ISSN 2007-9737

Sentence Similarity Techniques for Short vs Variable Length Text
using Word Embeddings

D. Shashavali, V. Vishwjeet, Rahul Kumar, Gaurav Mathur,
Nikhil Nihal, Siddhartha Mukherjee, Suresh Venkanagouda Patil

Samsung R & D Bangalore,

India

{shasha.d, v.vishwjeet, rahul.k4, gaurav.m4,
nikhil.nihal, siddhartha.m, suresh.patil}@samsung.com

Abstract. In goal-oriented conversational agents like
Chatbots, finding the similarity between user input and
representative text result is a big challenge. Generally,
the conversational agent developers tend to provide a
minimal number of utterances per intent, which makes
the classification task difficult. The problem becomes
more complex when the length of the representative text
per action is short and the length of the user input is
long. We propose a methodology that derives Sentence
Similarity score based on N-gram and Sliding Window
and uses the FastText Word Embeddings technique
which outperforms the current state-of-the-art Sentence
Similarity results. We are also publishing a dataset on
the shopping domain, to build conversational agents.
And the extensive experiments done on the dataset
fetched better results in accuracy, precision and recall
by 6%, 2% and 80% respectively. It also evinces that our
solution generalizes well on the low corpus and requires
no training.

Keywords. Sentence similarity, word embeddings,
natural language processing, sliding window, N-grams,
text classification.

1 Introduction

The determination of sentence similarity in natural
language processing has a wide range of
applications. In applications like Chatbots, the
uses of sentence similarity include estimating the
semantic meaning between the user input and
button text. Hence, such applications need to
have a robust algorithm to estimate the sentence
similarity which can be used across a variety of

Com

domains. Well, the main reason we want to infer
meaning from raw text is that NLU aims at building
systems that understand user utterance and trigger
meaningful results based on the user input. Refer
Figure 1 for example.

_—— e = = = — = -

=25

Hello, I'm your Assistant, how can | help you?

Pizzas

New Order Track Order

Ok, can you take the new order for me... 3

*
& Sure, Lets get started then ...

L

Deliver it for me please 3 !

/7
7/
s
-

- e mm wm

-~ e e e e e ——————

Fig. 1. The primary goal of the dialogue systems is
to understand the user’s input or goal by using NLU
techniques, the bot must manage to achieve a goal by
showing the appropriate action

Multitask learning [13] schemes along with
supervised and unsupervised approaches have
lead to the betterment of NLP task results.

A simple approach [6] using WMD (Word
Mover’s Distance), which measures the dissim-

putacion y Sistemas, Vol. 23, No. 3, 2019, pp. 999-1004
doi: 10.13053/CyS-23-3-3273

ISSN 2007-9737

1000 D. Shashavali, V. Vishwjeet, Rahul Kumar, Gaurav Mathur, Nikhil Nihal, Siddhartha Mukherjee, et al.

ilarity between two sentences, as the minimum
distance that the embedded words of a sentence
need to travel to reach the embedded words of
other. The recent approach [14] to sentence
level semantic similarity technique is based on
unsupervised learning from conversational data.
This approach process the sentences in a high
dimensional space and doesn’t fetch better results
on short sentences, so it's very hard to learn
direct Sentence Embeddings. Also, the most
recent Sentence Encoder models [4], Transformer
encoder and Deep Averaging Network (DAN) have
a trade-off of accuracy and computational resource
requirement. Moreover, one needs to build the
deep neural networks (DNN) or more sophisticated
architectures and train the model with the large
Corpus.

Here, we propose methods which are based
on Cosine similarity calculation along with Sliding
window and Weighted N-gram. The proposed
approach is fairly simple in architecture and
outperforms the latest Universal Sentence Encoder
technique [4].

2 Related Work

Sentence similarity has many interesting appli-
cations such conversational agent with script
strategies [1] and the Internet. The recent work
in the area of natural language processing has
contributed valuable solutions to calculate the
semantic similarity between words and sentences.
However, much research has been done on
measuring long text similarity, the computation of
sentence similarity is far from perfect [7, 5, 8]. We
propose to compute sentence similarity between a
very short (1-3 words) and lengthy sentences. Bag
of word cosine similarity does not take care of word
order in a sentence. For example, “Do | not look
good?” and “l do not look good.” will have a 100%
cosine similarity score. For document similarity,
weighted N-Gram over cosine similarity is being
suggested in 3.2.2. We took N-Gram weighting
formula from the paper [3].

The use of unsupervised word embedding
representation of words as vectors, is to preserve
semantic information [10]. The Wordwise sum of
vectors or average of the vectors also produces a

Computacion y Sistemas, Vol. 23, No. 3, 2019, pp. 999-1004

doi: 10.13053/CyS-23-3-3273

vector with the potential to encode meaning. The
mean was used as baseline in [11]. The sum of
word embeddings first considered in [10] for short
phrases, was found to be an effective model for
summarization in [9].

The cosine distance, as is commonly used
when comparing distances between embeddings,
is invariant between sum and mean of word
embeddings. Both sum and mean of word
embeddings are computationally inexpensive,
given the fact that pre-trained word embeddings
are available. Deep learning solutions [12]
handle sentence similarity with variable-length but,
requires a huge chunk of data to train and is
resource heavy to train and maintain.

3 Model Architecture

The proposed methodologies use Word Embed-
dings and Cosine similarity techniques for word
representation and calculating similarity score.

3.1 Word Embedding and Cosine Stacks

Word Embeddings. Word embeddings computed
using diverse methods are basic building blocks
for Natural Language Processing (NLP) and
Information Retrieval (IR). They capture the
similarities between words [2]. And as our
approach is naturally dependent on a word
embedding, we’ve chosen FastText [3] over other
embeddings. Firstly, subword information is
taken into consideration in which each word w
is represented as a bag of character N-gram.
This further signifies that, for previously unseen
words (e.g. due to typos), the model can make
an educated guess towards its meaning, thus
allowing to learn reliable representation for rare
words. Inherently, this also allows you to capture
meaning for suffixes/prefixes. Second, and most
importantly, we notice that the proposed approach
provides very good word vectors even when using
small training datasets.

Cosine Similarity. The cosine similarity
between two vectors (or two sentences on the
Vector Space) is a measure to calculate the cosine
of the angle between them. This metric is a
measurement of orientation and not magnitude. It

ISSN 2007-9737

Sentence Similarity Techniques for Short vs Variable Length Text using Word Embeddings 1001

can be seen as a comparison between sentences
on a normalized space because, we’re not only
taking into consideration the magnitude of each
word count (if-idf) of each document, but also
the angle between the sentences. To obtain the
equation for cosine similarity, we simply rearrange
the equation of dot product between two vectors.

3.2 Approaches

We detail two different methods which are as
follows.

3.2.1 Sliding Window with Average Weighted
Word Vectors

In language, the meaning of the sentence is
reflected by the words in it. Older methods
used the weighted average of word embedding to
represent the sentence and cosine similarity. But,
as we are comparing the similarity between short
and long sentences, doing the weighted average
on a long sentence doesn’t help. Moreover, it
reduces the weight of the main action verb in the
overall representation, which in turn affects the
sentence similarity. To overcome this, we use
the sliding window approach (Fig. 2) on a long
sentence, so that the main action verb weight will
be the same in both inputs.

After applying sliding window on S,, we get a
list of substrings So. For vector representation of
every window, we iterate through the Sy and take
the weighted average of word embedding, to find
the cosine similarity with Sy. The final similarity
score for Sy and S; is taken as the maximum score,
obtained from the window comparisons. In Chatbot
application, False Positive must be very less for
better user experience. We tried the weighted
N-gram approach to further reduce false positives.

3.2.2 Weighted N-gram Vectors

N-grams are consecutive strings of N words, for
example, trigrams are all possible three word long
substrings of a given sentence. To compare
two sentences, the sentences are tokenized into
unigram, bigram and trigram.

For every unigram of sentence Sy, find similarity
with every unigram of sentence S, and select the
maximum score as match score for that unigram.
All the selected unigram scores are averaged over
to get a final unigram score:

N1 Ny
Z maz(similarity(S1U,, SoUy/)),

n=1,n'=1

1
scorep = —
1

N1 = number of unigrams in St,

Ny = number of unigrams in Ss.

Likewise, for every bigram of Sy, find similarity
with every bigram of S, and select maximum score
as match for that bigram. All the selected bigram
scores are averaged over to get a final bigram
score:

N1 N»
Z max(similarity(S1 By, SoBp')),

n=1,n}=1

1

scoreg = —
N

N1 = number of bigrams in Si,
Ny = number of bigrams in Ss.
The final similarity score of the sentences is

taken as the weighted sum of the final similarity
scores of unigrams, bigrams and trigrams:

G
sentence similarity = Z Wgy * SCOTEy,
9=1
where
__ 9
wg — T.
Zg:l g

As discussed in section 3.1, we used cosine
similarity on averaged word embedding to calculate
similarity between N-grams.

Computacion y Sistemas, Vol. 23, No. 3, 2019, pp. 999-1004

doi: 10.13053/CyS-23-3-3273

ISSN 2007-9737

1002 D. Shashavali, V. Vishwjeet, Rahul Kumar, Gaurav Mathur, Nikhil Nihal, Siddhartha Mukherjee, et al.

Sentencel

|

Tokenization
+
Normalization

Word
Embeddings

Semantic Vector

Window Size
I— ;
calculation

Sentence Similarity

Sentence2

Y
Tokenization

+
Normalization

Split sentence
using window

\ size (n+1))

Word
Embeddings

Weighted
average Semantic
Vectors;

Return Max-match score

+* Sentencel is of short-length and Sentence2 is of varied-length

Fig. 2. Sliding window approach

4 Results

Here, we describe the data set, which is a
conversational data found in Chabot builder based
NLP engine environment. We then compare
the 3.1 and 3.2 sections with latest Google’s
Universal Sentence encoder based sentence
similarity approach.

4.1 Dataset

Although, many datasets are accessible, there
are currently no suitable benchmarks (or even
standard text sets) for the evaluation of similarity
between long and short sentences. We release a
dataset ' which is very specific to conversational
agents problem statement. Here, the dataset has
been structured into two columns, first, the long
sentence which imitates user input and second,

Thttps://github.com/shashavali-d/SentenceSimilarity

Computacion y Sistemas, Vol. 23, No. 3, 2019, pp. 999-1004

doi: 10.13053/CyS-23-3-3273

the short sentence which typically resembles the
button text in the chat conversation.

Table 1. Sample test dataset

User Input Button Text
Scrap my order

Junk my order

Drop my order

Display recently viewed items
Open items | just viewed
Show my last seem items

Cancel Order

Show recent items

4.2 Sentence Similarity

A testing instance is a pair of button text and
user input. The similarity score between each
user input and button text is calculated. Based
on similarity score, comparison is categorized as
positive or negative. Comparison between button

ISSN 2007-9737

Sentence Similarity Techniques for Short vs Variable Length Text using Word Embeddings 1003

3
Similarity = Z Wy * Sy,

n=1

Score S;
3

Sentence2

@S> —oo0o®oT 3 m

m™m > —~aoaomoc3m

Sentencel

n
Wn =33 S1 = avg(cy,c,¢3...)

Fig. 3. Weighted N-gram approach

Table 2. Results with our approaches vs Universal
Sentence Encoder

Gooale Sliding
09 Window Weighted
Approaches/ Universal .
. with avg. N-gram
Metrics Sentence .
Weighted Vectors
Encoder
Vectors
Recall 0.0789 0.2593 0.9408
Precision 0.9022 0.6507 0.9226
F1 Score 0.1451 0.3708 0.9316
Accuracy 0.9256 0.9298 0.9880

text and user input is deemed positive, if the
similarity score is above threshold (0.9). Similarly,
the comparison between button text and user input
is deemed negative, if the similarity score is below
the threshold (0.9). We used the performance
metric precision, F1 Score and recall for evaluating
our solution.

Our model outperformed Google’s sentence
similarity in F1 and Recall, see Table 2.

5 Conclusion

In the development stages of Chatbots, the current
bot platforms provided ML solutions and required
large training data from developers. And, the
platform had to manage multiple data perpetually
and the process became complex and expensive
to train the model every time.

In this paper, we propose the sliding window
with average weighted word vectors and Weighted
N-gram vectors for developing the input semantics
vector. The proposed method replaces the
sentence embedding approach with simple word
embedding based sentence representation and
also it doesn'’t need large dataset for training.

We are excited about the execution of our
approaches and will apply the same to other
text classification tasks in the near future. We
plan to improve the word representation using
dependency and constituency parsing information
and also, to apply other vector Similarity method
than cosine, for the betterment of results.

References

1. Allen, J. (1988). Natural Language Understanding.
Benjamin-Cummings Publishing Co., Inc., Redwood
City, CA, USA.

2. Bengio, Y., Ducharme, R., Vincent, P., & Janvin,
C. (2003). A neural probabilistic language model. J.
Mach. Learn. Res., Vol. 3, pp. 1137-1155.

3. Bojanowski, P., Grave, E., Joulin, A., & Mikolov,
T. (2016). Enriching word vectors with subword
information. CoRR, Vol. abs/1607.04606.

4. Cer, D,, Yang, Y., Kong, S., Hua, N., Limtiaco, N.,
John, R. S., Constant, N., Guajardo-Cespedes,
M., Yuan, S., Tar, C., Sung, Y., Strope, B., &
Kurzweil, R. (2018). Universal sentence encoder.
CoRR, Vol. abs/1803.11175.

5. Hatzivassiloglou, V. & Wiebe, J. M. (2000). Effects
of adjective orientation and gradability on sentence
subjectivity. Proceedings of the 18th Conference
on Computational Linguistics - Volume 1, COLING
'00, Association for Computational Linguistics,
Stroudsburg, PA, USA, pp. 299-305.

6. Kusner, M. J., Sun, Y., Kolkin, N. I., & Weinberger,
K. Q. (2015). From word embeddings to document
distances. ICML.

7. Landauer, T. K., Foltz, P. W., & Laham, D.
(1998). An introduction to latent semantic analysis.
Discourse Processes, Vol. 25, No. 2-3, pp. 259-284.

8. Landauer, T. K., Laham, D., Rehder, B., &
Schreiner, M. E. (1991). How well can passage
meaning be derived without using word order:
A comparison of latent semantic analysis and
humans. Proc. of the 19th annual meeting of the

Computacion y Sistemas, Vol. 23, No. 3, 2019, pp. 999-1004

doi: 10.13053/CyS-23-3-3273

ISSN 2007-9737

1004 D. Shashavali, V. Vishwjeet, Rahul Kumar, Gaurav Mathur, Nikhil Nihal, Siddhartha Mukherjee, et al.

10.

11.

12.

Computacion y Sistemas, Vol. 23, No. 3, 2019, pp. 999-1004

. Le, Q. V. & Mikolov,

Cognitive Science Society, Erlbaum, Mawhwah, NJ,
pp. 412-417.

T. (2014). Distributed
representations of sentences and documents.
CoRR, Vol. abs/1405.4053.

Mikolov, T., Sutskever, I., Chen, K., Corrado,
G., & Dean, J. (2013). Distributed representations
of words and phrases and their compositionality.
CoRR, Vol. abs/1310.4546.

Pennington, J., Socher, R., & Manning, C. D.
(2014). Glove: Global vectors for word repre-
sentation. Empirical Methods in Natural Language
Processing (EMNLP), pp. 1532—-1543.

Ramaprabha, J., Das, S., & Mukerjee, P. (2018).
Survey on sentence similarity evaluation using deep

doi: 10.13053/CyS-23-3-3273

13.

14.

learning. Journal of Physics: Conference Series,
Vol. 1000, pp. 012070.

Subramanian, S., Trischler, A., Bengio, Y., & Pal,
C. J. (2018). Learning general purpose distributed
sentence representations via large scale multi-task
learning. International Conference on Learning
Representations.

Yang, Y., Yuan, S., Cer, D., Kong, S., Constant, N.,
Pilar, P., Ge, H., Sung, Y., Strope, B., & Kurzweil,
R. (2018). Learning semantic textual similarity from
conversations. CoRR, Vol. abs/1804.07754.

Article received on 26/02/2019; accepted on 04/03/2019.

Corresponding author is D. Shashavali.

