
Comparison of Clustering Algorithms in Text Clustering Tasks

Rafael Gallardo Garcı́a1, Beatriz Beltrán1,2, Darnes Vilariño1,2, Claudia Zepeda1, Rodolfo Martı́nez1

1 Benemérita Universidad Autónoma de Puebla,
Faculty of Computer Science,

Mexico

2 Benemérita Universidad Autónoma de Puebla,
Language & Knowledge Engineering Lab,

Mexico

rafael.gallardo@alumno.buap.mx,
{bbeltran,darnes,czepedac,beetho}@cs.buap.mx

Abstract. The purpose of this paper is to compare the
performance and accuracy of several clustering algo-
rithms in text clustering tasks. The text preprocessing
were realized by using the Term Frequency - Inverse
Document Frequency in order to obtain weights for each
word in each text and then obtain weights for each
text. The Cosine Similarity was used as the similarity
measure between the texts. The clustering tasks
were realized over the PAN dataset and three different
algorithms were used: Affinity Propagation, K-Means
and Spectral Clustering. This paper presents the results
in comparative tables: ID of the task, ground truth
clusters and the clusters generated by the algorithms.
A table with precision, recall and f-measure scores
is presented.

Keywords. Affinity propagation, f-measure, k-means,
spectral clustering, PAN.

1 Introduction

The task of grouping a set of objects in a cluster
where the objects inside are more similar to each
other in the same cluster (group) than objects
in other clusters is called Cluster Analysis or
Clustering, the cluster analysis is one of most
important research areas at present, as a part of
data science or data mining, clustering is used
in many fields like pattern recognition, machine
learning and image analysis.

A main task of Data Mining is to process the
natural language, the cluster analysis is essential
in the natural language processing, today exists
many algorithms built to make the hard work
of grouping texts more accurate and efficient, is
essential to make a comparison of the algorithms
in order to know the strengths and weaknesses of
each of them. Is important to know that notion of a
”cluster” cannot be precisely defined, which is one
of the reasons why there are so many clustering
algorithms [2].

There is a common denominator: a group of data
objects. However, different researchers employ
different cluster models, and for each of these
cluster models again different algorithms can be
given. The notion of a cluster, as found by different
algorithms, varies significantly in its properties.

Understanding these ”cluster models” is the
key to understand the differences between the
various algorithms.

2 Related Work

Due to the large number of existing clustering
algorithms, experimental evaluations in specific
fields are useful, in this case, the tests were
focused on the Natural Language Processing field.

There are some interesting papers that made
a comparison of different clustering algorithms

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 429–437
doi: 10.13053/CyS-24-2-3369

ISSN 2007-9737

Fig. 1. An overview of taxonomy of clustering algorithms1

applied to Document Clustering, in [11] a
comparison between Agglomerative and Partitional
algorithms is made, in this paper the better
results were obtained by partitional algorithms,
and agglomerative clustering algorithms performs
the worst results, the partitional algorithm used
in [11] was K-Means, and was tested in a very
large dataset.

On the other hand, in [10] the authors made a
comparison between Bisecting K-Means, Regular
K-Means and UPGMA in Hierarchical clustering,
in this case the better results were obtained by
Bisecting K-Means, followed by Regular K-Means,
and the worse were the agglomerative hierarchical
method UPGMA.

A more complete comparison is made in paper
[9], where K-Means, Heuristic K-Means and Fuzzy
C-Means were compared, the interesting point
of this paper is that the authors use different
pre-processing methods in texts, like tf-idf, tf
and boolean representation schemes, in summary
Heuristic K-Means obtained the best results,
followed by K-Means, the best results in the
paper comes from the combination of a partitional
algorithm, tf.idf and making a stemming before
cluster the documents.

This previous works evaluate algorithms with
different procedures on the clustering process,
algorithms from different categories and a compar-
ison of the obtained results when using different
methods in the pre-clustering process. Based
on this works, this paper will show the outputs
of three different partitional algorithms (the best
in consulted literature), preparing texts with tf.idf
and stemming.

3 Data Clustering Algorithms

This section presents a taxonomy of the different
approaches to clustering algorithms as well as the
theoretical explanation of each clustering algorithm
used in this paper.

3.1 Taxonomy of Clustering Algorithms

Actually, there are so many clustering algorithms,
and each one of them has different applications
and characteristics, also, this algorithms can be
categorized focusing on the technical details of the
general procedures of the clustering process, a
graphic representation of this categories is shown
below (Fig. 1). An explanation of this taxonomy
is [3]:

— Partitioning-Based: In this kind of algo-
rithms, clusters are determined promptly, the
partitioning algorithms divide the data into a
partitions, where each partition represent a
cluster. In this algorithms each cluster must
contain at least one object, and each object
must belong to exactly one group.

— Hierarchical-Based: This methods can be
agglomerative or divisive, both organize the
data in a hierarchical way. The dataset
is represented by a dendrogram, where
individual data is presented by leaf nodes.

— Density-Based: In this algorithms, elements
are separated based on their regions of
density, connectivity and boundary. They are
closely related to point-nearest neighbors. A
cluster is defined as a group of elements
considered as neighbors depending of their
density as a group, and grows in any direction
that density leads to.

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 429–437
doi: 10.13053/CyS-24-2-3369

Rafael Gallardo García, Beatriz Beltrán, Darnes Vilariño, Claudia Zepeda, Rodolfo Martínez430

ISSN 2007-9737

— Grid-Based: The space of the data objects
is divided into grids. The accumulated
grid-data make grid-based clustering tech-
niques independent of the number of data
objects that employ a uniform grid to collect
regional statistical data, and then perform
the clustering on the grid, instead of the
database directly.

— Model-Based: Such a method optimizes
the fit between the given data and some
(predefined) mathematical model. It is
based on the assumption that the data
is generated by a mixture of underlying
probability distributions.

The three algorithms to be analyzed on this
paper belongs to Partitioning-Based category.

3.2 Affinity Propagation

Affinity Propagation forms clusters by sending
messages between pairs of instances until
convergence and considers all data points as
potential exemplars, this algorithm can determine
the number of clusters by itself unlike K-Means or
Spectral Clustering.

The algorithm proceeds by sending messages in
two steps, between two matrices [2]: a R matrix
called “responsibility matrix”, with r(i, k) values,
that quantify how well suited xk is in way to serve
as a exemplar for xi, comparing it with the other
candidate exemplars for xi, and an A matrix called
“availability matrix” with a(i, k) values, that shows
how “appropriate” it would be for xi to pick xk as its
exemplar, considering all other points’ preference
to take xk as an exemplar [4]. Both matrices
can be viewed as log-probability tables, and are
initialized with zeros, then the algorithm realize the
next updates iteratively:

r(i, k)← s(i, k)−max
k 6=k′
{a(i, k′) + s(i, k′)}, (1)

where responsibility matrix updates are sent
around and (2), (3) are the way to update the

availability matrix:

a(i, k)← min

0, r(k, k) +
∑

i′ 6∈{i,k}

max(0, r(i′, k))

 ,

(2)
for i 6= k in 2:

a(k, k)←
∑
i′ 6=k

max(0, r(i′, k)). (3)

Once the cluster boundaries stop changing over
a number of iterations, the algorithm extracts the
exemplars and clusters from the final matrices
as those whose “responsibility + availability”be
positive, (i.e ((r(i, i) + a(i, i)) > 0).

3.3 K-Means

This algorithm was first proposed by Stuart Lloyd
in 1957 [6]. K-Means uses vector quantization
methods in order to get a partitioning of the
data space into Voronoi cells returned as clusters.
K-Means commonly uses a random initial points
called “seeds” and then proceeds by alternating
between two steps to select new cluster centroids.

The partitioning of the observations according to
the Voronoi diagram generated by the means, is
calculated as:

S
(t)
i = {xp : ||xp −m(t)

i ||
2 ≤ ||xp −m(t)

j ||
2}, (4)

where 4 must be fulfilled ∀j, 1 ≤ j ≤ k. In equation
4 each xp is assigned to exactly one S(t), even if
this xp could be assigned to more than one S(t).

Calculating the new centroids within the new
clusters is realized with the following equation:

m
(t+1)
i =

1

|S(t)
i |

. (5)

The algorithm has converged when assignments
stop changing, that means what the Voronoi
cells(clusters) are complete. The use of heuristic
algorithms implies that the results could not be
the optimum.

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 429–437
doi: 10.13053/CyS-24-2-3369

Comparison of Clustering Algorithms in Text Clustering Tasks 431

ISSN 2007-9737

3.4 Spectral Clustering

Spectral Clustering algorithm uses the eigenvalues
of a similarity matrix obtained from the data, to
realize dimensionality reduction and then it makes
clustering in less dimensions. The similarity matrix
passed as a parameter to the algorithm gives a
quantitative assessment of the similarity of each
par of points in the data, like an adjacency matrix
used for graphs.

Spectral Clustering works on relevant eigen-
vector of a Laplacian Matrix of A, this algorithm
project the data into a lower-dimensional space
(the eigenvector domain) where they are easily
separable with other methods like K-Means, once
the dimensionality reduction is complete, the pro-
cess for cluster the data in this lower-dimensional
space is the same that K-Means.

4 Weighting and Measuring Methods

This section presents the followed processes
to achieve the preprocessing, weighting and
measuring the similarity of the texts.

4.1 The Weighting TF-IDF Algorithm

The Term Frequency - Inverse Document Fre-
quency (TF-IDF) [5] is a numerical statistic that
is intended to reflect how important a word is to
a document in a collection or corpus [8]. This
method weights the words in a text or a set of
texts, the TF-IDF value increases proportionally to
the number of a word appears in the corpus, with
this quantization of the words, can be created a
mathematical model of each text in the corpus. A
word that appears a lot of times in the corpus is
less important for the texts than word that appears
just a few times in the corpus, which is more
important for TF-IDF is the product of the following
two statistics:

1. Term Frequency: Is calculated by counting
the times that a term appears in a text
(raw frequency), for better results can be
used the “Augmented Frequency”, this is
the raw frequency of a term divided by the

raw frequency of the most occurring term in
document, and is described as follow:

tf(t, d) =
ft,d

max{ft′,d : t′ ∈ d}
. (6)

2. Inverse Document Frequency: It is obtained
by dividing the total number of documents by
the number of documents containing the term,
and then taking the logarithm of that quotient,
this process is called “logarithmically scaled
inverse fraction”, and is described as follow:

idf(t,D) = log
N

1 + |{d ∈ D : t ∈ d}|
. (7)

In this equation N is total number of
documents in the corpusN = |D| and 1+|{d ∈
D : t ∈ d}| is the number of documents where
the term t appears, plus 1 in case that the term
appears zero times in corpus.

Once the algorithm have obtained the Term
Frequency and the Inverse Document Frequency,
the TF-IDF values are the product of the Term
Frequency values and the Inverse Document
Frequency values, this operation is calculated as:

tfidf(t, d,D) = tf(t, d) · idf(t,D). (8)

In TF-IDF a high weight describe a very
important term, and a low weight describe a
less important term, when TF-IDF is complete, a
mathematical form of each text is available.

4.2 The Cosine Similarity Measure

Cosine Similarity is a similarity measure between
two non-zero vectors that uses cosine of the angle
between this vectors, taking into consideration that
the cos 0◦ = 1 and cos 90◦ = 0, the algorithm
gives a range between 0 and 1 and the obtained
values means how much similar the vectors are
(cosine similarity is not a distance measure), where
a similarity of 0 means a completely different
vector orientation and a similarity of 1 means that
the vector orientation is the same, when using
this measure is important to consider only the
non-zero vectors.

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 429–437
doi: 10.13053/CyS-24-2-3369

Rafael Gallardo García, Beatriz Beltrán, Darnes Vilariño, Claudia Zepeda, Rodolfo Martínez432

ISSN 2007-9737

In data clustering, the cosine similarity is com-
monly used to know how similar two documents
are, in this field, each term is notionally assigned
a different dimension and a document is a vector
where the value in each dimension corresponds
to the number of times the term appears in the
document. With two vectors of attributes, A and
B, the cosine similarity use a dot product and
magnitude as:

cos(θ) =
A ·B
||A|| ||B||

=

n∑
i=1

AiBi√√√√ n∑
i=1

A2
i

√√√√ n∑
i=1

B2
i

, (9)

where Ai is a component of vector A, and Bi is a
component of vector B.

Once the cosine similarity was already calcu-
lated for each par of texts in corpus, the similarity
matrix of texts is complete, this matrix gives the
similarity measure of each text with each text.

5 Preparing the Corpus

5.1 Tokenizing and Stemming Texts

Assuming D as the corpus, d as a text in corpus
and t as a term in the text, the tokenizing process
consists in separate each t term in the text from the
others in order to obtain a data structure containing
each item. Stemming or lemmatization is the
process of grouping together the inflected forms of
a word so they can be analyzed as a single item.

The voc list of stemmed and tokenized terms of
d will be used to obtain weights with TF-IDF. These
tasks were realized with the porter stemmer and
tokenizer tools of the Natural Language Toolkit2

in Python. The result of this task is a list of
vocabularies for each text d in D.

2https://www.nltk.org/

5.2 Weighting Terms and Texts with TF-IDF

Once the texts have been processed and
standardized, is necessary to obtain the weights
(relevance) for each word in the corpus D, this is
possible using TF-IDF algorithm in D.

The output of the tf-idf algorithm will be used to
build the similarity matrix using the cosine similarity
method. See the Algorithm 1.

Algorithm 1: Obtaining weights for terms in
corpus D
Data: complete voc: A list of vocabularies

for each text d in D.
Result: A list of lists: one value for each

term for each text in corpus.
begin

filtered vocabulary← list of non-repeated
terms of complete voc

for text in complete voc:
for term in text:

/* Usage of equation 8 with

equation 6 as tf and

equation 7 as idf */

tfidf ← output of equation 8 with
term as t, text as d and
complete voc as D

append tfidf in tfidf values
append tfidf values in
weighted texts

/* weighted texts is a list of

lists: each list inside

corresponds to one text in

corpus */

return weighted texts
end

5.3 Building the Similarity Matrix using Cosine
Similarity

To build a similarity matrix of the corpus D with the
Cosine Similarity measure, and using the output
of Algorithm 2: weighted texts, the process is
described in Algorithm 2.

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 429–437
doi: 10.13053/CyS-24-2-3369

Comparison of Clustering Algorithms in Text Clustering Tasks 433

ISSN 2007-9737

Algorithm 2: Obtaining the similarity matrix
of corpus
Data: weighted texts: Output of Algorithm 1
Result: A similarity matrix of texts with

cosine similarity measure.
begin

for text0 in complete voc:
for tex1 in complete voc:

append the output of equation 9
with text0 as A and text1 as B in
similarity list.

/* similarity list contains a

similarity measure for each par

of texts, with values between 0

and 1, where 1 means equal

texts and 0 completely

different texts. */

return similarity list
end

6 Clustering the Texts

The algorithms to be tested were described in
3.2, 3.3 and 3.4, a very complete implementation
of each algorithm is available in the scikit-learn3

Python library, specifically the sklearn.cluster
class4, the test were realized in this implemen-
tations by sending the matrices obtained with
the previous algorithms as parameters. Each
implementation has a set of customizable options
that can help to improve the results.

6.1 Clustering with Affinity Propagation

The Affinity Propagation algorithm is interesting
because of its ability to obtain the number of
clusters by itself based on the data, as described
in 3.2. Complexity is the main drawback of Affinity
Propagation, well this one has a complexity of the
order O(N2T) where N is the number of samples
and T the number of iterations until convergence.

Affinity Propagation is effective when: exists
many clusters, when there is an uneven cluster
size, the data is in a non-flat geometry or for a
unknown number of clusters.

3http://scikit-learn.org/stable/
4http://scikit-learn.org/stable/modules/clustering.html#clustering

6.2 Clustering with K-Means

K-Means unlike Affinity Propagation, needs a
defined number of clusters as a parameter, this is
why will be used the number of clusters obtained by
Affinity Propagation, this increases the autonomy
of the tests by avoiding the human intervention and
gives a more computer-made clusters.

K-Meanscan be used effectively when: there
is an even cluster size, the data is in a flat
geometry or there are too many clusters, the
accuracy of K-Means when converging in the
optimum will depends on the initial centroids, which
are randomly selected.

For this tests, the initial centroids will be deter-
mined by k-means++ [1] algorithm, the n-clusters
will be the Affinity Propagation n-clusters, to
increase de accuracy, the algorithm will be run 300
times with different centroid seeds, the results will
be the best output of this consecutive runs.

6.3 Clustering with Spectral Clustering

Spectral Clustering as explained in 3.4, does a
low-dimension embedding of the affinity matrix
between samples, followed by a K-Means in
the low dimensional space. Spectral Clustering
like K-Means, requires the number of clusters
to be specified, this n clusters will be the
Affinity Propagation n-clusters to avoid the human
intervention, for improve the results, once the
dimensionality reduction is complete, K-Means will
be run 100 times with different centroid seeds. This
algorithm is useful when: there are few clusters,
there is an even cluster size or the data is in a
non-flat geometry.

7 Evaluation of the Algorithms

7.1 The Corpus

The supervised corpus was taken from the PAN5,
which consists in 60 problems, each problem
contains 20 texts and have the gold standard. Each
algorithm’s set of clusters will be compared with the
supervised corpus, the tables will have 3 columns:

5https://pan.webis.de/clef18/pan18-web/author-
identification.html

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 429–437
doi: 10.13053/CyS-24-2-3369

Rafael Gallardo García, Beatriz Beltrán, Darnes Vilariño, Claudia Zepeda, Rodolfo Martínez434

ISSN 2007-9737

corpus is a set of 20 texts, ground truth with the
expected results and the algorithm column, with
the obtained set of clusters.

The structure of each set of clusters is the
following: Cluster x : [text a, text b, ..., text c]
where x is the cluster number, and the texts inside
the brackets belongs to the x cluster,n clusters is
the number of clusters of the corpus. The set of
clusters obtained as an output of the algorithms
will have a n clusters value which indicates the total
number of clusters and a execution time in seconds
which indicates the total time the execution took,
besides, for each analyzed corpus there are a
precision average that indicates the average (of
each cluster score) of how many of the selected
items are relevant, a recall average.

Which indicates how many relevant items are
selected, and an f-measure value which is the
harmonic mean that combines the precision and
recall values [7], in this 3 averages, a score of 1
means that the algorithm-made clusters are exactly
equal to the supervised corpus and 0 score means
that they are completely different. Although the
proposed method works for any corpus and was
tested in more than sixteen different corpus, for
illustrative purposes each table will contain the
comparison of 2 corpus with their respective set of
clusters both supervised and algorithm-made.

7.2 Affinity Propagation Clusters

Table 1 contains two comparison examples
of the Affinity Propagation clusters with the
supervised corpus and their respective execution
time, precision average, recall average and
f-measure average.

7.3 K-Means Clusters

Table 2 contains two comparison examples of the
K-Means clusters with supervised corpus and their
respective execution time, precision average, recall
average and f-measure average.

Table 1. Affinity Propagation algorithm evaluation table

Corpus Ground truth Affinity Propagation clusters
1 n clusters: 5

Cluster 1 : [7]
Cluster 2 :
[8, 9, 10, 11, 14, 15, 16, 19, 20]
Cluster 3 : [2, 4, 5, 6, 12, 13]
Cluster 4 : [3]
Cluster 5 : [1, 17, 18]

n clusters : 5
Cluster 1 : [2, 3, 4, 6, 7]
Cluster 2 : [5, 8, 11, 19, 20]
Cluster 3 : [9, 13, 16]
Cluster 4 : [10, 12, 14, 15]
Cluster 5 : [1, 17, 18]
Execution time: 0.1387 seconds
Precision average: 0.750
Recall average: 0.554
f-measure average: 0.624

2 n clusters: 5
Cluster 1 : [5, 7, 19]
Cluster 2 : [1, 4, 14, 20]
Cluster 3 : [10, 11]
Cluster 4 : [3, 6, 15, 16]
Cluster 5 : [2, 8, 9, 12, 13, 17,
18]

n clusters: 5
Cluster 1 : [1, 3, 4, 5, 6, 14, 20]
Cluster 2 : [2, 8, 9, 13, 15, 17]
Cluster 3 : [7, 10, 11]
Cluster 4 : [12, 16, 18]
Cluster 5 : [19]
Execution time: 0.1589 seconds
Precision average: 0.678
Recall average: 0.658
f-measure average: 0.616

Table 2. K-Means algorithm evaluation table

Corpus Ground truth K-Means clusters
1 n clusters: 5

Cluster 1 : [7]
Cluster 2 :
[8, 9, 10, 11, 14, 15, 16, 19, 20]
Cluster 3 : [2, 4, 5, 6, 12, 13]
Cluster 4 : [3]
Cluster 5 : [1, 17, 18]

n clusters : 5
Cluster 1 : [10, 12, 14, 15]
Cluster 2 : [5, 8, 11, 19, 20]
Cluster 3 : [9, 13, 16]
Cluster 4 : [1, 17, 18]
Cluster 5 : [2, 3, 4, 6, 7]
Execution time: 0.2784 seconds
Precision average: 0.576
Recall average: 0.720
f-measure average: 0.616

2 n clusters: 5
Cluster 1 : [5, 7, 19]
Cluster 2 : [1, 4, 14, 20]
Cluster 3 : [10, 11]
Cluster 4 : [3, 6, 15, 16]
Cluster 5 : [2, 8, 9, 12, 13, 17,
18]

n clusters: 5
Cluster 1 : [1, 3, 4, 14, 16, 20]
Cluster 2 : [10, 11, 19]
Cluster 3 : [5, 7]
Cluster 4 : [2, 6, 9, 12, 15, 17,
18]
Cluster 5 : [8, 13]
Execution time: 0.4063 seconds
Precision average: 0.663
Recall average: 0.774
f-measure average: 0.615

7.4 Spectral Clustering Clusters

Table 3 contains two comparison examples
of the Spectral Clustering clusters with the
supervised corpus and their respective execution
time, precision average, recall average and
f-measure average.

8 Results

As it is shown on the results of the performed
tests, the most efficient algorithm in time terms was
Affinity Propagation which complete the clustering
with a time average of 0.148 seconds, next was

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 429–437
doi: 10.13053/CyS-24-2-3369

Comparison of Clustering Algorithms in Text Clustering Tasks 435

ISSN 2007-9737

Table 3. Spectral Clustering algorithm evaluation table

Corpus Ground truth Spectral Clustering clusters
1 n clusters: 5 made

Cluster 1 : [7]
Cluster 2 :
[8, 9, 10, 11, 14, 15, 16, 19, 20]
Cluster 3 : [2, 4, 5, 6, 12, 13]
Cluster 4 : [3]
Cluster 5 : [1, 17, 18]

n clusters : 5
Cluster 1 :
[2, 6, 8, 9, 11, 12, 13, 19, 20]
Cluster 2 : [3, 4, 7]
Cluster 3 : [1, 17, 18]
Cluster 4 : [10, 14, 15]
Cluster 5 : [5, 16]
Execution time: 0.2949 seconds
Precision average: 0.532
Recall average: 0.844
f-measure average: 0.556

2 n clusters: 5
Cluster 1 : [5, 7, 19]
Cluster 2 : [1, 4, 14, 20]
Cluster 3 : [10, 11]
Cluster 4 : [3, 6, 15, 16]
Cluster 5 : [2, 8, 9, 12, 13, 17,
18]

n clusters: 5
Cluster 1 : [1, 4, 14, 16, 20]
Cluster 2 : [8, 9, 12, 13, 17]
Cluster 3 : [10, 11]
Cluster 4 : [2, 3, 6, 15, 18, 19]
Cluster 5 : [5, 7]
Execution time: 0.3463 seconds
Precision average: 0.867
Recall average: 0.823
f-measure average: 0.822

Table 4. Precision, recall and F-measure

Algorithm Precision Recall F-measure
Affinity Propagation 0.704 0.606 0.651
Spectral Clustering 0.694 0.833 0.758

K-Means 0.619 0.747 0.677

Spectral Clustering with a time average of 0.317
seconds, and K-Means was the worst on time
terms with a time average of 0.342 seconds.

On the other hand there are the precision,
recall and F-measure averages, in Precision
terms the better average was obtained by Affinity
Propagation with 0.704 of precision, the second
was Spectral Clustering with an score of 0.694,
and the worst was K-Means with an average of
0.619, in recall terms, Spectral Clustering obtained
a 0.833 score, the next was K-Means with an
average of 0.747, the last was Affinity Propagation
which obtained a 0.606 score, finally the better
F-measure average was obtained by Spectral
Clustering with an score of 0.758, the next was
K-Means with an average of 0.677, at the end
was Affinity Propagation with an average score of
0.651, this is showed in Table 4, where the Spectral
clustering algorithm has the best result.

9 Conclusion and Future Work

While Affinity Propagation had the best precision
average, Spectral Clustering had the highest recall

and F-measure averages, being K-Means the
worst of the three algorithms. In this paper
the algorithms were tested with small datasets,
possibly this is a reason why Spectral Clustering
got the best results because it works better
with few clusters while Affinity Propagation works
better with many clusters and large datasets6.
K-Means uses heuristic algorithms to converge in
a possible local optimum, which can cause poorly
results depending on the initial random seeds that
K-Means choose, even if K-Means works well with
few clusters.

K-Means works with flat geometry while Spectral
Clustering and Affinity Propagation works with
non-flat geometry, due to the nature of the data
and the probabilistic nature of how words are
distributed, any two documents may share many of
the same words [10], theoretically with the non-flat
geometry of documents Spectral Clustering and
Affinity Propagation must have given the best
results, but is important to remember that the size
of the tested datasets wasn’t the appropriate for
Affinity Propagation.

Finally is important to analyze why Spectral
Clustering was the best in F-measure average;
this algorithm realize a dimensionality reduction
using the eigenvectors of the similarity matrix
before clustering in fewer dimensions (converting
the data into a flat geometry), this gives to
the K-Means phase of Spectral Clustering a
compressed version of the dataset but without
loss of information, practically, Spectral Clustering
transform a non-flat geometry into a flat geometry
that is the appropriate for K-Means algorithm.

The experimental evaluation of the algorithms,
shows that for small datasets with a non-flat
geometry Spectral Clustering gives the best
results in comparison with K-Means or Affinity
Propagation however is important to remember
that Affinity Propagation calculate the number of
clusters by itself unlike the other two algorithms,
in the tests both Spectral Clustering and Affinity
Propagation gave good results, obviously those
results were conditioned to the nature of the
analyzed datasets (size, distribution, number of
terms, etcetera). Spectral Clustering works well

6http://scikit-learn.org/stable/modules/clustering.html

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 429–437
doi: 10.13053/CyS-24-2-3369

Rafael Gallardo García, Beatriz Beltrán, Darnes Vilariño, Claudia Zepeda, Rodolfo Martínez436

ISSN 2007-9737

with few clusters and responds well to a non-flat
geometries, better that K-Means with a previous
dimensionality reduction.

Acknowledgements

We would like to thank to the vice-rectory of
research and postgraduate studies (VIEP) of the
Benemérita Universidad Autónoma de Puebla for
the economical support.

References

1. Arthur, D. & Vassilvitskii, S. (2007). K-means++:
The advantages of careful seeding. Proc. of the
Annu. ACM-SIAM Symp. on Discrete Algorithms,
Vol. 8, pp. 1027–1035.

2. Estivill-Castro, V. (2002). Why so many clustering
algorithms. ACM SIGKDD Explorations Newsletter,
Vol. 4.

3. Fahad, A., Alshatri, N., Tari, Z., Alamri, A.,
Khalil, I., Zomaya, A. Y., Foufou, S., & Bouras,
A. (2014). A survey of clustering algorithms for
big data: Taxonomy and empirical analysis. IEEE
Transactions on Emerging Topics in Computing,
volume 2, IEEE, pp. 267–279.

4. Frey, B. & Dueck, D. (2007). Clustering by passing
messages between data points. Science (New York,
N.Y.), Vol. 315, pp. 972–6.

5. Jones, K. S. (1972). A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation.

6. Lloyd, S. P. (1982). Least squares quantization
in PCM. IEEE Trans. Information Theory, Vol. 28,
pp. 129–136.

7. Powers, D. (2011). Evaluation: From precision,
recall and F-measure to ROC, informedness,
markedness and correlation. J. Mach. Learn.
Technol, Vol. 2, pp. 2229–3981.

8. Rajaraman, A. & Ullman, J. D. (2011). Mining
of Massive Datasets. Cambridge University Press,
USA.

9. Singh, V. K., Tiwari, N., & Garg, S. (2011).
Document clustering using k-means, heuristic
k-means and fuzzy c-means. 2011 International
Conference on Computational Intelligence and
Communication Networks, IEEE, pp. 297–301.

10. Steinbach, M., Karypis, G., & Kumar, V. (2000).
A comparison of document clustering techniques.
Proceedings of the International KDD Workshop on
Text Mining.

11. Zhao, Y. & Karypis, G. (2002). Comparison of
Agglomerative and Partitional Document Clustering
Algorithms.

Article received on 29/10/2019; accepted on 04/05/2020.
Corresponding author is Rafael Gallardo Garcı́a.

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 429–437
doi: 10.13053/CyS-24-2-3369

Comparison of Clustering Algorithms in Text Clustering Tasks 437

ISSN 2007-9737

