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Abstract. It is known that a deep neural network
model pre-trained with large-scale data greatly improves
the accuracy of various tasks, especially when there
are resource constraints. However, the information
needed to solve a given task can vary, and simply
using the output of the final layer is not necessarily
sufficient. Moreover, to our knowledge, exploiting large
language representation models to detect grammatical
errors has not yet been studied. In this work, we
investigate the effect of utilizing information not only
from the final layer but also from intermediate layers of
a pre-trained language representation model to detect
grammatical errors. We propose a multi-head multi-layer
attention model that determines the appropriate layers in
Bidirectional Encoder Representation from Transformers
(BERT). The proposed method achieved the best scores
on three datasets for grammatical error detection tasks,
outperforming the current state-of-the-art method by 6.0
points on FCE, 8.2 points on CoNLL14, and 12.2 points
on JFLEG in terms of F0.5. We also demonstrate that
by using multi-head multi-layer attention, our model can
exploit a broader range of information for each token
in a sentence than a model that uses only the final
layer’s information.

Keywords. Multi-head multi-layer attention, grammatical
error detection.

1 Introduction

Neural networks are known to be best exploited
when trained on large-scale data. It has been
demonstrated that utilizing language representa-
tion models pre-trained with large-scale data is
effective for various tasks. For example, recent
studies have shown a significant improvement

using large-scale data to train large deeper models
for natural language understanding tasks [2, 4, 11].

In contrast, for grammatical error detection,
several studies have adapted large-scale data by
creating artificial training data from a large-scale
raw corpora [6, 14]. Moreover, there have been
studies that have effectively used language repre-
sentation models for grammatical error detection
task [13]. To our knowledge, however, there
are no studies that have utilized deep language
representation models pre-trained with large-scale
data for this task.

Moreover, deep neural networks learn different
representations for each layer. For example,
Belinkov et al. [3] demonstrated that in a machine
translation task, the lower layers of the network
learn to represent the word structure, while higher
layers are more focused on word meaning.

Peters et al. [11] showed that in learning deep
contextualized word representations, constructing
representations of layers corresponding to each
task by a weighted sum improved the accuracy of
six NLP tasks. Peters et al. [12] empirically showed
that lower layers are best-suited for local syntactic
relationships, that higher layers better model
longer-range relationships, and that the top-most
layers specialize at the language modeling.

For tasks that emphasize the grammatical
nature, such as grammatical error detection,
information from the lower layers is considered
to be important alongside more expressive
information in deep layers. Therefore, we
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hypothesized that using information from optimal
layers suitable for a given task is important.

As such, our motivation is to construct a deep
grammatical error detection model that considers
optimal information from each layer. Therefore,
we propose a model that uses multi-head
multi-layer attention in order to construct hidden
representations from different layers suitable for
grammatical error detection.

Our contributions are as follows:

1. We propose a multi-head multi-layer attention
model that can acquire even more suitable
representations for a given task by fine-tuning
a pre-trained deep language representation
model with large-scale data for grammatical
error detection.

2. We show that our model is effective at
acquiring hidden representations from various
layers for grammatical error detection. Our
analysis reveals that using multi-head multi-
layer attention effectively utilizes information
from various layers. We also demonstrate that
our proposed model can use a wider range of
information for each token in a sentence.

3. Experimental results show that our multi-
head multi-layer attention model achieves
state-of-the-art results on three grammatical
error detection datasets (viz., FCE, CoNLL14,
and JFLEG).

2 Related Works

2.1 Grammatical Error Detection with
Language Representations

Often, in sequence labeling tasks, recent super-
vised neural grammatical error detection models
are built upon Bi-LSTM [5, 6, 13, 14, 15, 16]. Rei
and Søgaard [15] used token-level predictions by
Bi-LSTM for self-attention to predict sentence-level
labels for grammatical error detection. However,
we adopt a transformer block-based model for
token-level grammatical error detection, and we
build a very deep model for this task.

Rei [13] showed the effectiveness of multitask
learning by coupling language modeling and
grammatical error detection.

They used an additional objective for language
modeling training to learn to predict surrounding
tokens for every token in a dataset. In contrast
to previous research, we adopt information from
deep language representations for grammatical
error detection by multi-head multi-layer attention.

Several studies have exploited large quantities
of raw data to create additional artificial data.
Rei et al. [14] artificially generated writing errors
in order to create additional resources to learn
a neural sequence labeling model following Rei
[13]. Kasewa et al. [6] employed a neural
machine translation system to create error-filled
artificial data for grammatical error detection. By
contrast, we directly adopt a pre-trained language
representation model trained with large-scale
raw data.

2.2 Using the Layer Representations

Deep Contextualized Word Representations
(ELMo) [11] used large-scale data for a deep
language representation model. Their model
learns task-specific weighting from all fixed
hidden layers of the pre-trained bidirectional
long short-term memory (Bi-LSTM) to construct
contextualized word embeddings optimized to
a given task. In other words, ELMo learns
task-specific representations exclusively in the first
layer, whereas other parameters of a pre-trained
model remain unchanged. On the contrary, we
construct representations suited for given tasks
by fine-tuning all parameters of our pre-trained
model, using multi-head multi-layer attention. All
parameters and constructed representations of
our model are trained to be best-suited for the
given task.

Takase et al. [18] employed intermediate layer
representations, including input embeddings, to
calculate the probability distributions in order to
solve a ranking problem in language generation
tasks. Similarly, we considered the information of
each layer, but our motivation is to seize the optimal
information from each layer suitable for a given task
using a multi-head multi-layer attention.
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Moreover, their model estimated probability
distributions from each layer, whereas ours
constructs hidden representations from each layer
for the output layer.

Furthermore, there is a study that predicts
information from the middle layer of each layer of
the language model and learns the errors occurring
owing to the model [1]. The use of the information
of the middle layer of transformer block is
common to our research, but the information
of each layer is not taken into account at the
time of evaluation and is used only for learning.
Furthermore, the information on the surface layer
is less useful and learning is undertaken so that
the influence of the surface layer decreases as
learning progresses. In contrast, as the method
uses attention, it also lets you learn which layer is
utilized in the model itself.

3 Deep Language Representations for
Grammatical Error Detection

We propose a model that applies multi-head
attention to each layer (multi-head multi-layer
attention, MHMLA) to fine-tune pre-trained Bidirec-
tional Encoder Representations from Transformers
(BERT) [4]. Architectures of BERT and MHMLA for
the grammatical error detection task are illustrated
in Figure 1. In this section, we first introduce BERT
and then explain our proposed model, MHMLA.

3.1 BERT

BERT is designed to learn deep bidirectional
representations by jointly conditioning both the
left and right contexts in all layers (Figure
1(a)). It is based on a multi-layer bidirectional
transformer encoder [20]. Insofar it is a deep
language representation model pre-trained on
large-scale data, it can be used for fine-tuning. It
achieved state-of-the-art results for a wide range
of tasks such as natural language understanding,
name entity recognition, question answering, and
grounded commonsense inference [4].

BERT has a multi-layer bidirectional transformer
encoder and can be used for different architec-
tures, such as in classification and sequence-to-
sequence learning tasks. Here, we explain the

BERT’s architecture for sequence labeling tasks.
Given a sequence S = w0, · · · ,wn, · · · ,wN as
input, BERT is formulated as follows:

h0
n = Wewn +Wp, (1)

hl
n = transformer block(hl−1

n ), (2)
y(BERT)
n = softmax(Woh

L
n + bo), (3)

where wn is a current token, and N denotes the
sequence length. Equation 1 thus creates an input
embedding. Here, transformer block includes
self-attention and fully connected layers [20], and
outputs hl

n. l is the number of the current layer,
l ≥ 1. L is the total number of layers of BERT.
Equation 3 denotes the output layer. Wo is an
output weight matrix, bo is a bias for the output
layer, and y

(BERT)
n is a prediction.

The parameters We, Wp and
transformer block are pre-trained on a large
document-level corpus using a masked language
model [19] and predicting a next sentence. Then,
BERT uses a different task-specific matrix Wo

of the output layer (Equation 3) for a given
sequence labeling task. To adapt BERT for
specific tasks, all parameters of BERT are
fine-tuned jointly by predicting a task-specific label
with the task-specific output layer to maximize the
log-probability of the correct label.

3.2 Multi-Head Multi-Layer Attention to Acquire
Task-Specific Representations

Multi-head attention [20] is more beneficial than a
single attention function. MHMLA on a sequence
labeling model applies attention to each layer l of
the output of transformer block hl

n of Equation 2
(Figure 1(b)). First, we calculate attention value vln:

vln,j = W l
vjh

l
n + blvj . (4)

Here, Wv is a weight matrix, bv is a bias, and j is a
head number. We apply a non-linear layer to hl

n to
acquire kln. Attention score aln is as follows:

kln,j = relu(W l
kjh

l
n + blkj), (5)

aln,j = W l
ajk

l
n + blaj , (6)
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(a) BERT. (b) MHMLA.

Fig. 1. Architectures of BERT and MHMLA for grammatical error detection

where Wk and Wa are weight matrices, and bk and
ba are biases. Multi-heads are then calculated as
follows:

ãln,j =
exp(aln,j)∑L
t=1 exp(a

t
n,j)

, (7)

headn,j =

L∑
t=1

ãtn,jv
t
n,j , (8)

where ãl is the attention weight, normalized to sum
up to 1 over all values in the layers. These weights
are then used to combine the context-conditioned
hidden representations from Equation (5) into a
single-token representation cn:

cn = concat(headn,1, · · · , headn,J), (9)

where J is the total number of heads. Finally,
we return task-specific predictions based on this
representation:

y(label)n = softmax(Wocn + bo). (10)

Table 1. Sentence statistics of used corpora

corpus train dev test
FCE 28,731 2,222 2,720
CoNLL14 - - 1,312
JFLEG - - 747

Wo is an output weight matrix and bo is a bias of
output layer. Our model is optimized by minimizing
cross-entropy loss on the token-level annotation.

4 Experiments

4.1 Datasets

We focus on a supervised sequence labeling task:
viz., grammatical error detection. Grammatical
error detection is the task of identifying incorrect
tokens that need to be edited in order to produce
a grammatically correct sentence. We evaluated
our approach on the three different grammatical
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error detection datasets. Table 1 shows statistics
for each corpus.

FCE. We fine-tuned and searched the parameters
of the model and evaluated our system on
the First Certificate in English (FCE) dataset
[22], which contains error-annotated short
essays written by language learners. The FCE
dataset is a popular English learner corpus for
grammatical error detection. We followed the
official split of the data.

CoNLL14. We additionally used dataset from
the CoNLL 2014 shared task (CoNLL14)
dataset [10] in our evaluation. This dataset
was written by higher-proficiency learners on
different technical topics. It was manually
corrected by two separate annotators, and we
report results on each of these annotations
(CoNLL14-{1,2}).

JFLEG. We also evaluated our approach with
the JHU FLuency-Extended GUG (JFLEG)
corpus [9]. It contains a broad range of
language-proficiency levels and focuses more
on fluency edits and making the text more
native-sounding, in addition to grammatical
corrections. JFLEG is not labeled for
grammatical error detection. Therefore, we
used dynamic programming to label tokens in
sentences as correct or incorrect. Because
JFLEG is a recently developed corpus, there is
only one prior study with experimental results
[15]. JFLEG is tagged by multiple annotators,
like CoNLL14, so we followed this work to build
a version that combines the references: if a
token is labeled as an error by any annotator,
it is marked as an error1.

4.2 Experimental Details

We used a publicly available pre-trained deep
language representation model, namely the
BERTBASE uncased model2. This model has
12 layers, 768 hidden size, and 16 heads of

1Although JFLEG’s experimental settings are not described
in the paper, we confirmed them with the authors of the paper
over e-mail.

2https://github.com/google-research/bert

self-attention. Layer attention has 12 heads (J
= 12). We fine-tuned the model over 5 epochs
with a batch size of 32. The maximum training
sentence length was 128 tokens. We used the
Adam optimizer [7] with a learning rate of 5e-05.
We applied dropout [17] to hl

n, kln,j , and ãln,j with a
dropout rate of 0.3. ãln,j is referred to as attention
dropout. We also used WordPiece embeddings
[21]. To make this compatible with sub-token
tokenization, we inputted each tokenized word
into the WordPiece tokenizer and used the hidden
state corresponding to the first sub-token as input
to the output layer, as with the original BERT.

We used F0.5 as the main evaluation measure.
This measure was also adopted in the CoNLL14
shared task for the grammatical error correction
task [10]. It combines both precision and
recall, while assigning twice as much weight to
precision, because accurate feedback is often
more important than coverage in error detection
applications [8].

4.3 Baselines and Comparisons

We compare with models of Rei [13], Rei and
Søgaard [15], Rei et al. [14], and Kasewa et al.
[6] which are based on the Bi-LSTM architecture.
The first group, Rei [13] and Rei and Søgaard [15],
was trained exclusively on the FCE dataset. The
second group, Rei et al. [14] and Kasewa et al. [6]
used additional artificial data along with the FCE
dataset for training.

Our baseline and proposed models were trained
on the transformer architecture. The first three are
the descriptions of our baselines, and the fourth is
a description of the proposed model:

BERTBASE w/o pre-train. This model is trained
using only the FCE dataset and with random
initialization. This baseline did not use any
other corpus for training.

BERTBASE. This is the original pre-trained model
described in Section 4.2 fine-tuned on the FCE
dataset. This baseline uses original BERT
model [4] and can be seen as surrogated
version of the proposed method without
multi-layer attention.
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Table 2. Results of grammatical error detection. These results are averaged over five runs. ∗ and † indicate that there
is a significant difference against BERTBASE and AvgL, respectively

FCE CoNLL14-1 CoNLL14-2 JFLEG
P R F0.5 P R F0.5 P R F0.5 P R F0.5

Rei [13] 58.88 28.92 48.48 17.68 19.07 17.86 25.22 19.25 23.62 - - -
Rei and Søgaard [15] 65.53 28.61 52.07 25.14 15.22 22.14 37.72 16.19 29.65 72.53 25.04 52.52
Rei et al. [14] 60.67 28.08 49.11 23.28 18.01 21.87 35.28 19.42 30.13 - - -
Kasewa et al. [6] - - 55.6 - - 28.3 - - 35.5 - - -
BERTBASE w/o pre-train 48.85 11.30 29.34 11.45 7.80 10.47 18.24 9.31 15.30 58.85 13.22 34.81
BERTBASE 69.80 37.37 59.47 34.08 33.56 33.97 46.01 33.89 42.93 78.06 36.28 63.45
AvgL 68.09 41.14 60.20 34.97 32.02 34.33 45.33 35.27 42.88 77.35 37.05 63.52
MHMLA 68.87† 43.45∗† 61.65∗† 35.74∗ 33.50† 35.26∗† 46.45† 35.47∗ 43.74† 77.74 38.85∗† 64.77∗†

Table 3. F0.5 scores of MHMLA using different number
of heads J . These results are averaged over five runs

J FCE CoNLL14-1 CoNLL14-2 JFLEG
1 61.16 33.75 42.89 63.98
2 61.62 33.44 42.42 63.72
3 61.90 34.50 43.17 64.45
4 61.55 33.74 42.80 64.37
6 61.22 34.26 43.29 64.48
8 61.27 34.72 43.02 64.10

12 61.65 35.26 43.74 64.77

AvgL. This model is called averaged layers,
which averages representations after linear
transformation of hl

n (Equation 2) for the output
layer of BERTBASE model instead of using an
attention.

MHMLA. This is the proposed model that is an
extension of BERTBASE, with MHMLA to the
pre-trained model while fine-tuning on the FCE
dataset.

5 Results

Table 2 shows the grammatical error detection
results for the FCE, CoNLL14-{1,2}, and JFLEG
datasets. Scores for Rei [13], Rei and Søgaard
[15], Rei et al. [14], and Kasewa et al. [6]
were taken from their respective papers. In
FCE, CoNLL14, and JFLEG, the BERTBASE model
significantly outperformed existing methods and
our baseline (without pre-training) in terms of
precision, recall, and F0.5. This demonstrates that
using a pre-trained deep language representation
model is highly effective for grammatical error
detection. Furthermore, MHMLA achieved the

highest F0.5 on all datasets, outperforming
BERTBASE by 2.18 points, 1.29 points, 0.81 points,
and 1.32 points on FCE, CoNLL14-{1,2}, and
JFLEG, respectively. The scores for the AvgL
model were lower than that for our proposed
MHMLA model, meaning that naively using
information from layers is not as effective as
using MHMLA. These results show that using
MHMLA and learning task-specific representations
improves the accuracy.

To verify the effect of MHMLA, we examined
the F0.5 value for each head number. We
investigated 1, 2, 3, 4, 6, 8, and 12 heads
(i.e. the number of heads up to 12 by which
the hidden layer size of 768 can be divided).
Table 3 shows the F0.5 values for each number
of heads on FCE, CoNLL14-{1,2}, and JFLEG
datasets. Regarding FCE, the highest F0.5 score
was achieved with 3 heads. For CoNLL14-{1,2}
and JFLEG, the F0.5 values were highest with
12 heads, demonstrating that adopting multi-head
leads to improved accuracy.

6 Analysis of the Effect of MHMLA

The purpose of MHMLA is to construct represen-
tations not only from the final layer but also from
various layers. Multi-head attention allows the
model to jointly attend to information from different
representation subspaces at different positions.
Therefore, it is considered that increasing the
number of heads leads to utilization of information
from various layers. Hence, we investigate the
effect of the number of heads on each layer by
visualizing the averaged score of MHMLA that was
calculated by considering the heads j of Equation
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(a) FCE. (b) CoNLL14.

(c) JFLEG.

Fig. 2. Attention visualization of MHMLA on each dataset using a different number of heads. MHMLA with 8 and 12
heads tends to attend to all layers more or less equally for all datasets.

7 for all layers on test sets of the three datasets:
FCE, CoNLL14, and JFLEG.

Figure 2 visualizes the average attention score to
each layer of MHMLA for each head. The average
attention score is calculated by averaging headn in
Equation (8). For all datasets, when there were a
fewer numbers of heads, the multi-head attentions
learned to attend to different layers but tended to
focus on particular layers. For example, as shown
in Figure 2(b), multi-head attention with heads of
2, 3, and 4 heads focused more on layers 2 and
3 while hardly attending to layers 5 and 6. Figure
2(b) shows that the same amount of attention is
attended to each layer when the number of heads
are 8 and 12. In Figure 2(c), attention is sharp,
especially with the number of heads being 1, 2,
3, and 4. In contrast, with there are more heads,
viz. 8 and 12, attention tended to attend to all
layers more or less equally for all datasets. From
this visualization, we conclude that our goal of
utilizing the information from various layers has
been achieved.

7 Conclusion

In this study, we investigated the effect of utilizing a
deep language representation model (BERTBASE)
pre-trained on large-scale data for grammatical
error detection. Simply fine-tuning our BERTBASE

model greatly improved F0.5 scores for grammatical
error detection task.

Furthermore, we have introduced an approach
to learning representations suited for grammatical
error detection task from various layers of a
pre-trained deep language representation model
using MHMLA. Our MHMLA model outperformed
previous models for grammatical error detection,
establishing new state-of-the-art F0.5 scores. Our
analysis demonstrated that we succeeded at
learning appropriate representations for a given
task using information from different layers.

Future work includes applying MHMLA to other
language representation models like Open AI
GPT model [2]. Furthermore, with different
combination of existing pre-trained language
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representation models, we hope to obtain even
greater improvements. In addition, we will explore
whether our layers learned the same syntactic and
semantic roles as a previous work [12], also what
exactly self-attention learns at a token-level for
grammatical error detection.
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