
Processing Time Optimization for XMSS on an Object
Oriented SPHINCS+ Implementation

Rafael Soto Landa, Octavio Ortiz Ortiz, Juan Manuel García García

Instituto Tecnológico de Morelia,
Tecnológico Nacional de México,

México

ranfael@hotmail.com, {octavioortiz, jmgarcia}@itmorelia.edu.mx

Abstract. Computation paradigms are changing due to

the idea of quantum computers. Although today this kind
of technology is not available and has not reached its full
potential, public-key cryptography is at risk since its
security depends on problems that classical computers
cannot solve in polynomial time, while quantum
computers can. Quantum-resistant cryptography has
been developed for years, and this work proposes a new
implementation that reduces the processing time of
XMSS signature generation of SPHINCS+, a stateless
scheme designed for digital signature and is in the
process of standardization by the National Institute of
Standards and Technology of the United States. The
proposed implementation has a tradeoff between time
and memory space. While original documentation is
focused on space optimization, this new implementation
needs an additional 20 kB of memory for each tree
during the signing process in order to generate a
signature but optimizes the time the internal process
requires in the authentication path generation, from
exponential to linear complexity. Digital signatures
generated by both ways are the same.

Keywords. Digital signatures, hash-based scheme,

post-quantum cryptography, public-key cryptography.

1 Introduction

The quantum supremacy race is a matter of fact
and has serious contenders like Google [1], IBM
[18], and governments around the world [7].

Although it has not been possible to build large-
scale quantum computers yet, quantum algorithms
already exist, like Shor’s [19] and Grover’s [8] that
have the potential of breaking public-key
cryptography through the resolution of integer
factorization, discrete logarithm, and elliptic curve

discrete logarithm problems in polynomial time and
the quadratic speed-up on database searches [21].

Digital signature schemes represent an
important part of public-key cryptography used on
the internet since they provide authenticity,
integrity, and non-repudiation services [6]. Current
digital signature schemes are vulnerable to
quantum attacks as their security lies on the lack
of feasibility to solve problems, such as listed
before, on a classical computer.

Post-quantum cryptography is a recently
created study field that researches cryptographic
schemes that are resistant to known quantum
attacks and can be implemented on classical
computers. Several post-quantum schemes have
been generated in the last few years and are
categorized in hash-based, code-based, lattice-
based, and multivariate-quadratic [3]. The security
level of code-based, lattice-based, and
multivariate-quadratic schemes is still uncertain
because they have not been researched enough,
and there are no known attacks for them [20]. The
National Institute of Standards and Technology of
the United States works in evaluating post-
quantum cryptography schemes [16].

On the other hand, Hash-based schemes have
more certainty in their security levels, which lie
mainly on the security of their underlying hash
functions, and standardized hash functions have
been tested for unpredictability, first and second
preimage attacks resistance, and collision
resistance [17]. Thus, if a standardized hash
function is used as the base of a scheme, it is just
needed to prove the higher part of such scheme.
Within hash-based schemes, there are two main
classes: stateful and stateless; the first class

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 557–565
doi: 10.13053/CyS-25-3-3331

ISSN 2007-9737

requires more secure implementation assumptions
but shows better performance than the
second class.

This work is focused on SPHINCS+, a stateless
hash-based scheme for digital signatures that is in
the process of standardization by the NIST [2], and
more specifically in XMSS, a scheme implemented
inside SPHINCS+.

At the moment of this writing, no complexity
analysis of implementations other than those
shown in this work were found.

2 SPHINCS+

SPHINCS+ [2] is the evolution of the original
SPHINCS (Stateless Practical Hash-based
Incredibly Nice Cryptographic Signatures) [4],
submitted to the NIST in 2019 for standardization.
The scheme consists of the orchestration of the
other four nested schemes, as shown in Fig. 1.
Through the signing and verification processes,
these schemes call for a family of tweakable hash
functions that share the same underlying standard
hash function, that must have second
preimage resistance.

2.1 WOTS+

The base scheme is WOTS+ [10], the Winternitz
One-Time Signature is an extension of Lamport
one-time signature [14] used to sign a fixed-length
group of bytes through a recursive chaining
function that calls the tweakable hash function F,
and a checksum with the purpose of making the
signature existentially unforgeable [5].

At the highest level, this scheme has
four routines:

– A secret key generation that calls the
tweakable hash function PRF.

– Public key generation, which calls the
chaining function.

– Sign, which calls the chaining function. A
signature is a bidimensional array of bytes, as
described in [10].

– Public key generation from a signature, which
calls chaining function.

I.e., in the context of SPHINCS+, WOTS+ has
not a direct signature verification routine, but a way

to compute the public key from a given signature
and a message; if the generated public key is the
known public key of the sender, the signature
is valid.

2.2 XMSSMT

XMSS is a scheme proposed in [11] and analyzed
in [12] with the goal of generating parameter sets
suitable for different implementations.

XMSS is an eXtended Merkle Signature
Scheme and takes from Ralph Merkle [15] the idea
of a tree made of hashes. MT means multi-tree.

For a single tree, the leaves are WOTS+ public
keys, i.e., in the context of SPHINCS+, XMSS
instances sign WOTS+ public keys instead of
actual messages and use the WOTS+ signing
routine; hence the message must be a fixed-length
group of bytes, but it is possible to sign more
messages, according to the number of leaves.

2.2.1 Treehash Routine

A tree of height ℎ is generated from ℎ2 WOTS+
public keys. The nodes in each level are computed
using a bitmask on the concatenation of the
hashes contained in the nodes below and applying
the tweakable hash function H as shown in Fig. 2,
taken from [13]. This routine is known as treehash
and is detailed in [2]. The public key of an XMSS
instance is the root node of the tree.

Fig. 1. Inner schemes of SPHINCS+

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 557–565
doi: 10.13053/CyS-25-3-3331

Rafael Soto Landa, Octavio Ortiz Ortiz, Juan Manuel García García558

ISSN 2007-9737

2.2.2 Signing Routine

An XMSS signature consists of a selected leaf, i.e.,
a WOTS+ signature, and the authentication path,
which is the set of hashes of the intermediate
nodes needed to generate the root node, which is
the public key of the instance.

In [9], it is recommended to use the treehash
routine to generate the authentication path, and in
[2], it is used in this way. This method is memory-

efficient but also time-expensive since it is
necessary to regenerate the entire XMSS tree.

2.2.3 Signature Verification

XMSS signature verification follows the same
approach as WOTS+ because there is not a direct
verification method but a public key generation
method that needs the signature (WOTS+

Fig. 2. XMSS nodes generation

Fig. 2. SPHINCS+ hypertree

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 557–565
doi: 10.13053/CyS-25-3-3331

Processing Time Optimization for XMSS on an Object Oriented SPHINCS+ Implementation 559

ISSN 2007-9737

signature and authentication path) and the
message. If the public key generated by this
method matches the known sender’s public key,
the signature is valid.

2.3 Hypertree

An instance of XMSS can sign up to 2ℎ messages
so, the greater ℎ is the more messages that can be
signed, increasing the execution time of the
treehash routine.

The processing time growth is circumvented,
splitting a big tree into layers of certification trees.
The trees on the lower level sign WOTS+ public
keys, and the trees in higher levels sign the root
node of each tree below. This construction is
known as hypertree, see Fig. 2, taken from [13],
and gives the MT to XMSSMT.

The hypertree scheme constructs intermediate
layers of trees. This method is more time-efficient
than generating a tree with the total height of
the hypertree.

As XMSS instances, the hypertree has routines
for public key generation (the higher root node) and
signature generation, but this scheme does have
an explicit signature verification routine.

2.4 FORS

So far, there is a need to maintain a state, so the
FORS scheme is implemented to make
SPHINCS+ stateless.

FORS is the acronym for Forest Of Random
Subsets and is the successor of HORS and
HORST schemes present in the previous versions
of SPHINCS. All of these are few-time signature
schemes used to sign at random leaves, so the
SPHINCS+ key pair may be used several times
without degrading security.

FORS scheme has routines for private key
generation, public key generation, signature
generation, and public key generation from a
signature. As XMSS, it uses its own version of the
treehash routine.

2.5 SPHINCS+ Orchestration

SPHINCS+ is the higher scheme and is used for
the orchestration of the other schemes.

It has routines for key pair generation, signature
generation, and signature verification.

SPHINCS+ generates a FORS instance and
adds randomness to it for signing the original
message. Then signs the FORS public key with an
instance of the hypertree to get the
SPHINCS+ signature.

3 Object-Oriented Implementation

This work is about an object-oriented
implementation of SPHINCS+ that aims to
optimize the processing time of the original one. In
addition, the fact of working with objects facilitates
the understanding, scalability, and maintenance
of code.

Each scheme can be instantiated as an object
of the class with its name and makes use of related
supplementary classes.

Some schemes have common functionalities,
i.e., generic routines that are organized in
the classes:

– Hash: Contains every tweakable hash function
used by the schemes. If a change on the
underlying hash function is needed, like the
implementation of new standard digest
functions, this is the single place to make
the modifications.

– Utils: It has the byte operations needed in the
schemes, like number base changes, XOR,
array comparisons, and the like.

– Address: along the schemes implemented by
SPHINCS+, it is necessary to maintain indexes
of leaves, trees, and chains. These indexes
are stored in byte arrays called addresses.

– Random: Used for the generation of
pseudorandom bytes.

As this paper is focused on XMSS signing
optimization, the relevant structs will be detailed in
the following section.

3.1 XMSS Objects

As XMSS consists of a tree, there is a struct for
nodes. Since the tree is for signing messages and
verifying signatures, there is a struct for signatures;
both are described below.

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 557–565
doi: 10.13053/CyS-25-3-3331

Rafael Soto Landa, Octavio Ortiz Ortiz, Juan Manuel García García560

ISSN 2007-9737

3.1.1 TreeNode Struct

An XMSS node is a struct with three
relevant values:

– hash: The hash is a fixed-length byte array
that may contain a WOTS+ public key for leaf
nodes or the node construction shown in
section 2.2.1 Treehash Routine for
intermediate and root nodes.

– height: It is an unsigned integer number that
represents the vertical position of the node
inside the tree. Leaf nodes have a zero (0)
value, and the root node has a value ℎ.

– index: The horizontal position of the node
within a level is represented by this unsigned
integer number. The leftmost node of each
level has a zero (0) index.

3.1.2 XmssSignature Struct

As described in section 2.2.2 Signing Routine, a
signature is the bidimensional byte array that
represents the WOTS+ signature on the selected
leaf and the authentication path from that leaf to
the root node. In Fig. 3., taken from [13], the
WOTS+ signature is represented with 𝑖, and the
dark nodes are conforming the authentication path.
In this context, the authentication path is a list of
the hashes generated in the construction of
TreeNode objects.

Therefore, this struct has:

– authentication_path: This is a list of byte
arrays that represent the hashes of the
TreeNode objects. It could be an array too.

– wots_signature: Bidimensional byte array.

3.2 XMSS Variant

In [2], it is recommended to generate the
authentication path by using the Treehash method
directly, although this routine was already used
before to generate the XMSS public key.

The suggested way to sign is the best-known
solution to improve space performance since it
does not store in memory every node but the
currently needed hash.

The problem with using Treehash again at this
point is that it is the heaviest time processing
routine in XMSS because it must generate every
single node again.

The solution proposed in this work has the
opposite tradeoff, less processing time at the
expense of more memory to do the same task. This
decision is based on the current computers’
capabilities and the need for immediacy when
providing a signing service.

Tests on an Intel® Core™ i7-8550U processor
at 1.99 GHz, signing and verification time was
reduced from about 5.2 seconds to 2.7 seconds on
average for trees of height 8, with 𝑛 = 32 and 𝑤 =
16 as shown in section 5 Implementations
Testing. The complexity analysis is in the next
section, where the tradeoff is formally
demonstrated.

To get the proposed improvement it was
necessary to make changes in the scheme
implementation. These changes are described in
the next three subsections.

3.2.1 Treehash Routine

The original idea of the Treehash routine was
preserved, but a hashtree argument was included
and filled inside the routine, as shown in
Algorithm 1. The algorithm was taken from [2], and
the added elements are distinguished in
bold letters.

3.2.2 TreePathGeneration Routine

TreePathGeneration (tree_path_generation in
pseudocode, see Algorithm 2) is a routine added
to the original scheme. This algorithm computes
the index of all the nodes that must be appended
to the authentication path on each level of the
XMSS tree.

Fig. 3. XmssSingature struct construction

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 557–565
doi: 10.13053/CyS-25-3-3331

Processing Time Optimization for XMSS on an Object Oriented SPHINCS+ Implementation 561

ISSN 2007-9737

The routine returns a stack of integers that is
used in the signing routine, where each number is
popped out from the stack and is used to get the
node at the corresponding index and height of
the tree.

3.2.3 Signing Routine

The signing routine implementation is different
from the original one only in the build
authentication path section. The logic is in
Algprithm 3. It is originally computed by the
treehash function. In the new implementation, it is
calculated through the hashtree list, and the

indexes are returned by the
TreePathGeneration routine.

The strikethrough text was removed from the
original implementation, while the bold text was
added. The values of z and hashtree are taken
from the XMSS object.

4 Complexity Analysis

As mentioned in earlier sections, the aim of this
work is to optimize the processing time, and this is
done by losing memory efficiency. In the next
subsections, there is an analysis of how these two
variables in both implementations have been

Algorithm 1. Treehash algorithm Algorithm 2. TreePathGeneration algorithm

Input: Secret seed SK.seed, start index
s, target node height z, public seed
PK.seed, address ADRS, list of XmssNode
elements hashtree
Output: n-byte root node - top node on
Stack

treehash(SK.seed, s, z, PK.seed, ADRS,
 hashtree)
{
 if (s % (1 << z) != 0) return -1;
 for (i = 0; i < 2^z; i++)
 {
 ADRS.setType(WOTS_HASH);

 ADRS.setKeyPairAddress(s + i);
 node = wots_PKgen(SK.seed, PK.seed,
 ADRS);
 ADRS.setType(TREE);
 ADRS.setTreeHeight(1);
 ADRS.setTreeIndex(s + i);
 hashtree.append(node);
 while (Top node on Stack has same
 height as node)
 {
 ADRS.setTreeIndex(
 (ADRS.getTreeIndex() – 1) / 2);
 node = H(PK.seed, ADRS,
 (Stack.pop() || node));
 ADRS.setTreeHeight(
 ADRS.getTreeHeight() + 1);
 hashtree.append(node);
 }
 Stack.push(node);

 }
 return Stack.pop();
}

Input: Tree height z, index of leaf
selected for WOTS+ signature idx
Output: Stack of integers that represent
the index of the nodes in the path

tree_path_generation(z, idx)
{
 path = new Stack();
 hi_bound = 2^z;
 low_bound = 0;
 srch_idx = 0;
 for (i = z; i > 1; i--)
 {
 half = (hi_bound + low_bound) / 2;
 if (idx >= half)
 {
 low_bound = half;
 srch_idx = srch_idx * 2 + 1;
 }
 else
 {
 hi_bound = half;
 srch_idx *= 2;
 }
 path.push((srch_idx % 2 == 0) ?
 srch_idx + 1 : srch_idx - 1);
 }
 path.push((idx % 2 == 0) ?
 idx + 1 : idx - 1);
 return path;
}

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 557–565
doi: 10.13053/CyS-25-3-3331

Rafael Soto Landa, Octavio Ortiz Ortiz, Juan Manuel García García562

ISSN 2007-9737

affected. In this section, 𝑧 represents the height of
the XMSS tree.

4.1 Time

4.1.1 Treehash Routine

Treehash has two new lines for adding every single
node to the list hashtree.

There are 2𝑧+1 − 1 nodes on a tree, and each
assignation has three internal assignations (hash,
height, and index). So, this routine has added
3 ∗ (2𝑧+1 − 1) operations to the scheme. Since
these operations are in the same structure as the
rest of the computation of Treehash, they do not
increase the complexity of the routine.

4.1.2 TreePathGeneration Routine

TreePathGeneration is new to the scheme, so all
its operations count in the total.

There are up to 12 operations inside the for loop
that is repeated 𝑧 − 1 times. There are 𝑛𝑖𝑛𝑒
operations outside the for loop. Therefore, this
routine adds 12 ∗ (𝑧 − 1) + 9 operations. The
complexity of this routine is linear.

4.1.3 Signing Routine

Original singing routine calls for the original version
of Treehash routine, which calls 2𝑧 times
wots_PKgen, whose complexity is quadratic
because it calls the recursive chain function in a for
loop, while new implementation calls for the
TreePathGeneration routine, which has linear
complexity as it is demonstrated in
previous subsections.

In conclusion, by adding those operations to
Treehash and TreePathGeneration routines, the
number of operations is reduced since it is not
necessary to regenerate the entire tree but just go
through it.

4.2 Space

New implementation requires storing the list of
instances of TreeNode. The list must contain
2𝑧+1 − 1 nodes, and each node contains a 32-byte
hash, a 4-byte height, and a 4-byte index, giving a
total of (2𝑧+1 − 1) ∗ 40 bytes.

The complete SPHINCS+ implementation uses
trees of height 8, so the total needed storage for a
tree is 20,440 bytes that are not necessary at all in
the original implementation.

Note that this use of memory is not persistent
since the hashtree object is discarded once the
signing processing is finished.

5 Implementations Testing

The proposed solution was implemented besides
the original one in a library using C# on .NET Core
2.1 framework and tested on an Intel® Core™ i7-
8550U processor at 1.99 GHz. Tests were
performed with Xunit.

Two performance scenarios were tested 50
times over both implementations. The first scenario
aimed to compare the whole process of generating

Algorithm 3. XMSS signing algorithm

Input: n-byte message M, secret seed
SK.seed, index idx, public seed PK.seed,
address ADRS
Output: XMSS signature SIG_XMSS = (sig ||
AUTH)

xmss_sign(M, SK.seed, idx, PK.seed, ADRS)
{
 path = tree_path_generation(z, idx);
 // build authentication path
 for (j = 0; j < z; j++)
 {
 k = floor(idx / (2^j)) XOR 1;
 AUTH[j] = treehash(SK.seed, k * 2^j,
 j, PK.seed, ADRS);
 }
 for (j = 1; j < z; j++)
 {
 srch_idx = path.pop();
 AUTH[j - 1] = (hashtree node with
 height == j and index == srch_idx);
 }
 ADRS.setType(WOTS_HASH);
 ADRS.setKeyPairAddress(idx);
 sig = wots_sign(M, SK.seed, PK.seed,
 ADRS);
 SIG_XMSS = sig || AUTH;
 return SIG_XMSS;
}

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 557–565
doi: 10.13053/CyS-25-3-3331

Processing Time Optimization for XMSS on an Object Oriented SPHINCS+ Implementation 563

ISSN 2007-9737

the XMSS object, generate the public key with the
Treehash routine, and to sign a 32-byte message.

The second scenario compares just the
authentication path generation inside the signing
routine. This subroutine in the optimized
implementation assumes that a hashtree object
was created at a cost of 3 ∗ (2𝑧+1 − 1) extra
operations, i.e., 1,533 extra operations for
implementation with 𝑧 = 8, and does not call for the
Treehash routine at all. Table 1 shows the resulting
times and time reduction percentage.

6 Conclusions

Current applications need immediacy, and this
implementation improves it compared with the
original proposed one.

The tradeoff between time and memory space
proposed in this work seems affordable for modern
computers since the space cost of signing 32 bytes
in almost half of the original time is about 20 kB,
which are released once the signing process
is finished.

Test and complexity analysis of this work
demonstrate that Treehash is the time costliest
routine in the overall process of XMSS and should
be avoided when possible.

XMSS is just a sub-scheme inside SPHINCS+;
in higher scheme FORS, there is a version of
Treehash and is implemented in a similar way
inside the FORS signing process.

Future research could be about the elimination
of hashtree objects by implementing the Treehash
routine just once and get the signature and the
public key in a single run, but this could imply
greater coupling between classes and, therefore,
less maintenance ease.

Acknowledgments

The authors thank Tecnológico Nacional de
México that funded this project and especially the
Technologic Institute of Morelia (ITM) for the
facilities granted to carry out the investigation.

References

1. Arute, F., Arya, K., Babbush, R. et al. (2019).
Quantum Supremacy Using a Programmable
Superconducting Processor. Nature, Vol. 574,
No. 7779. pp. 505–510. DOI: 10.1038/s41586-
019-1666-5.

2. Bernstein, D., Dobraunig, Ch., Schwabe, P.,
et al. (2019). SPHINCS+ Submission to the
NIST post-quantum project. pp. 1–62.

3. Bernstein, D.J. (2009). Introduction to post-
quantum cryptography. In Bernstein,
Buchmann, and Dahmen, (eds.) Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 1–
14. DOI: 10.1007/978-3-540-88702-7_1.

4. Bernstein, D.J., Hopwood, D., Hülsing, A.,
Lange, T., Niederhagen, R. (2015).
SPHINCS: Practical stateless hash-based
signatures. Advances in Cryptology.
EUROCRYPT´15, In Oswald, Fischlin, (eds.)
Springer Berlin Heidelberg, Vol. 9056, pp.
368–397. DOI: 10.1007/978-3-662-46800-
5_15.

5. Buchmann, J., Dahmen, E., Ereth, S.,
Hülsing, A., Rückert, M. (2011). On the
Security of the Winternitz One-Time Signature
Scheme. In Nitaj A., Pointcheval D. (eds.)
Progress in Cryptology – AFRICACRYPT´11,
Lecture Notes in Computer Science, Vol.
6737. DOI:10.1007/978-3-642-21969-6_23.

6. Buchmann, J., Dahmen, E., Szydlo, M.
(2009). Hash-based Digital Signature
Schemes. In Bernstein, D.J., Buchmann, J.,
Dahmen, E. (eds.) Post-Quantum
Cryptography. Springer Berlin Heidelberg, pp.
35–39. DOI: 10.1007/978-3-540-88702-7_3.

7. Griffiths, J. (2019). The US just moved ahead
of China in quantum computing.

8. Grover, L.K. (1996). A fast quantum
mechanical algorithm for database search.
Proceedings of the Annual ACM Symposium

Table 1. Time optimizations

Implementation
Tree and
signature

generation

Authentication
path

generation

Original 5211.07 2637.85

Object-oriented 2738.29 0.02

Time reduction
percentage

47.45% 99.99%

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 557–565
doi: 10.13053/CyS-25-3-3331

Rafael Soto Landa, Octavio Ortiz Ortiz, Juan Manuel García García564

ISSN 2007-9737

on Theory of Computing, pp. 212–219. DOI:
10.1145/237814.237866.

9. Huelsing, A., Butin, D., Gazdag, S.,
Rijneveld, J., Mohaisen, A. (2018). XMSS:
eXtended Merkle Signature Scheme. Vol. 15.
DOI: 10.17487/RFC8391.

10. Hülsing, A. (2013). W-OTS+ - Shorter
signatures for hash-based signature schemes.
Lecture Notes in Computer Science, Vol.
7918, LNCS, pp. 173–188. DOI: 10.1007/978-
3-642-38553-7-10.

11. Hülsing, A., Busold, C., Buchmann, J.
(2013). Forward Secure Signatures on Smart
Cards. In Knudsen L.R., Wu H. (eds.)
Selected Areas in Cryptography. SAC´12,
Lecture Notes in Computer Science, Vol.
7707, pp. 66–80. DOI: 10.1007/978-3-642-
35999-6_5.

12. Hülsing, A., Rausch, L., Buchmann, J.
(2013). Optimal Parameters for XMSS MT in
Security Engineering and Intelligence
Informatics, pp. 194–208. DOI: 10.1007/978-3-
642-40588-4_14.

13. Hülsing, A., Rausch, L., Buchmann, J.
(2013). Optimal Parameters for XMSS MT.
International Conference on Availability,
Reliability, and security, pp. 194–208.

14. Lamport, L. (1979). Constructing Digital
Signatures from a One Way Function.
Computer Science Labotatory, SRI
International, pp. 1–7.

15. Merkle, R.C. (1979). A certified digital
signature. Advances in Cryptology - CRYPTO’
89, Lecture Notes in Computer Science book
series (LNCS, volume 435), Springer.

16. National Institute of Standards and
Technology (2019). Post-Quantum
Cryptography - Workshops and Timeline.

17. National Institute of Standards and
Technology (2015). SHA-3 Standard:
Permutation-based hash and extendable-
output functions. DOI: 10.6028/NIST.FIPS.
202.

18. Pednault, E., Gunnels, J., Maslov, D.,
Gambetta, J. (2019). On Quantum
Supremacy. IBM Research Blog.

19. Shor. P.W. (1997). Polynomial-time
algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM
Journal on Computing, Society for Industrial &
Applied Mathematics, Vol. 5, pp. 1484–1509.
DOI: 10.1007/3-540-58691-1_68.

20. Sjöberg, M. (2017). Post-quantum algorithms
for digital signing in Public Key Infrastructures.
KTH Royal Institute of Technology.

21. Yan, SY. (2015). Classical and quantum
computation, in quantum computational
number theory. Cham: Springer International
Publishing, pp. 33–58. DOI: 10.1007/978-3-
319-25823-2_2.

Article received on 13/01/2020; accepted on 06/11/2020.
Corresponding author is Rafael Soto Landa.

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 557–565
doi: 10.13053/CyS-25-3-3331

Processing Time Optimization for XMSS on an Object Oriented SPHINCS+ Implementation 565

ISSN 2007-9737

