vector representation by using word
embeddings [16]. More formally, for a given
collection of documents d € D, we segment the

sentences S € d, s; € S and tokenize them into
words W € S, w; € W. With the purpose of putting
the method as simple as possible, we compute the
sentence embedding by using the averaged vector
sum of each word in the sentence.

[si

1
Si:mzwb (1)
=1

where |s;| is the number of word in the sentence s;.
For simplicity, the notations within boldface denote
vectors/matrix. The obtained sentence embedding
is s; € RNl N is the dimension. Note, the
word embeddings are used only for the equation
(1), in other cases we use keyphrase and sentence
embeddings.

The process of computing the embedding for
each candidate keyphrase p; € P is the same
with sentence embedding. Each p; consists of
words w; € p;. The generation of embedding for
word sequences in this model is simple enough
and feasible.  This embedding method also
allows us to embed arbitrary-length sequences of
words. In order to compute both sentences and
phrases embedding, we employ publicly available
pre-trained word embeddings’, which allow both
types of embeddings in a shared semantic vector
space.

3.2 Weighted Topics

Given the sentences, the candidate keyphrases
and their embeddings, we compute the semantic
relatedness of them in order to cluster similar
candidates by their meanings. The idea behind
the clustering the candidates is to handle the
problematic situation of keyphrase extraction when
a large number of candidates extracted from
each document. To demonstrate this situation
comprehensively, let us consider the numbers of
extracted candidates per document from three
standard data sets: Inspec [8], DUC [24] and NUS
[17]. Figure 2 shows the distribution of the number
of generated candidates and we could observe
that the length of the input document as longer
the document yield more candidate keyphrases.

Thttps://github.com/mmihaltz/word2vec-GoogleNews-
vectors
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Fig. 1. The architecture of KeyVector

For NUS data set (the rightmost part of the
curve), it can be seen that the extracted candidate
keyphrases are more than 1000 and for DUC (the
middle part of the curve) the number is about 200.
The large number of candidates for each document
leads the selection process become very tricky.
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Fig. 2. The distribution of the number of generated
candidates. The x-axis is the combined document ID
of three data sets in the following order: Inspec (short),
DUC (medium), NUS (long), and the y-axis is the number
of extracted candidates

The technique of weighted topics plays the role
like pruning candidates that are unlikely to be
keyphrases on a global level. Existing topic-based
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methods (KeyCluster [13], TopicRank [4]) apply
statistical features (such as word co-occurrences,
the number of overlapping words and positional
features etc.) to compute the semantic relations,
then group the candidates. The group of
candidates can be treated as topics [4].

Here, we group the similar candidates P based
on their embeddings’ relatedness in the same
space with the input document d,. We apply
affinity propagation method [5] to cluster the
candidate in terms of a given document, and it also
automatically identifies how many clusters there
are in each document.

Once the candidates P are clusterized into
topics, T = {ti,...,ts,....,t;|} (ts is the s-th
topic that contains one or more candidates and
ts is its embedding), again, we compute vector
representation for each topic by averaging the sum
of the embeddings of each candidate inside the
topic. We treat topic representation ts as the
centroid of each topic. For weighting the topics,
we calculate the semantic relatedness between the
centroid and the input document:

[Sk|

Pr(ts|s;) = Z(Z cos(s;, ts)), (2)
=0
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Fig. 3. Comparison of F1-score for three data sets
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concerning the top-M keyphrases

where Pr(ts|s;) is the weight for topic t;.

RISkIXN representation of the

is the matrix

S, €

document d; and each sentence’s embedding of
dg is S; € RIXN,

Note that the weights for topics are computed us-
ing embeddings of sentences and topic centroids,
and they are in the same vector space.

3.3 Keyphrase Selection

Based on the above, we select the top-M
keyphrases by three strategies:

(1) global semantic score, the semantic
relatedness between sentences and candidates,
Pr(Slp;).  The underlying hypothesis of this
measurement is that a sentence is more important
if it contains more important keyphrases, and a
candidate keyphrase is important if it is related to a
large number of sentences.

(2) topic weights, Pr(ts|S). It is used for
topic importance determination, and it is a global
pruning technique for the candidates that are not
likely to be keyphrases.

(3) topic inner semantic score, the semantic
distances between each candidate to the centroid,
Pr(pj|ts). Itis an inner selection in each topic to
the candidates.

Given a document d or its sentences S, we
compute a score for j-th candidate keyphrase by
computing its likelihood:

Pr(p;|S) = Pr(ts|S)Pr(pslts) Pr(Slp;),  (3)

where Pr(Slp;,) = S2(31% cos(s;, py)) is the
probability of the sentences given the keyphrase.
It means that which keyphrases produce larger
probabilities for sentences, it could be the
keyphrases.

Pr(pj;lts) = cos(p;,ts), p; € ts is topic inner
score.

It means that the most important candidate
should be close to the centroid of the topic.
Pr(ts|S) is weighted score for topic ts. Doing
the above calculation, the ranking scores for each
candidate can be computed. Then, according to
the ranking scores, we can suggest top-M ranked
candidates as the keyphrase.
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4 Experiments

4.1 Data Set

KeyVector is evaluated on three publicly available
data sets®. Table 1 shows the statistics about data
sets.

The data set of Inspec [8] consists of 2 000 short
documents from scientific journal abstracts. We
evaluate our model on 500 documents of test set.
The DUC-2001 data set [24] contains 308 medium
length newspaper articles from TREC-9. The
NUS [17] consists of 211long length of scientific
article. Each document contains several sets of
keyphrases. One is created by author and the
others are assigned by annotators. Following [17],
we evaluate on the union of all sets of author’s and
annotators’ keyphrases.

4.2 Preprocessing

The preprocessing has impacts on the perfor-
mance of keyphrase extraction models [3]. In
the experiments, we used preprocessed version
of Inspec [8]* and DUC-2001 [24]° data set
that are publicly available. We applied following
preprocessing to NUS [17] data set, namely,
sentence segmentation, word tokenization and
POS tagging (nltk pos-tagger).

Then, we extracted candidate phrases that
consist of zero or more adjectives followed by one
or multiple nouns. The stopwords were filtered
out from the data sets and the stemming is not
performed at preprocessing stage.

2https://github.com/snkim/AutomaticKeyphraseExtraction
3The columns of Table 1 are: #docs - the number of the
documents; #avg. tok. - average number of tokens per
document; #avg. cand - average number of candidates; #kps
- total number of keyphrases; # miss. kp. - percentage of
keyphrases not present in candidates; #miss. w. - percentage of
words out of vocabulary of embeddings; #miss. c. - percentage
of candidates that have embedding with value 0.
“https://github.com/boudinfl/hulth-2003-pre
Shitps://github.com/boudinfl/duc-2001-pre
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4.3 Results

To evaluate our approach, we conducted a set of
experiments: one of them is to compare KeyVector
with other baselines; another one is to evaluate the
performance of all models concerning the number
of top-M.

Table 2 shows the results of KeyVector and other
five baselines. Overall, KeyVector outperforms
TFIDF, TextRank, SingleRank and EmbedRank in
terms of precision, recall, and F1 score. On Inspec,
which contains short documents, KeyVector
outperforms all other competing approaches. In
this case, TopicRank fails to do better than other
baselines of non-topic ranked methods like TFIDF,
SingleRank and EmbedRank. However, from
the results of KeyVector on short documents, it
indicates that the performance of KeyVector is
higher than that of state of the art approaches and
more stable.

On Duc, the medium documents, KeyVector
also shows the case with Inspec. We could
observe that KeyVector has approximately 11.95%
(on Inspec), 6.62% (on Duc), 2.53% (on NUS) and
16.22% (on Inspec), 7.32% (on Duc) , 0.99% (on
NUS) improvements in F1-score compared with
SingleRank and TopicRank, respectively

The results of KeyVector are competitive with
TopicRank, and It has improvements about
0.99%, 2.53% and 5.38% compared to TopicRank,
SingleRank and TextRank.

We investigate the effects of the top-M selected
keyphrases with respect to F1-score in Figure
3. Figure 3a shows that KeyVector outperforms
all baselines start from top-M = 3 and it grows
continuously compared to EmbedRank that start
to drop slightly when top-M=14. On DUC, the
results of F1-score KeyVector and EmbedRank
are comparable when increasing the number of
top-M. It can be seen that KeyVector has
significant improvements compared to others.
On NUS, TopicRank shows its advantages for
long documents compared to others (TextRank,
SingleRank) and the TFIDF also gives excellent
results. KeyVector has a 0.99% improvement
approximately in F1-score compare to TopicRank.
KeyVector computes semantic relatedness from
sentences, topics and keyphrases’ embeddings
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Table 1. Statistics of the data sets

dataset | types | #docs. | #avg. tok. | #avg. c. | #kps | Y%omiss. kp. | Yomiss. w. | Yemiss. C.
Inspec short 500 134.12 26.60 | 4913 41.66 17.5 6.78
DUC | medium 211 847.23 142.89 | 2488 13.46 24.76 2.74
NUS long 308 7379.19 | 854.32 | 2317 37.16 20.13 2.21

Table 2. Comparison of KeyVector with state of the art on the three data sets. The W is the window size and M is the
number of selected keyphrases, and the NV is the dimension of word embedding

\ Methods Parameter Precision Recall F1-score
TFIDF M=10 31.31 31.56 31.44
TextRank W=2, T=0.3 17.80 17.52 17.66
Inspec SingleRank  W=10, M=10 26.14 26.48 26.30
TopicRank ~ W=10, M=10 22.00 22.06 22.03
EmbedRank N=300, M=10 36.62 36.92 36.77
KeyVector  N=300, M=10 38.09 38.40 38.25
TFIDF M=10 15.32 18.86 16.91
TextRank W=2, T=0.3 9.66 11.86 10.65
DUC SingleRank  W=10, M=10 17.96 22.14 19.83
TopicRank ~ W=10, M=10 17.34 21.34 19.13
EmbedRank N=300, M=10 23.23 28.64 25.65
KeyVector  N=300, M=10 23.95 29.52 26.45
TFIDF M=10 9.19 8.37 8.76
TextRank W=2, T=0.3 5.02 4.57 4.78
NUS SingleRank  W=10, M=10 8.0 7.29 7.63
TopicRank ~ W=10, M=10 9.62 8.76 9.17
EmbedRank N=300, M=10 8.24 7.50 7.86
KeyVector  N=300, M=10 10.66 9.71 10.16

to do the extraction and it is sensitive for the
way of generating the embeddings for sentences,
topics and keyphrases including the different use
of normalization/average for embeddings.

Taking into account the fact that some words are
missing from the embeddings ( Inspec: 17.5%,
DUC: 24.76%, NUS: 20.13% ); consequently,
some of keyphrases have all zero value in
representations ( Inspec: 6.78%, DUC: 2.74%,
NUS: 2.21% ). We believe the improved
representation for our method or decreasing the
missing percentages of those words/phrases have
effects on improving the results.

Over all, from the results on short/medium/long
documents, we could observe that KeyVector does
not fail to do better (like topicRank does) on

short/medium documents, and its performances
on long documents are also stable. So we
deduce that KeyVector has taken the balances on
its performance when extracting keyphrases from
various lengths of documents.

5 Conclusion

In this paper, we present KeyVector, an unsu-
pervised method for keyphrase extraction. Our
approach offers several advantages over existing
keyphrase extraction methods. First, the semantic
relatedness between sentences and candidates
are computed through embeddings which are
projected into the same high-dimensional space.
The use of weighted topics captures those
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unimportant topics to reach the goal of pruning the
candidates not likely to be keyphrases on the topic
level. The topic inner semantic score is another
strategy to rank the candidate inside the topic by
the semantic distances between each candidate to
the topic centroid.

We conducted experiments on three standard
evaluation data sets of different document sizes
and domains.  Results show that KeyVector
outperforms other baselines on short/medium/long
documents.

We will explore the following two points as future
work: (1) analyze the effects of different clustering
results for keyphrase extraction, and investigate
other new clustering algorithms, (2) explore a new
strategy for computing the topic inner scores.
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