
Comparison of the Response Times of MongoDB and
PostgreSQL According to Type of Query in

Geographical Databases

Marlen Treviño Villalobos, Leonardo Víquez Acuña, Rocío Quirós Oviedo

Instituto Tecnológico de Costa Rica,
Costa Rica

{mtrevino, lviquez, rocio.quiros}@tec.ac.cr

Abstract. A hybrid and distributed geographical

database is being developed which utilizes the
database engines PostgreSQL and MongoDB for later
implementation in Geoserver’s architecture. In the
course of the study, it was necessary to establish
whether there was difference between the response
times of PostgreSQL and MongoDB per type of query
and the use of geographical indexes, in order to
appropriately select the Database Management System
to be used by the Geoserver implemented Web Map
Service. After a statistical analysis with 11 different
types of query, the conclusion was that the type of query
affects the response time of the Database
Management Systems.

Keywords. Performance evaluation, SQL, relational

database, NoSQL.

1 Introduction

The demand for geographical information has
grown considerably in recent years [1] and citizens
are among the main generators of this
geographical explosion [2]. While using it, users
also participate actively in the generation of
geographical data, in the sense that most people
have currently become a mobile sensor that
registers and records large volumes of data that
require higher computing capability and more
advanced and efficient processing and analyzing
methods [3].

As a response to the issue raised above, work
has been conducted on producing hybrids between
the relational (SQL) and non-relational (NoSQL)
database paradigms [4]. Hybrid databases work as

an abstraction layer over SQL and
NoSQL databases [5].

Currently, a hybrid and distributed database
that uses PostgreSQL and MongoDB database
engines is being developed for future
implementation in the Geoserver base architecture
[6] to evaluate whether this modification enhances
its performance. However, while developing the
project, it became necessary to establish if there
was any difference in the response times of
PostgreSQL and MongoDB, according to the type
of query and use of geographical indexes. The aim
was to choose appropriately the DBMS (Data Base
Management System) to be employed by the Web
Map Service (WMS) implemented by Geoserver.

Since PostgreSQL was one of the first
databases to address spatial issues, we selected it
to construct the hybrid and distributed database
[7]. PostgreSQL’s extension, PostGIS, [8], is highly
optimized for spatial queries [3] and its large
quantity of spatial functions make it relevant for this
research project. On the other hand, there are
currently over 225 NoSQL databases [9] with only
a reduced number supporting geographical data
operations, among which Neo4j, CouchDB,
MongoDB [10] and ArangoDB outstand in this
area. We chose MongoDB because, to date, it was
the only document-based NoSQL database that
supports line intersection and point containment
queries [3].

Lastly, both are open code DBMS and
Geoserver gives them support because in its
version 2.11.4, Geoserver [6] included a data
connexion and publication component
from MongoDB.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1461–1469
doi: 10.13053/CyS-24-4-3292

ISSN 2007-9737

mailto:mtrevino,%20lviquez,%20rocio.quiros%7d@tec.ac.cr

One of the main motivations that led us to
conduct this research was the scarce number of
works comparing PostgreSQL’s and MongoDB’s
performance. Among these works, there are [11]
and [12], which focus on comparing the
performance in the operations insert, select,
update and delete. The study of [6] also focuses on
comparing geographical queries using synthetic
data. However, although the synthetic data usually
favor the evaluation of queries regarding numeric
and string characters, the synthetic geometries
generated differ from real-world data, because the
randomness of the generator can produce too-
square polygons and unnatural landforms [13].

Another work analyzes geographical queries
using real data [13], but it focuses on analyzing
PostgreSQL, MongoDB and Neo4j. Finally, [14]
published the basis for the present article, with the
restriction that its analysis was based on
descriptive statistics. Here, this analysis is
improved by carrying out a statistical analysis that
uses real spatial data corresponding to the Huetar
Norte Region of Costa Rica, focusing only in
evaluating the query operation and both DBMS
of interest.

In this work, eleven types of queries were
analyzed, using or not the geographical index. The
results obtained allow us to conclude that the type
of query influences the response time of
both DBMS.

2 Methodology

2.1 Approach

The present research applied a quantitative
approach that permits the assessment of DBMS
response times in data processing in eleven
different reading operations.

2.2 Type and Level of the Investigation

This was an experimental study. Experiments to
obtain the data were conducted in the laboratory.
In addition, it is a prospective research from the
point of view of data collection planning, as the
data were obtained specifically for this article.
Moreover, because of the number of times the
variable was measured, this is a longitudinal study,

with eleven query types with two thousand
requests analyzed for each DBMS. The study is
also analytical, since the behavior of the DBMS
was analyzed in order to detect possible
relationships between them. Lastly, it is an
explanatory research aimed at establishing cause-
effect relationships between the variables
analyzed based on the results obtained through
the experiment.

2.3 Collection of Information

Valid SQL queries were defined and executed on
MongoDB and PostgreSQL DBMS using
equivalent databases, in order to evaluate the
compatibility of different DBMS by comparing the
results obtained [15]. Eleven database queries
were generated, with different access patterns and
levels of complexity, related to geographic
information. The aim was to evaluate the behavior
of the engines in simple data recovering
transactions, as well as in filter application and
geographical processing.

Next, each query was executed with 2000
requests and all measurements were executed 10
times, aiming at minimizing the response time
variations caused by the process allocation of the
operating system. The queries utilized in the tests
developed are described in Table 1.

The tool JMeter was used for data collection
[16]. JMeter allows the measurement of the
behavior of the DBMS, according to the process
described above. This application has a simple
graphical user interface that offers ample load
generation capability, is open code and
implemented in Java [17].

Likewise, it is an environment that allows
controlling the variables, that is, the operations are
designed and managed by the testing team and
the database used corresponds to a real project
data sample. The component Summary Report,
provided by the tool, was used to visualize and
evaluate the test results in a table. The data this
component shows are [18]:

– Label: sample label.

– #Samples: number of threads used.

– Average: average response time in
milliseconds for a set of results.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1461–1469
doi: 10.13053/CyS-24-4-3292

Marlen Treviño Villalobos, Leonardo Víquez Acuña, Rocío Quirós Oviedo1462

ISSN 2007-9737

Table 1. Types of queries

Query number Type of query Description

Query 1
Basic retrieval of the
geographic table

Selects all the attributes of the towns (type of geographic data: points).

Query 2
Information retrieval using the
function within

This is a geographic query that uses the function within. First, it determines
the delimiting square of the geometry by using the R tree index, then it loads
the geometry. This approach improves performance greatly [24]. That is, it
takes two geometries as entry parameters and returns the number one if the
first geometry is within the second one. Specifically, two towns are selected
(geometry: points) that are within the district of Florencia (geometry: polygon).

Query 3
Information retrieval with
condition on clause where

Selects all the attributes of the San Carlos districts data set (geometry:
polygon). The aim of including conditions in the where clause in an SQL query
is to filter those tuples that meet certain characteristics represented by those
conditions [25].

Query 4
Information retrieval using the
intersect function between two
geometries of the type polygon

The intersect function returns a geometry that represents the intersection of
the set of points of the geometries [26].
The query specifically selects the districts that intersect the protected area of
Arenal.

Query 5
Information retrieval using the
functions within and intersect

Selects the touristic attractions (geometry: points) found in the districts
(geometry: polygons) that intersect the protected area of Arenal

Query 6
Information retrieval using the
near function

Given a point in a geospatial query, the near function in MongoDB returns the
documents from the closest to the furthest. The $near operator can specify a
GeoJSON point or an inherited coordinate point [27]. The restriction of this
function is that it necessarily requires the use of a geospatial index. In the case
of PostgreSQL, the equivalent function is ST_DWithin, which delivers true if
the geometries are within the specified distance between them [26]. It uses
indexes if available. In addition, the data should be ordered by distance by
means of the ST_Distance function. It selects the towns (geometry: points)
that are located 0.10 meters from the town of Quesada ordered from greatest
to least distance.

Query 7
Information retrieval using the
intersect function between two
geometries of the type line

Selects all the roads that intersect a specific river

Query 8

Information retrieval using the
intersect function between a
line-type geometry and a
polygon-type geometry

Selects all the rivers (geometry: line) that intersect the district of Quesada
(geometry: polygon).

Query 9

Information retrieval using the
intersect function between a
point-type geometry and a
polygon-type geometry

Selects all the towns (geometry: point) that intersect the district of Florencia
(geometry: polygon).

Query 10

Information retrieval using the
intersect function between a
point-type geometry and a
line-type geometry

Selects all the rivers (geometry: line) that intersect a specific town (geometry:
polygon).

Query 11
Information retrieval using the
intersect function between two
point-type geometries

Selects all the touristic attractions that intersect a specific town

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1461–1469
doi: 10.13053/CyS-24-4-3292

Comparison of the Response Times of MongoDB and PostgreSQL According to Type of Query... 1463

ISSN 2007-9737

– Max: maximum time it takes to a thread to
access a page.

– Performance: measured performance of the
requirements per second/minute/hour.

– Kb/sec: measured performance in Kilobytes
per second.

– Mean in bytes: mean response size of the
server (in bytes).

The data set used for test execution
corresponded to the Huetar Norte Region in Costa
Rica and included the geometric structures based
on points, lines or polygons that correspond to
vector data. For this, six files (shapefile) were
selected [19] from the web site IDEHN
(Infraestructura de Datos Espaciales de la Región
Huetar Norte) [20].

These are: Caminos de Costa Rica; Ríos de la
Región Huetar Norte de Costa Rica, which are
represented as lines; Poblados de la Región
Huetar Norte de Costa Rica and Atractivos
turísticos de Costa Rica, which correspond to
points, and Distritos de la Región Huetar Norte de
Costa Rica and Áreas Silvestres Protegidas de
Costa Rica, which appear as polygons. Then,
these geographic data layers were converted to
GeoJSON format [21] by means of the QGIS tool
[22]. In both DBMS, the data layers were used with
the coordinate reference system WGS84 [23]
associated to SRID (Spatial Reference System
Identifier) number 4326. Next, the data were
manually uploaded to each DBMS, so the data had
to be read, processed and stored on a data disk.

The river layer contains 204152 geographical
records; the road layer, 222965; the town layer,
200662; attractions, 100509; districts, 10037 and
protected areas, 533 geographical records.

2.4 Test Environment

All tests were performed using an Intel core i7
processor machine with the Ubuntu 16.04 LTS 64-
bit operating system with 16 GB RAM. The DBMS
versions are MongoDB Server 3.4.10 [28], and
PostgreSQL 9.6 [7].

The tool Apache JMeter 3.2 was used for
performance evaluation and comparison [16]. The
drivers used for connection with each DBMS were:
PostgreSQL 42.1.4 JDBC, MongoDB 2.11.3 Java.

2.5 Statistical Analysis

The analysis was performed per type of query,
evaluating for each case the criterion of normality,
using the Anderson-Darling statistical test, see [29]
and [30], and the homogeneity of variance, by
means of the Levene test, for the quantitative
variable response time. These tests represented
input for performing the combined analysis of
variance (ANOVA) of a factor for independent
samples, per DBMS and type of query.

Lastly, the descriptive statistics were calculated
for the response time per DBMS and type of query.
All the tests were verified at α=0.05
significance threshold.

3 Results and Discussion

Queries 1 and 3 were executed without
geographical index only, either because of their
simplicity or because a sequential search of the
table is performed.

Query 6 was executed with geographical index
only, because MongoDB does not allow the
execution of the near function without using this
data structure.

Based on the characteristics of the hardware
used and the excessive response time, queries 4,
5, 7 and 8, which involved the intersection of
polygons with polygons; an intersect with a within;
intersection of lines with lines and lines with
polygons, which could not be executed in none of
the DBMS, without utilizing a geographical index.
Queries 5 and 8 could not be executed in
MongoDB using a geographical index either.
Finally, query 10 could not be executed in
MongoDB without geographical index.

3.1 Queries without Geographical Index

Query 1

For query 1, the quantitative variable response
time for the DBMS MongoDB and PostgreSQL was
normal, with p-values of 0.6464 and 0.5232,
respectively. As for the variance homogeneity, the
p-value was 0.1217. In the ANOVA (see Table 2),
the p-value calculated for the DBMS was lower
than the level of significance, therefore the null

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1461–1469
doi: 10.13053/CyS-24-4-3292

Marlen Treviño Villalobos, Leonardo Víquez Acuña, Rocío Quirós Oviedo1464

ISSN 2007-9737

hypothesis of equal means was rejected and the
existence of significant differences in the response
times between the DBMS was admitted. In
addition, figure 1 shows that MongoDB’s response
time was lower than PostgreSQL’s.

Query 2

The response time for query 2 behaved normally
with a p-value of 0.1414 for MongoDB and of
0.1565 for PostgreSQL. The data showed
homogeneity of variances with a p-value of 0.4483.
Significant differences in response times between
the DBMS were determined through the ANOVA
(see Table 2). Similarly, figure 1 shows that
PostgreSQL’s response time was lower than
MongoDB’s.

Query 3

The response time in query 3 meets the
assumption of normality, because the p-value
calculated was of 0.3464 for MongoDB and of
0.1724 for PostgreSQL. Likewise, the
homogeneity of variances between the two groups
was corroborated, with a p-value of 0.1036.

Through the ANOVA (see Table 2), significant
differences were determined in the response times
between the DBMS. Figure 1 shows that
MongoDB’s mean response time was lower than
PostgreSQL’s.

Query 9

The response time data in query 9 were normal
with a p-value of 0.2911 for MongoDB and of
0.3835 for PostgreSQL. The Levene test for
equality of population variables was statistically
significant with p-value of 0.2714.

The response times of MongoDB and
PostgreSQL were compared through the ANOVA
(see Table 2) and significant differences were
revealed. Figure 1 shows that PostgreSQL
presented lower response time than MongoDB.

Query 11

The criterion of normality was satisfied with a p-
value of 0.2005 for MongoDB and of 0.5052 for
PostgreSQL. Both groups evaluated complied with
the homogeneity of variance with a p-value of
0.2341. The DBMS showed significantly different
response times, which can be corroborated with
the ANOVA results in Table 2. Figure 1 shows that
MongoDB’s mean response time was lower than
PostgreSQL’s.

3.2 Queries with Geographical Index

Query 2

The quantitative variable response time showed
normal behavior. For the DBMS MongoDB, p-value

Table 2. ANOVA for response time without geographical index

Dependent variable: Response time

 Sum of squares DF F Pr(>F)

DBMS – Query 1 154708 1 52194 <2e-16

Residual – Query 1 53 18

DBMS – Query 2 746544 1 48030 <2e-16

Residual – Query 2 280 18

DBMS – Query 3 6321894 1 5576884 <2e-16

Residual – Query 3 20 18

DBMS – Query 9 1744101 1 3383 <2e-16

Residual – Query 9 9280 18

DBMS – Query 11 1345311 1 176099 <2e-16

Residual – Query 11 138 18

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1461–1469
doi: 10.13053/CyS-24-4-3292

Comparison of the Response Times of MongoDB and PostgreSQL According to Type of Query... 1465

ISSN 2007-9737

was of 0.0765 and for PostgreSQL, the p-value
was 0.1512. As for homogeneity of variance, the p-
value was 0.4909.

According to the variance analysis (Table 3) the
null hypothesis of equal means was rejected, and
significant differences between the response times
of both DBMS were accepted. Figure 2 shows that
PostgreSQL had lower response time
than MongoDB.

Query 4

The normality test produced a p-value of 0.8479 for
MongoDB and of 0.2873 for PostgreSQL, therefore
the null hypothesis was accepted. In like way, the
hypothesis of homogeneity of variance was
accepted with a p-value of 0.1610. The ANOVA
results (see Table 3) led to the conclusion that
there were significant differences in the response
times between both DBMS. The average response
time for PostgreSQL is lower than for MongoDB
(see figure 2).

Query 6

Both MongoDB’s and PostgreSQL’s response
times present normality, with p-values of 0.6549
and 0.1461, respectively. In addition, these two

groups of data present variance equality with a p-
value of 0.1376.

A significant difference in the response times
between both DBMS can be deduced from Table
3. Figure 2 shows that the mean response time of
MongoDB is lower than for PostgreSQL.

Query 7

With a p-value of 0.1570 for MongoDB and 0.1134
for PostgreSQL, the response time for both DBMS
was catalogued as normal. The data presented
homogeneity of variance with a p-value of 0.8876.
The ANOVA (see Table 3) led to reject the null
hypothesis of equal means for there was a
significant difference between the times responses
of MongoDB and PostgreSQL.

Figure 2 shows that PostgreSQL presented
lower response time.

Query 9

The criterion of normality test for the response
times of MongoDB and PostgreSQL produced p-
values of 0.9338 and 0.1367, respectively,
meaning that the DBMS satisfied this criterion. The
homogeneity of variance test was also accepted
with a p-value of 0.1078. The analysis of variance
(see Table 3) revealed a significant difference in

Table 3. ANOVA for the response time with geographical index

Dependent variable: Response time

 Sum of squares DF F Pr(>F)

DBMS – Query 2 154708 1 52194 <2e-16

Residual – Query 2 53 18

DBMS – Query 4 746544 1 48030 <2e-16

Residual – Query 4 280 18

DBMS – Query 6 6321894 1 5576884 <2e-16

Residual – Query 6 20 18

DBMS – Query 7 20161706 1 6585004 <2e-16

Residual – Query 7 55 18

DBMS – Query 9 7337813 1 144684 <2e-16

Residual – Query 9 913 18

DBMS – Query 10 29084 1 4497 <2e-16

Residual – Query 10 116 18

DBMS – Query 11 1050557 1 242507 <2e-16

Residual – Query 11 78 18

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1461–1469
doi: 10.13053/CyS-24-4-3292

Marlen Treviño Villalobos, Leonardo Víquez Acuña, Rocío Quirós Oviedo1466

ISSN 2007-9737

the response times of both DBMS and figure 2
shows PostgreSQL’s response time is lower than
MongoDB’s.

Query 10

Normality of the variable was verified for each
DBMS; p-value was 0.1307 for MongoDB and
0.6134 for PostgreSQL. Similarly, homogeneity of
variance of the two groups analyzed was
demonstrated with a p-value of 0.2803. Table 3
indicates a significant difference between the
response times of both DBMS, where PostgreSQL
had the lowest response time.

Query 11

The response time satisfied the normality
assumption, for p-value was of 0.1131 for
MongoDB and of 0.1640 for PostgreSQL.
Homogeneity of variances between both groups
was demonstrated, obtaining a p-value of 0.2038.

A significant difference in the response times of
the DBMS was determined through the ANOVA
(see Table 3). Figure 2 shows that MongoDB’s
mean response time was lower than
PostgreSQL’s.

4 Conclusions

Based on the response time, using the MongoDB
DBMS is preferable when the types of query to be
executed have a non-geographic descriptive data
filtering or their return implies a sequential scan of
the table. It is also preferable when the query
requires a single geographic processing between
point-type geometries in intersect or near
functions, as applicable.

The use of PostgreSQL is recommended for
higher level processing queries involving intersect
or within functions and the combination of both.

Fig. 1. Average response time without

geographical index per number of query according
to the DBMS

Fig. 2. Average response time with geographical index per

query number according to the DBMS

0.19

0.99
1.13

1.52

0.60

0.01

1.90

0.01

2.11

0.08

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1 2 3 9 11

A
v
e

ra
g

e
 r

e
s
p

o
n

s
e

 t
im

e
 i
n

 t
h

o
u

s
a

n
d

s

Query number

Average response time without
geographical index per query number

according to the DBMS

PostgreSQL MongoDB

1.4

1.9

0.4
0.7

1.0

3.5

0.6

1.8

6.6

0.4

2.7

2.2

3.5

0.1

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

2 4 6 7 9 10 11
A

v
e

ra
g

e
 r

e
s
p

o
n

s
e

 t
im

e
 i
n

 t
h

o
u

s
a

n
d

s

Query number

Average response time with geographical
index per query number according to the

DBMS

PostgreSQL MongoDB

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1461–1469
doi: 10.13053/CyS-24-4-3292

Comparison of the Response Times of MongoDB and PostgreSQL According to Type of Query... 1467

ISSN 2007-9737

PostgreSQL is also recommended for more
complex types of geographic data, such as lines,
polygons and their variations, and in the
implementation of geographic operation queries
supported by this DBMS only.

Currently, there are some limitations on the use
of NoSQL databases over the SQL databases,
since the geo-functions implemented in the SQL
databases only admit basic operations, while the
relational databases offer greater variety [31].

According to this research, to choose which
DBMS is to be used for certain queries, multiple
variables should be evaluated, such as: type of
geometry, size of the geographical data, type of
query, use and type of geographical index.

We intend to deepen this study in the future with
the implementation of other types of geographical
indexes involving enhanced use of the resources,
and also determine when to use a DBMS in
function of the size of the geographical data.

References

1. Moreno-Jiménez, A. (2004). Nuevas tecnologías

de la información y revalorización del conocimiento
geográfico. Scripta Nova: Revista Electrónica de
Geografía y Ciencias Sociales, Vol. 8, No. 170

2. Ruiz, E. (2010). Consideraciones acerca de la

explosión geográfica: Geografía colaborativa e
información geográfica voluntaria acreditada,
GeoFocus. Revista Internacional de Ciencia y
Tecnología de la Información Geográfica, No. 10,
pp. 280–298.

3. Agarwal, S. & Rajan, K.S. (2016). Performance

analysis of MongoDB versus PostGIS/PostGreSQL
databases for line intersection and point
containment spatial queries. Spatial Information
Research, Vol. 24, pp. 671–677. DOI:10.1007/

s41324-016-0059-1

4. Colorado-Pérez, M.A. (2017). NoSQL, ¿es
necesario ahora?. Tecnología Investigación Y
Academia, Vol. 5, No. 2, pp. 174–179.

5. Goyal, S., Srivastava, P.P., & Kumar, A. (2015).

An overview of hybrid databases. International
Conference on Green Computing and Internet of
Things, pp. 285–288. DOI:10.1109/ICGCIoT.2015.
7380474.

6. The PostgreSQL Global Development Group
(2018). PostgreSQL 10.3 Released! The World's
Most Advanced Open Source Database.
https://www.postgresql.org/.

7. PostGIS. (2018). PostGIS—Spatial and
Geographic Objects for PostgreSQL.

8. NoSQL. (2018). http://nosql-database.org.

9. Ramírez-Arévalo, H.H. & Herrera-Cubides, J.F.
(2013). Un viaje a través de bases de datos

espaciales NoSQL. Redes de Ingeniería, Vol. 4, No.
2, pp. 57–69. DOI: 10.14483/2248762X.5923.

10. Jung, M.G., Youn, S.A., Bae, J., & Choi, Y.L.
(2015). A Study on Data Input and Output

Performance Comparison of MongoDB and
PostgreSQL in the Big Data Environment. 8th
International Conference on Database Theory and
Application (DTA), pp. 14–17. DOI:10.1109/DTA.
2015.14.

11. Politowski, C. & Maran, V. (2014). Performance
entre PostgreSQL e MongoDB, X Escola Regional
de Banco de Dados. pp. 1–10.

12. Santos, P.O., Moro, M.M., & Davis, C.A. (2015).

Comparative Performance Evaluation of Relational
and NoSQL Databases for Spatial and Mobile
Applications. Chen Q., Hameurlain A., Toumani
F., Wagner R., Decker H. (eds). Database and
Expert Systems Applications. Globe´15, DEXA´15.

Lecture Notes in Computer Science, Vol. 9261.
DOI:10.1007/978-3-319-22849-5_14.

13. Orellana-Cordero, M., Vele-Zhingri, C.A. (2018).
Análisis de rendimiento para bases de datos
geográficas: PostgreSQL vs MongoDB. de
COMPDES.

14. Slutz, D.R. (1998). Massive stochastic testing of

SQL. 24th Very Large Data Base Conference
(VLDB).

15. Apache Software Foundation. (2017). Apache
JMeter. http://jmeter.apache.org/.

16. Patel, B., Parikh, J., & Shah, R. (2014). A Review

Paper on Comparison of SQL Performance
Analyzer Tools: Apache JMeter and HP
LoadRunner. International Journal of Current
Engineering and Technology, Vol. 4, No. 5, pp.
3642–3645.

17. Díaz, F.J., Banchoff-Tzancoff, C.M., Rodríguez,
A.S., & Soria, V. (2008). Usando Jmeter para
pruebas de rendimiento. XIV Congreso Argentino
de Ciencias de la Computación.

18. ESRI. (1998). Shapefile Technical Description.

ESRI White Paper.

19. Instituto Tecnológico de Costa Rica. (2017). IDE

Región Huetar Norte. http://www.idehn.tec.ac.cr/.

20. Butler, H., Daly, M., Doyle, A., Gillies, S., Schaub,
T., & Schmidt, C. (2008). The GeoJSON format
specification. Rapport Technique, pp. 67.

21. QGIS. (2018). Bienvenido Al Proyecto QGIS!.

http://www.qgis.org/es/site/.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1461–1469
doi: 10.13053/CyS-24-4-3292

Marlen Treviño Villalobos, Leonardo Víquez Acuña, Rocío Quirós Oviedo1468

ISSN 2007-9737

https://doi.org/10.1007/s41324-016-0059-1
https://doi.org/10.1007/s41324-016-0059-1

22. Mongodb. (2018). Geospatial Queries - MongoDB
Manual 3.6. https://docs.mongodb.com/manual/

geospatial-queries/.

23. Schmid, S., Galicz, E., & Reinhardt, W. (2015).

WMS performance of selected SQL and NoSQL
databases. International Conference on Military
Technologies, pp. 1–16. DOI:10.1109/MILTECHS.
2015.7153736.

24. Suárez, M.J. & Tuya, J. (2005). Coverage

Measurement for SQL Queries. IEEE Latin America
Transactions, Vol. 3, No. 1, pp. 49–55. DOI: 10.11
09/TLA.2005.1468662.

25. Ramsey, P. (2005). Postgis Manual. Refractions

Research Inc., Vol. 17.

26. Membrey, P., Plugge, E., & Hawkins, D. (2011).
The definitive guide to MongoDB: the noSQL
database for cloud and desktop computing. Apress.

27. MongoDB. (2017). The MongoDB 3.4 Manual.

http://docs.mongodb.com/v3.4/.

28. Anderson, T.W. & Darling, D.A. (1954). A test of
goodness of fit. Journal of the American Statistical
Association, Vol. 49, No. 268, pp. 765–769. DOI:
10.1080/01621459.1954.10501232.

29. Anderson, T.W. & Darling, D.A. (1952).

Asymptotic theory of certain "goodness of fit" criteria
based on stochastic processes. The Annals of
Mathematical Statistics, Vol. 23, No. 2, pp. 193–
212. DOI: 10.1214/aoms/1177729437.

30. Schmid, S., Galicz, E., & Reinhardt, W. (2015).
Performance investigation of selected SQL and
NoSQL databases. AGILE/15.

Article received on 22/10/2019; accepted on 23/06/2020.
Corresponding author is Marlen Treviño-Villalobos.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1461–1469
doi: 10.13053/CyS-24-4-3292

Comparison of the Response Times of MongoDB and PostgreSQL According to Type of Query... 1469

ISSN 2007-9737

