
Word Embeddings for IoT Based on Device Activity
Footprints

Kushal Singla, Joy Bose, Nitish Varshney

Samsung R and D Institute, Bangalore,
India

{kushal.s, nitish.varshney}@samsung.com, joy.bose@ieee.org

Abstract. With the expansion of IoT ecosystem, there is

an explosion of the number of devices and sensors and
the data generated by these devices. However, the tools
available to analyze such data are limited. Word
embeddings, widely used in the natural language
processing (NLP) domain, provides a way to get similar
words to the current word. In this paper, we extend the
theory of word embeddings to the area of IoT devices,
proposing a method to generate the word embeddings
for IoT devices and sensors in a smart home based on
their activity. We model IoT devices as vectors using a
concept like Word2Vec and App2Vec, where the time
between the device firings is also taken into account.
These computed word embeddings can be used for a
variety of use cases, such as to find similar devices in an
IoT device store, or as a signature of each type of IoT
device. We show results of a feasibility study on the
CASAS dataset and a private real-world dataset of IoT
device activity logs, using our method to identify the
patterns in embeddings of various types of IoT devices
in a household. We get a probability of more than 0.65
for similar types of devices clustering together,
independent of session gap value and embedding vector
size for the CASAS dataset. We also get a probability of
0.4 on the private dataset, independent of session gap
value and embedding vector size.

Keywords. Word2Vec, IoT2Vec, word embeddings,

smart home, internet of things, natural
language processing.

1 Introduction

The Internet of Things (IoT) has grown
exponentially in recent times, with IoT sensors and
devices being used in many real-life use cases
such as smart homes. These sensors generate lots
of data each second.

Analysis of the data generated by the IoT
sensors and devices in a smart home can lead to
valuable insights about the usage habits and the
devices themselves. However, the number of
studies on real-life smart home IoT datasets to get
insights about the device usage patterns is limited.

The popular Word2Vec model [1] provides
ways to generate word embeddings based on the
usage of the words in one or more documents.
Here, an IoT usage log can be considered as a
document, and the logs of a given IoT device within
a given small time window can be treated as
a word. Such word embeddings can be used, for
example, to find similarity between two documents.
App2Vec [2] is a modified adaptation of Word2Vec
for apps based on app behavior, with additional
weightage based on time of firings.

Using an approach like Word2Vec and
App2Vec, we attempt to create embeddings for IoT
devices based on their usage, using data obtained
from the usage logs of the devices. These
embeddings can be used, for example, to find
similar IoT devices for a given device. Such a
model we call IoT2Vec.

In this paper, we describe the generation of
embeddings using some publicly and privately
available IoT datasets and describe some
principles how this can be adapted for different IoT
device usage data. We create a model to take the
device usage data as input, create embeddings for
the devices and identify a new device of the same
type based on similar usage data. There can be
several applications for such a model to create
embeddings and find similar IoT devices.

One application of such a model is to make a
search function to search for similar devices in the

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 1043–1053
doi: 10.13053/CyS-23-3-3276

ISSN 2007-9737

vicinity. Using this method, defective devices can
be replaced based on their function.

If we know the footprint of the IoT device, we
can identify which another device is best suited to
replace it. This can also be used to recommend
similar IoT devices from different vendors, such as
in an online e-store. Another useful application for
such a model is routine disruption due to
faulty/malfunctioning devices, where a
faulty/malfunctioning device in the routine can be
replaced by similar devices in the vicinity. It can
also be used to transfer a given user’s routine from
one location to another in case the user has
changed their home location or gone for an outing
or leisure travel.

An-other common application can be to build a
location classifier based on IoT de-vices in that
location. For example, given that a pub usually has
dim lights, it is likely that another pub will also have
similar light settings. Therefore, knowing the IoT
devices and their footprint in each location, we can
identify the type of location. Another useful
application is routines identification, which is the
primary enabler for automating user’s action in a
smart home.

Automatically identified routines allow users to
control and automate many aspects of a home
without user intervention and without going into
unnecessary hassle of creating home automation
recipe for themselves. Especially for elder persons
living alone at home, it is very difficult as they need
to be aware of their own routine, variations
followed to pursue routine and technical
knowledge of the relevant home automation
devices in home.

The rest of this paper is organized as follows: in
the following section we sur-vey approaches to
current approaches related to identifying similar
IoT devices. Section 3 describes the theory and
method which we use to generate the embeddings.
Section 4 gives the results of our method applied
on public and private IoT datasets, along with
validation and real-life use cases. Section 5
concludes the paper.

2 Related Work

There are a few instances of related work in
applying machine learning to find similar
IoT devices.

Xu [3] proposed a system for searching for and
finding similar IoT devices as a result of user
queries, based on a similarity measures based on
the semantic and other properties of the IoT
objects such as the object location. Kang [4]
suggested various methods to identify correlations
between IoT devices, including attributes such as
location, usage count, sensor list, service name
etc. They also suggested using Word2Vec model
to calculate the adjacency between IoT devices.
However, they did not provide concrete details on
exactly how the vectors would be calculated and
the issues involved when working with
real datasets.

Tian [5] mentioned a mechanism to
automatically collect security related information
from an IoT app. Palit [6] mentioned a system to
identify IoT resource requirements such as sensor
accesses from service descriptions, using NLP
techniques to parse the Android app descriptions
to determine which sensors were required. Hong
[7] used similarity measures between IoT devices
to provide context aware services to users. Truong
[8] proposed a method for searching similar IoT
sensors, computing a similarity score based on
fuzzy sets.

The patent of Derek Lin [21] describes analysis
of device similarity using methods such as principal
components analysis. However, most of these
approaches require prior information about the IoT
devices, such as the parameters needed to
determine similarity. Such prior information might
not be readily available.

Word embeddings have been used for a variety
of use cases including product and item
recommendations [15, 16], similar nodes in a
network [17], and multi-media [18-20]. However,
they have not been applied to determine similarity
for IoT devices as of late. In this paper, we use IoT
sensor or device usage patterns to create the word
embeddings and identify the type of IoT device.
Having such an approach has the advantage of not
needing prior information about the devices, only
their usage data is needed instead.

3 Model for Generation of Word
Embeddings

Most IoT devices are used in certain patterns that
repeat over time. Similar kinds of IoT devices will

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 1043–1053
doi: 10.13053/CyS-23-3-3276

Kushal Singla, Joy Bose, Nitish Varshney1044

ISSN 2007-9737

have similar activity footprints. The IoT device type
can be identified by the pattern of usage.

The time of usage and location of devices also
carries useful information. A model can be trained
to encode this pattern as word embeddings, which
will help to identify the IoT device that has
similar patterns.

3.1 Theory of Word Embeddings for IoT
Devices

In the Word2Vec model [1], a neural network is
trained to map a word to a vector in such a way that
the probability of predicting a word (target) given a
context of words (in CBOW model) is maximized.
The model is trained on a large dataset of
documents, so it is expected to capture all possible
variations and patterns in which the words are
used together. So it aims to maximize the following
log likelihood for all words in the dictionary:

log P(Wi|context) = similarity(Wi|context) /

∑k similarity (Wk|context),
(1)

where Wi is the word vector corresponding to the
ith word, and similarity between vectors is
measured by cosine distance. For example if the
model is trained on the sentence ‘the cat is on the
table’, the aim is to maximize the probability of
predicting ‘cat’ when the following words are
presented to the model ‘the ___ is on the table’. In
the Skip-Gram model, on the other hand, the
objective is to present a word and predict its
surrounding words in a given window (or context
length). So if the word ‘cat’ is presented as input,
the model should learn to predict ‘the, is, on, the,
table’ as output.

In this paper, for IoT devices and sensors, we
aim to create a word vector for each unique IoT
device such that its activity can be predicted given
its context. If sensor 1 fires along with sensor 2 and
3, then given the sensor 2 and 3 firing, the model
should be able to predict sensor 1. In this sense, it
is like the Word2Vec model. We train our model on
a dataset of IoT device activities and hope to
capture the patterns of cooccurring sensor activity
for different types of sensors.

In our approach, we define an IoT device
session sequence as being similar to the app
sequence defined in the App2Vec paper: If D1, D2,

D3 are three IoT devices or sensors in a household,
and g1, g2, g3 etc. are the time gaps between the
transition times of these devices, then an example
usage session can be represented as (D1, g1, D2,
g2, D3, g3, D1, g4, D2).

Here, we define a session as a certain length of
time, say 60 seconds or 600 seconds. We only
consider the transitions of the sensors (OFF to ON
and ON to OFF for binary states, or a defined range
of values for bins in case of sensors like
thermostat) for our purpose. Within a session, the
aggregate activities of all the sensors in sequential
order (D1, D2, D3, D1, D2) is a sentence and the
activity of any single device or sensor (D1) is a
word. After getting the words and sentences for all
the sessions in our dataset, we analyze them to
create the embeddings vectors using the
Word2Vec or App2Vec method.

We have two choices regarding the time gap
between sensor activations (g1, g2, g3):

1. Ignore the time gap and consider only the

order of transitions of devices within a session

(D1, D2, D3, D1, D2) when creating the sentence

and words for the embeddings vector.

2. Consider the time gap and introduce a weight

xt for the context words in the CBOW model,

where t is the time gap in minutes from the

target word and x<1.0 is a similarity factor that

decays with time difference between the

activation of the target device and context

device. The App2Vec model [2] used a similar

weightage concept (with x empirically

determined as 0.8) to determine the similarity

of app usage vectors. The idea is that if two IoT

devices have a small time gap, their vectors

should be more similar than if two devices

have a larger time gap.

3.2 Method to Create a Word Embeddings
Vector for IoT

Using the previously discussed theory, we define
some steps to generate and analyze the word
embeddings from IoT device sensor logs.

Our method includes the following steps:

1. Filter out the IoT sensors whose data is not
meaningful or we cannot make sense of
the data.

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 1043–1053
doi: 10.13053/CyS-23-3-3276

Word Embeddings for IoT Based on Device Activity Footprints 1045

ISSN 2007-9737

2. Examine the activity data of the selected
sensors to see whether it shows meaningful
activity or actions.

3. Extract only the values where the sensor state
is in transition (e.g. ON to OFF or OFF to ON).

4. Build a session of the sensor values (similar to
sentence in NLP domain) by choosing a
session gap. Session gap is the gap of time
where we construct the boundaries of each
session. Within a session, we consider both
the discussed approaches (a) only consider
the order of firings of different devices or
sensors. The exact time gap between firings
within a session is ignored and (b) set a
weightage xt where x<1.0 and t is the time gap
in minutes.

5. Once the sessions are defined, we treat each
session as a sentence and the device Id as a
word. Each sentence will contain a sequence
of IoT device Ids such as (M008, M009, D010)
which is the order of firings of the devices
within the session.

6. Train the Iot2Vec model using the session data
extracted from the dataset. The input to the
training model is the document comprising of
the created sentences in the previous step.
The output of the model is the embedding
vector for each type of sensor or device. We
can select a certain dimension, such as 100,
for the size of the vector embeddings.

7. Compute the similarity between the vector
embeddings of each sensor/device with the
other sensors. Furthermore, we perform
dimensionality reduction and construct a t-
SNE plot for easier visualization of the sensor
activities in terms of contextual similarity, i.e.
which IoT devices or sensors are being
activated together.

8. Visually examine the t-SNE plots to detect
patterns of similarity in the activity data for
each type of IoT device or sensor with
other sensors.Following the above steps, the
embeddings vector of a given device or sensor
type can be generated from its activity logs.

Table 1 shows the algorithm to generate the
word embeddings with and without the weighed
similarity factor.

3.3 Method to Identify the Device Type of a
New or Unknown IoT Devices from its
Usage Logs

The table 2 shows the algorithm for identifying the
device type of a new or unknown IoT sensor or

Table 1. Algorithm to identify the embeddings vector for a

given device

Input: Input: Device activation sequence for the
devices D1, D2, … Dn

Output: Embeddings vector for devices D1, D2,
… Dn

1. Break the device activation sequence into
sessions for a given value of session gap,
considering only device state transitions. The
session represents a sentence.

2. Train a model using CBOW, similar to
word2vec, using the generated
session sequences

3. Once training is completed, the embeddings for
each device are generated

4. Repeat the steps 2-3, using a weighed CBOW
model with weight xt where t is the time gap in
minutes between device activations and x is a
similarity factor <1.

5. exit: end procedure

Table 2. Algorithm to identify device type from activity logs

Input: Stored device embeddings for different
device or sensor types D1 (E1), D2 (E2) etc.

Output: Device type of a new device Di given its
usage data

1. Generate embeddings vector Ej from the usage
data of the new device Dj

2. Compute the similarity of the embedding vector
Ej with each of the stored embedding vectors
E1, E2 …

3. Find the device Di whose similarity value of the
embedding vector Ei with Ej is highest and
above a threshold

4. Define the device type of Dj as equal to the
device type of Di

5. exit: end procedure

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 1043–1053
doi: 10.13053/CyS-23-3-3276

Kushal Singla, Joy Bose, Nitish Varshney1046

ISSN 2007-9737

device from its activity logs, once we have stored
device embeddings of a set of devices. The
principle is to generate the embeddings vector for
the new device and determine which of the stored
embeddings is closest to the generated
embeddings vector.

4 Experimental Details and Results

For our experiments to validate our method and to
explore the possibility of generating embeddings
for IoT devices, we needed one or more datasets
that would provide us with data from multiple IoT
devices in the same locations over a period of time.

For our purpose, we tried several candidate
datasets [9-12] and finally chose a dataset 20 from
the Kyoto dataset list of CASAS [11, 12]. This
dataset has 2 years’ worth of data from a
household consisting of two residents, with various
IoT devices including motion sensors, doors
(fridge, freezer, and microwave), shelves etc. Each
data item consists of the following fields: time,
sensor name, sensor state.

Fig. 1 shows an extract from a layout of a room
in a house in the CASAS Kyoto dataset 20 [11, 12].

We then created word embeddings for various
devices in the dataset for which we have data. We
then used this embeddings to identify the devices.

We analyzed the dataset in Spark and used
Word2Vec to find patterns in the data.

During the preprocessing step, we ignored the
light sensor, gyro sensor and a few others, since
they were firing without any discernible patterns.
We selected the following sensors for analysis:
Motion sensor, door sensor, item sensor, shake
sensor, fan sensor, experimental switch.

We then obtained a sequence of sensor states,
belonging to multiple sensors, ordered by time. We
ignored the actual time of sensor state change and
only noted the sequence.

Our objective, as mentioned earlier, was to
determine the similarity between different sensors
on the basis of their activity.

In our chosen dataset [11, 12], the device D008
is a door sensor corresponding to a freezer door,
where the freezer is located in the kitchen.

The similarity between vector embeddings that
we obtained for this D008 sensor for the 60 second
session gap is as below:

D008 [('M017', 0.49945521354675293),
('M016', 0.48164984583854675),
('MA202', 0.4487079977989197),
('M018', 0.4332207143306732),
('D009', 0.41653889417648315),
('D015', 0.3721662163734436),
('M015', 0.3238069415092468),
('M051', 0.2985246777534485),
('D010', 0.2684941589832306),
('D014', 0.24952027201652527)].

From the above similarity between vector
embeddings, we can derive the same conclusion,
that door sensor D008 is close to motion sensors
M017 and M016 which are in close proximity.

Fig. 1. Extract from the layout of a room in the CASAS

Kyoto dataset [11], showing how some motion sensors
(beginning with M) and doors (beginning with D) are
located close together in the kitchen

Fig. 2. Extract from the t-SNE plot of the activity of

sensors from the CASAS Kyoto dataset [10], using 60
seconds as the interval, showing the contextual
proximity of the motion sensors close to the kitchen
(M015, M016) and door sensors of fridge (D009) and
freezer (D008)

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 1043–1053
doi: 10.13053/CyS-23-3-3276

Word Embeddings for IoT Based on Device Activity Footprints 1047

ISSN 2007-9737

a)

b)

Fig. 3. (a) Extract from the t-SNE plot for Kyoto-20 Dataset (b) Sensor activity for 600 seconds gap. Here, sensors

located near the toilet M038, M039, M040, M041, D006, D005 show similar patterns of activity across session gaps

Fig. 4. Extract from the t-SNE plot of the activity of sensors from the CASAS Kyoto-20 dataset [11], using 600 seconds

as the interval and time decay factor weight xt for x= 0.9 and t being the time gap in multiples of 15 sec, showing the
contextual proximity of the motion sensors close to the toilet (M038 to M041) and door sensor D005

a)

b)

Fig. 5. Extract from the t-SNE plot for Kyoto-11 Dataset of CASAS, with (a) 60 seconds and (b) 600 seconds as the

interval. In both cases we can see the sensors D005, D006, M037 to M040, which are in the toilet area, having
similar activity

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 1043–1053
doi: 10.13053/CyS-23-3-3276

Kushal Singla, Joy Bose, Nitish Varshney1048

ISSN 2007-9737

Examining the figure 2, we see that door sensor
D008 (freezer, located in the kitchen) comes
contextually close to motion sensors M015 and
M016, located close to the kitchen, and the door
sensor D009 of the fridge, also located in the
kitchen. Looking at the layout of the house in fig. 1,
we see that the sensors D008 and D009 are
located in the kitchen and motion sensors M015,
M016, M017 are located close to the kitchen. We
can explain their contextual similarity as follows:
when a person comes into the kitchen, they would
activate the motion sensors close to the kitchen,
after which they would open the fridge and freezer
to get or make some food.

Based on this, we conclude that it is feasible to
identify IoT devices based on their
contextual similarity. In the following subsections,
we analyze a few trends of device activity based
on various parameters.

4.1 IoT Device Activity for a Given Value of
Session Gap, with Time Gap Ignored

In this subsection, we attempt to find some trends
in IoT device activity plotted using the t-SNE
method using our word embeddings computed for
various devices.

First, we determine whether the IoT device
activity across different session gaps shows any
significance. For example, it is possible that when
we choose a small gap such as 10 seconds, device
A and B are close, however when we increase the
time gap to say 600 seconds, device A and C
are close. So, we visually inspect the T-SNE plots
[13] of the activity data to see if that can indeed be
the case, or whether similar devices always
cluster together.

Fig. 3(a) shows the device activity and sensor
locations near the toilet area for a 10 seconds
session gap. On visual inspection, we can see that
motion sensors M039, M040, M041, D006, D005
etc. show correlated activity patterns. This is also
confirmed from a look at the similarity measure of
distance, where the vector embeddings for these
sensors show closest Euclidean similarity between
each other.

Fig. 3(b) shows the same sensors activity for a
600 seconds gap for a session. We see that the
same sensors that were active together for a 10

second session gap are also active for a 600
seconds session gap.

Hence, we conclude that for this choice of
sensors, the proximity of location (all these sensors
are in the toilet area) translates into contextual
proximity as well, regardless of session intervals.
This could be because whenever someone uses
the toilet, the motion sensors and door would
always be triggered together. However, for a
different choice of sensors, this might not be the
case and the timer could be a factor in deciding
which sensors trigger together.

4.2 IoT Device Activity, Weighing for Time
Gaps within a Session

In this subsection, we repeat the previous
experiment for session gap 60 seconds but
weighing for time gaps within a session. We
choose a session gap of 600 seconds, and time
decay factor weight xt for x= 0.9 and t measured in
multiples of 15 seconds. The results are shown in
fig. 4.

We can see that here too we get the same trend
as when ignoring time gaps: the sensors in close
proximity M38 to M41 also show closeness in the
t-SNE plot.

Perhaps repeating the experiment in the future
for a larger time gap (to allow for the distance to be
more pronounced when the sensors fire further
apart) and varying the x and t parameters might
show more interesting observations in trends.

4.3 IoT Device Activity for Varying Datasets
for the Same Sensor Type, with Time Gap
Ignored

In this analysis, we seek to learn if the co activity
of different types of sensors is sustained across
different datasets.

For this experiment, we chose the Kyoto 11
dataset which was part of CASAS [11, 12]. It had
the same layout as the Kyoto 20 dataset that we
used earlier. However, the year the data was
collected is different. The sensors M40, M41, door
sensor D006 are located in the toilet-
cum- bathroom.

As earlier, we plotted the word embeddings for
the sensors with 60 seconds and 600 seconds gap.
The plots are shown in Fig. 5. As we can see, here

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 1043–1053
doi: 10.13053/CyS-23-3-3276

Word Embeddings for IoT Based on Device Activity Footprints 1049

ISSN 2007-9737

too the sensors near the toilet area have similar
activity as before. Although a larger study is
needed, we can postulate from this data that it is
feasible to believe that the patterns of sensor co-
activity as per contextual similarity can hold
across datasets.

4.4 Validation: Probability of Similar Device
Types Clustering Together

In order to validate the usefulness of out IoT2Vec
model to predict similar devices, we also calculated
and plotted the vector similarity of the embedding
vectors of similar devices from other devices of the
same device type. For each unique device, we first
determine the closest device, then determine the
type of the closest device. We compute the ratio of
positive matches Vs the number of total devices
and plot this across different session gap values.
We repeat this experiment with and without the
weighed decay factor, as explained in
earlier sections.

The result is plotted in Fig. 6 for an embedding
size of 300. As we can see, the probability is higher
than 0.65 across session gaps for similar types of
devices clustering together, thus validating our
approach. The session gap of 600 seconds
produced the best results. The probabilities with a
weighed decay factor of 0.9 (where longer time
differences between device activations is
penalized with a decay factor) were higher across
session gaps than the probabilities with no decay
factor, indicating that most device activations
appear close together in time.

Fig. 7 is a plot of the probability when the word
embedding size is varied from 50 to 300, for a
session gap of 600s. As we can see, the choice of
word embedding size does not affect the
probability significantly. Regardless of the
embedding size, we get more than 0.65 probability
that similar types of devices have similar word
embedding vectors.

4.5 Private Dataset Validation: Validating the
IoT2Vec Model on Real Life Use Cases

As part of developing a home automation solution,
our organization has collected smart home
users’ data.

The dataset has 2 weeks’ worth of data, which
has been collected from smart home flats of 17
different users.

These smart homes had a mixture of single
users and couples, with a variety of IoT sensors
and appliances including Monoprice Z-Wave Plus
Door/Window Sensor, Nest Weather, Switch,
Smoke Detector, Smart Plug, TED5000, uDTH,
Arlo Pro Basestation Siren, Evohome Heating
Zone, Camera, Moisture Sensor, Rachio Zone,
Aeon Key Fob, Smart Lock, Samsung SmartCam,
Network Audio, Light, Hue Dimmer Button
Controller AB, Lightwave On Off Device, Weather,
Simulated Contact Sensor, Aeon Minimote, Motion
Sensor, Z-Wave Device Multichannel, Remotec
ZRC-90 Scene Master, Z-Wave Switch Generic,
LAN Hue White Ambiance Bulb, Lightwave
Dimmer Switch, LIFX Color Bulb, Door Bell, Multi-
functional Sensor and Logitech Harmony Hub

Fig. 6. Graph showing the probability of the word

embeddings vectors coming close to the same device
types, for an embedding size of 300, plotted with and
without the decay factor

Fig. 7. Graph showing the probability of the word

embeddings vectors coming close to the same device
types, for a gap of 600 seconds, plotted with and
without the decay factor

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 1043–1053
doi: 10.13053/CyS-23-3-3276

Kushal Singla, Joy Bose, Nitish Varshney1050

ISSN 2007-9737

C2C. In this dataset, the device data is time
ordered and is represented by a sensor event tuple
as follows: <timestamp;masked device id;device
state; device category>

This dataset is more significant than the
previous (public) dataset, since the variety of the
users and the complexity of the devices /
appliances and number of possible device states
is higher. In addition, the home layout is unknown,
so we can only find information on the type of
device along with state transitions, and not where
it is physically situated.

However, our organization has extracted
routines for these users, which are available to us.

Fig. 8 is a plot of the probability when the word
embedding size is varied from 50 to 600, for a
session gap of 600s for the private dataset. We can
see that the embedding size of 500 provides the
best results. We have utilized this dataset to

validate the usefulness of the IoT2Vec model on
real life use cases. One of these real-life use cases
where we applied the solution was identifying
alternative for faulty/malfunctioning devices, which
are part of the user’s routine.

Whenever any device, which is part of the
user’s daily routine, becomes faulty or
malfunctioning, it would lead to the user’s
discomfort. Therefore, there is a need to find an
alternative device, which can be used to act as a
replacement of malfunctioning device. To evaluate
the usefulness of our IoT2Vec model in this case,
we tried to identify the replacements for devices
(randomly assuming one of the devices are
faulty/malfunctioning) in user’s routine. For each
user routine, we first randomly choose a device
and assume it is faulty. Then we try to identify
contextually similar top-K devices to the
faulty device.

The identified contextually similar device is
plugged into the unmodified user routine and
provided to the routine identification team for
evaluation. The assumption here is that using the
modified routine (with the replacement device), the
user should be able to perform his or her daily
tasks, which the same user was originally
performing using unmodified routines, without
any discomfort. Fig. 9 is a plot of the probability of
minimizing user discomfort in case of routine
disruption by providing a new user routine after
replacing faulty/malfunctioning device with top-
k alternatives.

As we can see, the probability of minimizing
user discomfort increases with the increase in the
number of closest devices matched for similar
type. However, after closest devices is set to 3, it
does not increase any further. This is because for
some devices such as a refrigerator, the user does
not have alternate devices in the house which can
be used as replacements in case of some fault in
the original device.

5 Conclusion

We have proposed a method to generate word
embeddings for IoT devices, based on their usage
patterns. We showed that IoT devices in similar
areas in a given household can be found to have
similar usage patterns. We get a probability of at

Fig. 8. Graph showing the probability of the word

embeddings vectors coming close to the same device
types, for an embedding size of 50 to 600, plotted with
the decay factor, for the private dataset

Fig. 9. Graph showing the probability of minimizing user

discomfort in case of Routine Disruption, for the private
dataset. The X axis plots K, where the top K similar
devices are identified, and Y axis plots the probability of
minimizing user discomfort

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 1043–1053
doi: 10.13053/CyS-23-3-3276

Word Embeddings for IoT Based on Device Activity Footprints 1051

ISSN 2007-9737

least 0.65 similar types of devices clustering
together regardless of the session gap or word
embedding size chosen. We found that the session
gap does not affect the similarity, whereas using a
decay factor showed a higher value of clustering
similarity. Thus, it is feasible to recognize IoT
devices based on the embeddings.

In future, we plan to focus on smart city
scenarios. We plan to build a location classifier
based on IoT devices used in that location and
embedding similarity could capture the location
type. We also plan to focus on activity generated
by smart fridge and TV, to get higher level
understandings of the patterns.

We also plan to generate routines using the
IoT2Vec model. In such a scenario, rather than
creating a word vector for each unique IoT device,
we will generate sentence vectors using
Sentence2Vec [22] for each session. Further,
clustering could be utilized to identify recurring
patterns in the data. Then, routines can be
generated from each segment cluster using
CLIQUE [23]. Another such routine generation
approach we plan to evaluate is by Chanda et. al
[24] who used NLP techniques such as language
modeling to recommend routines.

References

1. Mikolov, T., Chen, K., Corrado, G., & Dean, J.
(2013). Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781.
pp. 1–12.

2. Ma, Q., Muthukrishnan, S., & Simpson, W.
(2016). App2vec: Vector modeling of mobile apps
and applications. IEEE/ACM International
Conference on Advances in Social Networks
Analysis and Mining (ASONAM), pp. 599–606. DOI:
10.1109/ASONAM.2016.7752297.

3. Xu, W. (2015). Modeling and exploiting the
knowledge base of web of things. Ubiquitous
Computing. Université Pierre et Marie Curie -
English. ffNNT : 2015PA066009ff.

4. Kang, H., Kim, M., Kwon, S., & Kim, N.S. (2016).

A Design of IoT Device similarity vector based
workflow management system. International
Conference on Information and Communication
Technology Convergence (ICTC), pp. 1036–1038.
DOI: 10.1109/ICTC.2016.7763361.

5. Tian, Y., Zhang, N., Lin, Y.H., Wang, X., Ur, B.,
Guo, X., & Tague, P. (2017). Smartauth: User-

centered authorization for the internet of things.
26th USENIX Security Symposium, pp. 361–378.

6. Palit, A., Srivatsa, M., Ganti, R., & Simpkin, C.
(2017). Identifying sensor accesses from service
descriptions. IEEE International Conference on Big
Data (Big Data), pp. 3006–3011. DOI:
10.1109/BigData.2017.8258271.

7. Hong, I. & Lee, Y. (2016). Key-Device based place

recognition using similarity measure between IoT
spaces. IEEE International Conference on Smart
Computing (SMARTCOMP), pp. 1–5. DOI: 10.1109/
SMARTCOMP.2016.7501701.

8. Truong, C., Römer, K., & Chen, K. (2012). Sensor

similarity search in the web of things. IEEE
International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM), pp.
1–6. DOI: 10.1109/WoWMoM.2012.6263791.

9. NOAA (2018). http://tidesandcurrents.noaa.gov/

gmap3

10. Intel lab (2018). http://db.csail.mit.edu/labdata/
labdata.html

11. WSU Casas (2018). http://ailab.wsu.edu/casas/
datasets/

12. Cook, D.J., Crandall, A.S., Thomas, B.L., &
Krishnan, N.C. (2013). CASAS: A Smart Home in

a Box. Computer, Vol. 46, No. 7, pp. 62–69.
DOI:10.1109/MC.2012.328.

13. Maaten, L.V.D. & Hinton, G. (2008). Visualizing
data using t-SNE. Journal of machine learning
research, pp. 2579–2605.

14. Singla, K. & Bose, J. (2018). IoT2Vec:

Identification of Similar IoT Devices via Activity
Footprints. International Conference on Advances
in Computing, Communications and Informatics
(ICACCI), pp. 198–203. DOI: 10.1109/ICACCI.
2018.8554398.

15. Vasile, F., Smirnova, E., & Conneau, A. (2016).

Meta-prod2vec: Product embeddings using side-
information for recommendation. 10th ACM
Conference on Recommender Systems, pp. 225–
232. DOI: 10.1145/2959100.2959160.

16. Ozsoy, M.G. (2016). From word embeddings to
item recommendation. arXiv preprint
arXiv:1601.01356.

17. Grover, A. & Leskovec, J. (2016). node2vec:
Scalable feature learning for networks. 22nd ACM
SIGKDD International Conference on Knowledge
discovery and data mining, pp. 855–864. DOI:
10.1145/2939672.2939754.

18. Wang, D., Deng, S., Liu, S., & Xu, G. (2016).

Improving music recommendation using distributed
representation. Proceedings of the 25th International
Conference Companion on World Wide Web

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 1043–1053
doi: 10.13053/CyS-23-3-3276

Kushal Singla, Joy Bose, Nitish Varshney1052

ISSN 2007-9737

(WWW) Conference, pp. 125–126. DOI:
10.1145/2872518.2889399.

19. Habibian, A., Mensink, T., & Snoek, C.G. (2016).

Video2vec embeddings recognize events when
examples are scarce. IEEE transactions on pattern
analysis and machine intelligence, Vol. 39, No. 10,
pp. 2089–2103. DOI: 10.1109/TPAMI.2016.
2627563.

20. Klein, B., Lev, G., Sadeh, G., & Wolf, L. (2015).

Associating neural word embeddings with deep
image representations using fisher vectors. IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 4437–4446.

21. Lin, D., Kaufman, A., & Villa, Y. (2016). Patent and
Trademark Office.

22. Le, Q. & Mikolov, T. (2014). Distributed

representations of sentences and documents.

International conference on machine learning, pp.
1188–1196.

23. Dehghan, A., Modiri-Assari, S., & Shah, M.
(2015). Gmmcp tracker: Globally optimal

generalized maximum multi clique problem for
multiple object tracking. IEEE Conference on
Computer Vision and Pattern Recognition, pp.
4091–4099.

24. Chanda, P.K., Varshney, N., & Subash, A. (2017).

Applications of Natural Language Techniques in
Solving SmartHome Use-Cases. Natural Language
Processing and Information Systems (NLDB),
pp. 214–217

Article received on 25/01/2019; accepted on 04/03/2019.
Corresponding author is Kushal Singla.

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 1043–1053
doi: 10.13053/CyS-23-3-3276

Word Embeddings for IoT Based on Device Activity Footprints 1053

ISSN 2007-9737

