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Abstract. Depth reconstruction from single monocular
images has been a challenging task due to the
complexity and the quantity of depth cues that images
have. Convolutional Neural Networks (CNN) have been
successfully used to reconstruct depth of general object
scenes; however, proposed works use several stages
of training which make this process more complex and
time consuming. As we aim to build a computational
efficient model, we focus on single-stage training CNN.
In this paper, we propose five different models for
solving this task, ranging from a simple convolutional
network, to one with residual, convolutional, refinement
and upsampling layers. We compare our models with
the current state of the art in depth reconstruction and
measure depth reconstruction error for different datasets
(KITTI, NYU), obtaining improvements in both global and
local error measures.

Keywords. Depth reconstruction, convolutional neural
networks, single stage training, embedded refinement
layer, stereo matching.

1 Introduction

Reconstructing depth from a single monocular
image (opposed to stereoscopic images) is a
challenging task due to the required ability to
detect depth cues such as shadows, perspective,
motion blur, etc. [14]. Previous works in depth
reconstruction have tackled the general problem of
estimating the component of depth in a wide range
of images, mainly focusing on objects against
a solid or a complex background [20, 2, 4, 23,
19]; other works focus on city buildings and
people, paying special attention to the problem of

reconstructing depth for images where perspective
plays a predominant role [25].

In general, most successful models in the state
of the art—v. gr. [6, 2]—propose multi-stage
networks that require separate training for each
one of their stages, making the process of training
them complex and time consuming. In this paper,
we propose five Convolutional Neural Network
models capable of reconstructing depth from a
single image that require only one training stage.
The models proposed in this work are capable of
reconstructing depth both in a global and a local
view [14]. We test our models with both objects
and city roads with perspective.

This paper is organized as follows: in
Section 2 we describe related work to this
research; Section 3 describes the proposed
method; Section 4 shows the results obtained from
our proposal and a comparison with the state of the
art, and finally in Section 5 the conclusions of this
work are drawn.

2 Related Work

Depth reconstruction from a single image has
been tackled by different methods. Although using
Convolutional Neural Networks (CNN) has recently
become one of the best techniques, using CNN
to solve the problem of depth reconstruction can
be still considered at as a development stage due
to the complexity of the design of these networks.
One of the first works to use this technique can be
found in [7].
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They propose using two CNN: the first one
estimates depth at global view, and the second
one refines the local view. They establish a CNN
architecture to be applied to depth estimation and
propose a loss function.

In [6] using three CNN is proposed, one for
each stage to estimate depth of a single image.
The first network estimates depth at a global view;
the second network tries to estimate depth at half
the resolution of the input image, and a third one
refines or estimates depth at a local level. They
propose a new loss function. In [20] a single CNN
is presented that uses a pre-processed input based
on superpixels. They complement their work using
a probabilistic method to improve their results.
Then, from the same group [21] presents a new
architecture of their network maintaining the stage
of improvement of the image. Finally, a single CNN
in regression mode is presented in [2] to estimate
depth with a different loss function.

In general, the discussed architectures are
similar, being the main changes between them the
loss function, activation functions, number of filters
per layer, and size of the filter. Different databases
have been used to train and test their neural
networks, making it difficult to directly compare
their performances. Despite of this, one of the
works that can be considered to achieve the best
results in the state of the art is [2]. Additionally,
their architecture is based on a single-stage CNN.
They present results of reconstructing depth of
chair images against different backgrounds.

In the next section we present our proposal.
Based on Afifi and Hellwich’s CNN, our architec-
tures are based on a single CNN, but, among other
differences, we add local refinement in the same
training stage in most of our models.

3 Proposed Method

In this section we present our models based on
Convolutional Neural Neworks (CNN). We have
decided to name them according to the kind of
layers they use, namely: Convolutional layers (C)
[16]; reSidual blocks (S) [11]; Upsample layers
(U) [27]; and Refinement layers (R). We also add
biases to each layer. In Fig. 1 a representation of a
layer in the CNN models is shown.

Fig. 1. Single layer representation

As mentioned before we implemented Afifi and
Hellwich’s CNN model to compare our results,
as they perform depth estimation in a single
stage, depicted in Fig. 2. They use Convolutional
Blocks made by consecutive convolutional layers
as shown in Fig. 3.

3.1 Basic Models – Convolutional (C) and
reSidual-Convolutional (SC)

In this section we present two CNN models, the
first one (C:Convolutional) is presented in Fig. 5
and the second one (SC: reSidual-Convolutional)
is presented in Fig. 6. The main differences
between both models are the kind of layers used
in every layer, one of them only uses convolutional
layers and the other one uses residual blocks and
convolutional layers.

The Residual Block is shown in Fig. 4, it uses
an identity map which helps to improve the results
as mentioned in [11]. Both models consist of
five layers, four of them use Rectified Linear Units
(ReLU) [3] as activation function and the output
layer uses sigmoid as activation function to obtain
values between 0 and 1. In both models the first
two layers use max-pooling in order to reconstruct
depth at different spatial resolutions of the input
image. In every layer of the models the kernel
size is 3x3 and subsequently it changes in each
layer. Both models reconstruct depth at both global
and local.

3.2 Models with Refinement

Aiming to include refinement in a single training
stage, we developed three additional models.
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Fig. 2. CNN model by Afifi and Hellwich [2]

Fig. 3. Convolutional Block [2]

The main difference between them is the
upsample operation and the refinement method.
The refining methods used in the CNN models are
based on Xu et al. [26] and Dosovitskiy et al. [5],
both refinement methods use convolutional layers
to extract features directly from the input images
at local level, the main difference between them
is the number of convolutional layers and how it
is included on the full CNN model, also Xu et
al. performs refinement before the upsampling
stage and Dosovitskiy performs refinement after
the upsampling stage.

3.2.1 reSidual-Convolutional-Refinement
(SCRX) Model

The block diagram of this model is presented in
Fig. 7. The input image is the left image of the
dataset and the target image is the depth map
obtained from the stereo matching algorithm. In
Region A we can see the Reduction operation
which tries to reconstruct depth at global view; it
consists of four Residual Blocks with kernel size of
3×3 and the activation function ReLU; the residual

block is used because we tried to avoid weights
with zero value.

We use Max-pooling only on the first two
Residual Blocks to reduce image resolution and
reconstruct depth at different image sizes. At the
end of Region A we use a convolutional layer with
a sigmoid activation function to limit output limits
beetween 0 and 1. Region B tries to estimate depth
at local view, joining the output of Region A and two
convolutional layers with Max-pooling. The refining
method in this model was taken from the work of
Xu et al. [26]—hence the X in SCRX. The output of
the model is given by the convolutional layer with
kernel size 3 × 3 and a sigmoid activation function
in Region B.

3.2.2 reSidual-Convolutional-Refinement-
Upsampling Models (SCRXU and SCRDU)

These models consist of an additional upsample
layer. Two different refining methods were used in
each model: the refining method in the first model
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Fig. 4. Residual Block [11], implemented for our CNN models

(SCRXU) is based on [26] and for the second one
(SCRDU) is based on [5].

The block diagrams of these models are
presented in Fig. 8 and Fig. 9. The input image
is the left image of the dataset [8] and the target
image is the depth map obtained from the stereo
matching algorithm. In Region A in both models,
the Reduction operation is performed. These
layers aim to reconstruct depth at global view;
they are composed of four Residual Blocks with
kernel size of 3 × 3 and ReLU activation function.
The residual block is used because we are trying
to avoid null weights. We use Max-pooling
only on the first two Residual Blocks to reduce
image resolution and reconstruct depth at different
image sizes.

At the end of Region A, we use a convolutional
layer with a sigmoid activation function to limit
output limits between 0 and 1. Region B in both
models performs the upsample operation by using
two Residual Blocks and a Convolutional layer, the
kernel size in this Region is 3 × 3 in every layer.
Finally, Region C in both models is the refinement

stage, which tries to estimate depth at local
view, consisting of two convolutional layers with
Max-pooling and ReLU activation function, and a
convolutional layer with sigmoid activation function.

As the output of the CNN is smaller than the input
image, due to the CNN operations, to recover the
original size of the input image, we use Bilinear
Interpolation [10], after the last convolutional layer.
It is to mention that we describe our models
as multi-stage models, but we considered them
single-stage models because we only trained them
once, we do not train each stage separately as [7]
and [6], also we do not apply pre-processing to the
input images. The output of all the CNN models are
normalized between values of 0 and 1, to optimize
the learning of them according to [12], then the
images can be converted to grayscale values.

3.3 Loss Function

To train our CNN model we have to minimize
an objective loss function. This loss function
measures the global error between the target
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Fig. 5. Convolutional (C) Model

Fig. 6. reSidual-Convolutional (SC) Model

image and the depth reconstruction given by
the CNN.

We use the L2 norm as the loss function, and
it is used by both models. The L2 norm can be
calculated as shown in eq. 1.

L2 =
1

2n

n∑
i=1

‖y(i)− y′(i)‖22 , (1)

where:

y’ = Reconstructed depth map.

y = Target depth map.

n = Number of images per batch.

3.4 Error Measures

To evaluate our models we use several error
measures commonly used to compare depth
reconstruction with the original targets [20, 2].

Root Mean Square Error (RMSE):√√√√ 1

|T |
∑
y′ε|T |

(y − y′)2. (2)

Mean Squared Error (MSE):

1

|T |
∑
y′ε|T |

(y − y′)2. (3)

Absolute Relative Difference (ARD):

1

|T |
∑
y′ε|T |

|y − y′|
y′

. (4)
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Fig. 7. reSidual-Convolutional-Refinement (SCRX) Model

Logarithmic Root Mean Square Error (LRMSE):√√√√ 1

|T |
∑
y′ε|T |

(log(y)− log(y′))2. (5)

Logarithmic Root Mean Square Error Scale-
Invariant (LRMSE-SI):

1

|T |
∑
y′ε|T |

(log(y)− log(y′))2. (6)

Squared Relative Difference (SRD):

1

|T |
∑
y′ε|T |

‖y − y′‖2

y′
. (7)

where:

y’ = Reconstructed depth map.

y = Target depth map.

T = Number of pixels on the images.

RMSE, MSE and ARD tend to represent the
global view error in the images, while and LRMSE,
LRMSE-SI and SRD are more representative of the
local view error.

4 Experiments and Results

In this section we describe the results of our
models. We experimented with two different
datasets: KITTY and NYU.

4.1 KITTI Dataset

We used the object tracking section of The KITTI
Vision Benchmark Suite [8]. This dataset contains
15,000 outdoor scenes given as stereoscopic
images. This dataset does not directly contain
the target depth maps, so we had to reconstruct
the target depth maps using different algorithms
such as Semiglobal stereo matching [13] and
Blockmatching stereo algorithm [15]. In Fig. 10
an image sample to compare different stereo
matching algorithms to obtain the target depth map
is shown. Finally, we decided to use the Efficient
large-scale stereo matching [9] due to its quality
and its evaluation reported in [22]. This algorithm
receives a pair of stereo images and its result is the
target depth map (see Fig. 11).

We trained our models with Backpropagation
[18] and Stochastic Gradient Descent [17]. We
used 1,000 iterations and a batch size of 40. From
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Fig. 8. reSidual-Convolutional-Refinement (Xu)-Upsampling (SCRXU) Model

Fig. 9. reSidual-Convolutional-Refinement (Dosovitskiy)-Upsampling (SCRDU) Model

Fig. 10. Target depth map comparison with different stereo matching methods, (A) Stereoscopic images, (B) Semiglobal
Matching, (C) Blockmatching method, (D) Large-Scale matching method
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Fig. 11. Target depth map creation

the dataset we used 12,482 images (left eye) and
its respective target depth map for training, and
2,518 images for testing. Both input and output
images have a size of 147 × 37 pixels, giving
T = 5439, d is the number of input channels; for
grayscale d = 1 and n = 40 due to the batch size.
All images were converted to grayscale before
training and testing depth estimation.

We implemented our models with the Python
toolbox, Tensorflow [1] which can be trained on
a GPU for swift performance. We trained our
models on a GPU NVIDIA GTX 1080; it took
approximately two days for training and less than
a second for testing a single image. As explained
in Section 2, for comparison we implemented the
model proposed by [2].

This model can be trained with the L2 norm and
still obtain better results than the rest of related
work. Figure 12 shows a sample of results of
our implementation AH of [2], and our proposed
models C, SC, SCRX, SCRXU and SCRDU.

Qualitatively comparing results shown in previ-
ous figures, it can be seen that our models are
capable of reconstructing depth at global view, with
slightly better attention to details in local view than
previous proposals. For global view we refer to
the image in general avoiding small details and
for local view we refer to small details such as
cars, pedestrians, etc. For a quantitative analysis,
Table 1 presents the error measures of all our
models and the reimplemented model. RMSE,
MSE and ARD measure the global view error in the
images, while and LRMSE, LRMSE-SI and SRD
measure the local view error.

Comparing our methods with the state of the art,
we obtain better results with most of our models,
being SCRX Model better at global view while SC
Model performs better at local view.

4.2 Improved SCRX Model

While previous models were tested with images of
147 × 37 pixels, we selected the model with best
performance (SCRX) and modified it to process
RGB inputs (instead of grayscale) resulting in d = 3
and larger images. We tested with inputs of 310×94
and compared results. A sample output is shown
in Figure 13. Quantitative measure errors are listed
in Table 2. Comparing to Table 1, it can be seen
that using larger RGB inputs allows the network to
better estimate depth.

4.3 Tests on the NYU Dataset

The NYU v2 dataset [24] consists of 1,449 images
of indoor scenes, from which 795 are used for
training and 654 for test (the standard training-test
split provided with the dataset). Images were
resized to 320 × 240 pixels prior to training. We
performed tests on this dataset with the improved
SCRX model. Figure 14 shows a sample output
with this dataset. Both grayscale and color inputs
were tested.

As with the previous dataset (KITTI), better
results were achieved by using color images (See
Table 3). Quantitatively, our model performs better
than the prior work as shown in Table 4, the main
difference between the results of our model is that
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Fig. 12. Sample output on KITTI Dataset for models [2], C, SC, SCRX, SCRXU and SCRDU
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Table 1. Comparison of error measures between our approach and AH [2] (smaller is better)

Error AH C SC SCRX SCRXU SCRDU
RMSE 0.1496 0.1301 0.1082 0.1051 0.1218 0.1348
MSE 0.0260 0.0193 0.0132 0.0124 0.0166 0.0213
ARD 0.4540 0.5858 0.4813 0.4625 0.4661 0.4350
LRMSE 0.3377 0.3618 0.3048 0.3081 0.3239 0.3260
LRMSE-SI 0.2068 0.2269 0.1816 0.1820 0.1980 0.1931
SRD 0.9865 1.1982 0.8678 0.8016 0.9528 0.9303

Fig. 13. Sample output of improved SCRX Model. (a) Input image; (b) Target depth map; (c) Output for grayscale input;
(d) Output for color input

Table 2. Results of improved SCRX model on the
KITTI dataset

Grayscale Color
RMSE 0.0964 0.0881
MSE 0.0110 0.0091
ARD 0.3539 0.3434

LRMSE 0.2814 0.2726
LRMSE-SI 0.1588 0.1494

SRD 0.5371 0.5326

we use all the pixels from the target depth map of
the dataset, avoiding the cases of invalid pixels.

5 Conclusions and Future work

We have presented five CNN models that require
only a single-stage training and perform refinement

Table 3. Results of improved SCRX model on the
NYU dataset

Grayscale Color
RMSE 0.2138 0.2117
MSE 0.0478 0.0473
ARD 0.0334 0.0205

LRMSE 0.3181 0.2915
LRMSE-SI 0.2376 0.2225

SRD 1.3493 0.7574

in the same stage. We tested our models with
an existing dataset of stereoscopic images and
compared their performance with the state of the
art in depth reconstruction.

We found that the use of a residual block instead
of convolutional layers improves results.
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Fig. 14. Sample output of the improved SCRX Model on the NYU dataset. (a) Input image; (b) Target depth map; (c)
Output for grayscale input; (d) Output for color input

Using upsample layers improves quantitative
results as well, although this may not be directly
attested in some cases when examining results
qualitatively – some objects appear to be blurred
and less defined because of this layer. Using
bilinear interpolation instead of upsampling layers

improves results. Perspective of the image takes
an important role on the reconstruction of depth.
Quantitatively, local depth can be estimated with
our models, but there is still room for improvement.
As a future work we plan to experiment with
different kernel sizes, different loss functions
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Table 4. Comparison between the state of the art and our proposal on the NYU dataset (smaller is better)

Authors RMSE ARD LRMSE

Ours Grayscale 0.2138 0.0334 0.3181
Color 0.2117 0.0205 0.2915

Liu et al., 2014 DC-CRF 1.0600 0.3350 0.1270
Eigen et al., 2014 0.8770 0.2140 0.2830
Eigen et al., 2015 0.6410 0.1580 0.2140

Baig et al., 2016 GCL 0.8156 0.2523 0.0973
RCL 0.8025 0.2415 0.0960

Mousavian et al., 2016 0.8160 0.2000 0.3140
Lee et al., 2018 0.5720 0.1320 0.1930

and activation functions to further improve our
proposed models.
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