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Abstract. The 2D discrete shearlet transform for a given
function f in L?(R?) has been defined through dilation,
shear and translation parameters in such a way that
the continuity of f at (0,0) can be studied by means
of the convergence of the discrete shearlet transform
as the dilation parameter converges to zero. Computer
experiments illustrate this property by detecting edges in
images that correspond to discontinuities.
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1 Introduction

Wavelets are used to approximate smooth func-
tions with point singularities. In higher dimensions
wavelets detect the point singularities but do not
give information about the directions where these
singularities occur, specially discontinuities along
lines or curves [1]. This problem has been studied
by different class of wavelets like shearlets, which
are obtained by means of dilations, translations
and shear parameters [2].

Shearlets have been defined in such a way that
they provide not only the point singularities but
also the directions of these singularities. That is,
the shearlet representation is more effective than
the wavelet representation for the analysis and
processing of multidimensional data [3].

Wavelets do not detect, with good approxi-
mation, the geometry of images specially with
edges. Hence, shearlets have been defined
under a similar framework of wavelets, but with
composite dilations. Thus, shearlets have been a
very useful tool to obtain better theoretical results
and applications than the ones obtained from the
wavelet theory [1].

In one dimension, for a given admissible function
h € L?(R), the continuous wavelet transform for a
given signal f € L?(R) is defined as [4]:

tafo) = [ 1) B (T2

where a #0and b € R.
In this case, h € L?(R) is admissible if:

0<Oh_/|h mdk<oo

The discrete wavelet transform is obtained
by considering discrete values for the dilation
parameter a and the translation parameter b. That
is, if a = af* and b = nbpay’, with ag > 1 and
bp > 0, are fixed and m,n € Z, the discrete
wavelet transform of f € L?(R) with respect to the
admissible function » € L?(R) is given by [5]:

(Lnf)(ag", nboag")

1 —(/x— nboa(’)”)
= T h dx.
IRCh (=
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The dilation and translation operators J,» and
Thpoar are defined respectively as:

(Jug h)(x) =

7 ()
Vg \ag'
(Tnboa(’)" h)(z) = h(z — nboag"),

then the discrete wavelet transform can be
written as:

(th)(agn’ nboag") = <fa Tﬂboagl Ja(’)nh> .

Moreover, if (Tnpgar Jamh)(mnyczxz 1S a tight
frame in L?(R), then for all f € L?*(R) there is a
positive constant C' such that the inversion formula
is given by [6]:

1
f: 6 Z <f»Tnbga('{lJaglh>Tnboa0mJa0mh~

m,n€EZ

For n dimensions, the dilation parameter « is in
R+, and the translation parameter b is in R™, where
b= (bl,bg,...,bn) with b; > 0,:=1,2,...n.

In this case, fora > 1 andj = (J1,J2, .-
Z™, the n x n matrix M (a?) is defined as:

»Jn) N

M(ad) = diag(a’*,a’, ..., a""),

and for b = (bl,bg, ce
M (b) is defined as :

,by) in R, the n x n matrix

M(b) = diag(by, b, ..., by).

Now, for a > 1 and b = (by,bz,...,b,) in R7,
the dilation and translation operators are defined
respectively as:

1

(JM(aj)h)(Z‘) = Wh (M—l(aj)a?> ,

where z € R", j € Z", and
(Tar-1 @y yeh) (@) = h(z — M~ (a? )M (b)k),

where x € R™ and k € Z"™. Hence, the discrete
wavelet transform in n dimensions for f € L?(R")
with respect to a radially symmetric admissible
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function h € L?(R"), is defined as [7]:

(Lnf) (M~ (a’), M~ (a’ ) M (b)k)
= (fs Trr—1 (@ myrd il -
In this case, h € L*(R") is admissible if:

o0 1 Y
| Pk < o, where Tiy) = n(lu)
0

Moreover, if (Tar—1(ai)ym)eIni(ai) 1) (k) ezn xzn 1S @
tight frame in L2(R"), then for all f € L?(R") there
is a positive constant C' such that [8]:

1
fia Z (fs Trr-1 @iy M)k Im(airh)

§, k€T

“Thrr-1(aiy M)k M (ai) P

In this paper, in Section 2 the continuous shearlet
transform is studied in two dimensions and in
Section 3 discrete values for the dilation, shear
and translation parameters are taken to obtain the
discrete shearlet transform following the same idea
from the definition of the discrete wavelet transform
and then, in Sections 4and 5 a tight frame is
considered in L?(R?) to analyze the continuity of
a given function f € L?(R?) under the hypothesis
of the fast convergence of its discrete shearlet
transform. In Section 6, an example is given to
illustrate the results by means of a computational
experiment, and finally in Section 7 conclusions
are presented.

2 Notations and Definitions

First, an overview of the continuous shearlet
transform in two dimensions is given. In this case,
the shearlet transform is defined with respect to:
dilations, shears and translations parameters. That
is, the following family of operators are used:

(TyE s Jah) () = a” Th(A™ (a)S 72 (s)(z — b)),

where the matrices A(a) and S(s) are given in the
following definition, [9].

Definition 2.1. Fora > 0 and s in R, let:

A(a)(g \/g> and S(s)<(1) f)
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Note that A~1(a) = A(a~") and S—(s) = S(—s).
AlSO, A(al)A(ag) = A((Llag), where ay, @y > 0, and
S(s1)S(s2) = S(s1 + s2), where s1,s2 € R.

Definition 2.2. For h in L?(R?), the dilation,
translation, modulation and shear operators are
defined respectively by:

h (A~ (a)z), where a > 0

(Jah)(x) = \/de;w

and x € R?,
(Tyh)(z) = h(z — b), where z,b € R?,
(Ech)(z) = e2™cTh(x), where z, ¢ € R?,
(Ksh)(xz) = h (S™'(s)x), where s € Rand z €

R2. Besides (KI'h)(z) = h (S~ (s)x).

From the previous definitions the next lemma is
obtained directly.

Lemma 2.3. The operators J,, Ty, E., K preserve
the norm in L*(R?).

Corollary 2.4. For h in L?>(R?), a > 0, s € R and
b € R?, we have:

ITo K s Jahll2 = [|A]]2-

Also, the following results come directly from the
definition of the Fourier transform.

Lemma 2.5. For the operators J,,, Ty, K, and for h
in LY(R?) N L?(R?):

—

J.h = J1ih, wherea > 0,

1
Tyh = E_yh, where b € R?,
E.h = T.h, where ¢ € R?,

K.h = Kfsﬁ, where s € R.

In this case, the Fourier transform of h is taken
as

h(€) = /R ) e 2T (1) d.

The shearlet transform, as well as the wavelet
transform, can be defined from the topological
point of view, so that a unitary shearlet group
representation can be used to obtain the inversion
formula.

Definition 2.6. Let G = {(a,s,b)|a > 0,s € R,b €
R?}. For (ay, s1,b1) and (as, s, b2) in G, define:

(alaslvbl) : (a2782ab2)
= (alag, s1 + ng, by + S(Sl)A(al)bg)

Remark 2.7. With this product G becomes a locally
compact topological group with identity (1,0,0),
where (a,s,b)"! = (%,—7,— 1(a)S~1(s)b) is
the inverse of (a,s,b). Moreover, the left Haar
measure is d(a,s,b) = Zsdadsdb, and the right
Haar measure is d,(a,s,b) = ldadsdb [9]. That
is, G is a non-unimodular group.

Remark 2.8. The shearlet group is isomorphic to
the locally compact group G x R?, where:

G ={S(s)A(a)|la > 0,s € R}.

Thus, it is a subgroup of the following group of
rotations GLy(R) x R? with multiplication defined
by (M,b) - (M',b') = (MM, b+ Mb).

For (a,s,b) in G the three parameter family of
operators is defined as:

Ul(a,s,b) = Ty K¢ Jq.
In this case, for h € L*(R?):
Ula, s, b)h(z) = (ToKsJoh)(z) =
= (Jah)(S7(s)(x — 1)),
=" h(A(0)S7H (s) (@ — b)),

Moreover, U is a unitary representation of G
acting on L?(R?).

Definition 2.9. A function h in L?(R?) is
admissible if:

/ (h, U (a, 5, b)1)[2 d(a, 5, b) < o0
G

(KsJuh)(xz —b),

Lemma 2.10. Suppose that f,h are in
L?(R?), then:

/G [, Ula, 5,5)h) 2 d(a, 5,b) = Cu | FI

Ch ::/
R2

where

~ 2 1
h(kl,kz)’ s dkydky.
1
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Proof. See [9]. O

Remark 2.11. From Lemma 2.10, we have that &
in L?(R?) is admissible if and only if:

Ch = /
R2

Definition 2.12. Let h be an admissible function i
in L?(R?), and let (a, s,b) be in G. The continuous
shearlet transform with respect to h is defined as
the map:

~ 2
‘ L iy < 00, (2.1)

Rk, k)| 1
1

Si(a,s,b) : L*(R? dx) — L*(G,d(a,s,b)),
such that for f in L?(R?):
(Snf)(a,s,0) = (f,Ula,s,b)h) = (f, ToKsJah) -
That is:
(Snf)(a,s,b)

1 T a—=1 1 _ "
:/sz(x)detAm)h(A ()S~1(s)(x — b)) da.

The continuous shearlet transform can be
expressed as convolution, as the following
remark states.

Remark 2.13. Let h be admissible in L?(R?). Then
for f € L?(R?) and (a, s,b) € G:
(Shf)(aa S, b) = [(KSJGE)N * f] (b)7 (22)

where the symbol ~ means h™(z) = h(—z).
The next result corresponds to the inverse
shearlet transform, [9].

Lemma 2.14. If f h are in L*(R?), and (a, s,b) €
G, then:

1

=G

/G (S f)(a, 5,b)U (a, 5, b)h d(a, 5, b),

where the convergence is in the weak sense.

Remark 2.15. In the case of band limited
shearlets, that is when supph is compact, the
function h € L?(R?) is taken as:

Btw) = A wa) = ()i (2.
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where w = (wy,ws) € I@, with w; # 0, and
where h; is a continuous wavelet, h; € C*(R),

and supph; C [-2,—3] and where hy is such

that hy € C°(R) and supphs C [-1,1]. This
generating function was used in [10] to show that
the continuous shearlet transform resolves the
wave front set.

Moreover, this function satisfies the admissibility
condition given in (2.1). That is h €

L2(R?) is admissible if h(w) = h(wi,wy) =
Tor (w1 )ho (IL) with w; # 0 and by € L2(R)

- 1~ 2 da
satisfies / ‘hl(ag) — = 1, fora.e. ¢ eR,
0
and ||h2H2 =1.[10].

3 Discrete Shearlet Transform

To define the discrete shearlet transform discrete
values for the dilation, shear and translation
parameters are considered. In this paper this
transform is applied to analyze the singularities
of functions in L?(R?) by means of the decay of
the discrete shearlet transform. For this purpose,
similar matrices are considered like the ones given
in Definition 2.1 with e = 4, and s = —1.

Definition 3.1. Consider the following four matri-

ces:
a=

e

Then for j, k € Z:

=2\ OL\EO‘,_.
h{’)\)"" < [V}
N——— N———
s S5
[ -
Il Il
/N N
| S =
— =
\
—_ O — =
N——— N———

1
J _ 227 k _
Al_ O 21])a Bl_ 0 1)7
W 2% 0 Bk _ 1 0
2700 2%_7 ’ 27\ -k 1 )
Moreover:
_ 227 0 _ 1 k&

J _ k __
=0 ») om=(o ),
_ 210 Lk 1 0
Ay7 = 0 22],), By = I 1).
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Definition 3.2. Consider the group G of the form:
G ={(M,2): M € GLy(R), z € R?},

where M is the set of matrices of size 2 x 2 of the
form: ‘
M = My(jk) = A’ BE,

wherej € Z, k€ Z,andd = 1, 2.

The group law in G is given by (M, z) - (M, = ) =
(MM', Mz + z), where the inverse is (M, z)~!
(M~1, —M~1z), and the identity is (1, 0).

Remark 3.3. Note that for d = 1:

. i 0 1 —k
1 __k
( 227 122j )’
0 %

and for d = 2:

M,(jk) = A}BS =

/~
=
¥~

sl o
~
/~
|

ol
[ )
"

Hence, note that for d = 1, 2:

det My(jk) = det A} = —. (3.1)

Definition 3.4. For h in L?(R?), and each d =
1,2, define the dilation and translation operators
respectively by:

(JMd(jk)h)(x) = Wh (Md_l(]k)x),

where z € R? and j, k € Z.

(Tary(jreyh) (x) = h(z — Ma(jk)l), where = € R?,
j k€Z,andl € Z2.

Remark 3.5. For d = 1,2, the operators
Javary and Tag,ey  Preserve the norm in
L?(R?). Moreover, the adjoints are their
inverses respectively.

Definition 3.6. 1 € L?(R?) is admissible [9], if:

- 21
0<Cy ::// ’h(yl,yg)‘ —5dyy dys < oo.
R JR Y1

Following [11], the discrete shearlet transform is
defined as:

Definition 3.7. Let i be an admissible function in
L?(R?%), and foreach d = 1,2, let (My(jk), My(jk)l)
in GLy(R) x R%. Then the discrete shearlet
transform of f in L?(R?), with respect to & is
defined as:

(Dnf)(My(5k), M2(jk), M1(jk)l, M2(jk)l)

2
Z I Tora Gy magimh) -
d=1

Definition 3.8. The family of functions:

{Tara iy I mamy e}

in L2(R?) with j,k € Z,l € Z? and where d =
1,2,7 > 0is a tight frame [11], if there is a positive
constant C such that for any f € L*(R?):

2

CIfIE = D [ TaraGrnIaago )| -

jokld

Theorem 3.9. For any f in L?*(R?) and for a given
admissible function h € L*(R?), if Tar,(jkydaa ey h
is a tight frame, then there is a constant C > 0
such that:
1
f=c > (Do s h) TataGendaraoh,
J,k,l,d

(3.2)
where the convergence is in the weak sense, and
where j, k € Z,1 € Z?,andd = 1,2. [11].

Remark 3.10. According to Definitions 3.4 and 3.7,
the discrete shearlet transform can be written as:

(Dnf)(My(5k), M2(jk), M1(jk)l, Ma(jk)I)

2
-y / @) Tty on sy o) (@),
d—1 Y R?

2
= ;::1 /RQ F (@) (Tagymyh) (@ — Ma(jk))dz,

2

\/deth jk‘
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That is:
(th)(Ml(jk) M2(jk)vM1(jk)l7M2(jk)l)

Z \/(M

h (B;’“A;% - l) dz,

———N (B A e~ 1) do,

Fla)———
R? \/detA]
f(z) h (B;’fA;jx - z) dz,

1
+ .
R? \/ det A

f( ) (22jf£ +k2]132711,2j£€2712)d
R2 223

f( ) ( j£C1 —11,22j$2+k2j$1 —lg) dz.
R2 22]

Lemma 3.11. The discrete shearlet transform can
be expressed as a convolution. That is:

(Dnf)(Mi(jk), Ma(jk), M1 (jk)l, Ma(jk)I)
2

=" [aiao®)”™ = £] (Ma(GRD),
d=1

where ~ means ¢~ (x) = ¢(—x).

Proof. From (3.3):

2

Z (Jagaiimh) ™ * f] (Ma(jk)0),

d=1

= I, J h
%/RQ( Ma(ik)h)

2
- ;/R2 (Tary i h) (@ — Ma(jk)D) f(z)dz,

T (Ma(jk)l — z) f(x)dw,

2

1
; /RQ \/ detAZl

= (Dnf)(My(jk), M2

= M Ma(jk)~ e = 1) f(x)dz,

4 Partial Result

Lemma 4.1. Suppose h be in Cy(R?) is an
admissible function not identically zero, such that
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h(x)dx = 0. Consider f in L?(R?), and for each
d =1,2, let:

(P £)(Ma(jk), Ma(jk)1)

1
— {f Ty emidarimh)
R (fs TaaaGryn T aaa iy hy)

If f is continuous in a neighborhood of x = 0 € R?,
then for each d = 1,2, and any j,k € Z and any
l€72:

lim PD £ (My(ik), Ma(jk)l) =
a0 00 ) Malik), Ma(GR))

Proof. Note that if §j —» +4oo, then from
(3.1), we have detMy(jk) -» 0. Hence,
from (2.2), and for any d = 1,2, the
function (d)f is continuous for any

(Ma(jk), Ma(jk)l) € GLy(R) x R2.

Consider now the case when j — +oo, then
detMy(jk) — 0. Thus, by hypothesis suppose
that f is continuous in a neighborhood of z = 0
containing the closed ball Br(0), where R > 0, and
take My (jk)! in the open ball Br (0).

Now, since h € Cy(R?) there is L > 0 such
that supp h C Br(0). Then since the adjoints of
the operators T, (jxy, Jar, (k) are their inverses
respectively (Remark 3.5), then for each d = 1, 2:

(P £)(Ma(jk), Ma(jk)l)
1

= JEnnoh (> TaryGryd maGiry by »
1

N T) J_1 T_l' ah>7
deth(jk;)< Ma(jk) Md(jk)lf

\/CW/BL(() Md(Jk) Md(jk)lf)( x)h(z)dz,
- Toit cionf (Ma(jk)z)h(z)dz,
a(jk)
Br(0)

— [ H0Mai)e + MR () da
Br(0)
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Since / h(z)dx = 0, and f is continuous near 0,

R
it follows that for any j,k € Z and any [ € Z2:

li D Y (M4 (ik), My(ik)l
(Md(jk)’M;r(r;k)lHo’o)(Ph ) (Ma(jk), Ma(jk)0),

= f(0) /BL«)) h(x)dz = f(0)-0=0.

5 Main Result

Theorem 5.1. Suppose h be in Cy(R?) is an
admissible function not identically zero, such that

/R hz)dz = 0.

Tarkyndaaivyh is a tight frame.  Consider f in
L*(R?) and (Mq4(jk), z) € GL2(R) x R?.
Ifforeachd = 1,2:

For d = 1,2 suppose that

(d) :
im P My(5k), zq),
(a1 0, 5y P I PalGR). 20)
exists for each k in [—Q, Q] for some positive Q € Z
and any z!; in an open neighborhood of z = 0 € R?,
then f in L?(R?) is continuous in a neighborhood
ofr =0 € R%

Proof of Theorem 5.1. Suppose that for each d =
1,2:

(P F)(Ma(k), 2) = Fa(0, 20),

(5.1)
exists for each k in [—-Q, Q] and any z/, in an open
neighborhood containing the closed ball Br(0),
with R > 0.

Now for fixed z in the open ball Br(0) and y €
R2, for each d = 1,2 let:

i
(Ma(jk), za)—(0, 2)

Za(Ma(jk), 2, y),

(=) (P F)(Ma(ik), = + Ma(jk)y),
=qif j-» —00, and
h(—=y)Fa(Ma(jk),x) if j— —oo.
(5.2)
Note that for such z, the function Z; is
well-defined for all j € Z, k € [-Q, Q], and y € R?.

Then we have the following three Claims.

Claim 1. For each d = the function Z; is
continuous in GLy(R) x BR( ) x R2.

Proof. See Appendix O

Claim 2. For each d = 1,2 and fixed © € Bg(0),
the triple series:

ZZZId My(jk), z,l — M,

JEL kELeZ?

7 Gk)z),

converges uniformly on Br(0).
Proof. See Appendix O

Claim 3. For each d = 1,2 and =z € Bg(0), the
function:

)= > Ty (Ma(jk), x,1 — My ' (jk)x) ,

JEZ kEL €72
is continuous at x = 0.

Proof. See Appendix O

Back to the proof of Theorem 5.1, for any integer
r >0, any z € R2, and for each d = 1,2, define:

e Z o> TG daaGmh)

j=—r k€E€ZIcZ2

1
——————h (My(jk)x —1).
o (Matik)e =)
Then by Claim 3, for each d = 1,2 and for any:
x € Bg(0),
Jim Uy (z) = Wa(z).

That is, for each d = 1,2, it follows that Uy, —
W, pointwise on Br(0) as »r — oo. Hence, Uy, +
Us,» — Wy + W, pointwise on Br(0) as r — oo.

On the other hand from (3.2), Uy, + Uy, — Cf
weakly in L*(Mas x R?). Hence, f = &(W; + Wa)
almost everywhere, and due to Claim 3, since
Wi and W, are continuous at = = 0, then f is
continuous at z = 0.

This completes the proof of Theorem 5.1. O
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Fig. 1. Image IMG1 with discontinuity along z1 = x2.
Top view projection as gray scale heat map (left) and a
colored angular proyection (right)

0 20 40 60 80 100 120 140

Fig. 2. Image IMG2 with discontinuity along z1 < 64(1 +
sin(mx2/64)). Top view projection as grayscale heat map
(left) and a colored angular proyection (right)

Fig. 3. Shearlet coefficients illustration for IMG1: black
pixels for continuous sections and clear pixels along
discontinuities

6 Experiments

To illustrate the main results given in Lemma 4.1
and Theorem 5.1, grayscale images with width W/
and height H were processed. Grayscale pixel
values are in [0, 255] where 0 means a black pixel
and 255 means a white pixel. Note that, although
f € L?(R?), pixel values are integer and the energy
of the image is given by the sum of the square
values of the pixels.

An image IMG with W = H = 128 was built from:

f(z1,m0) =255 x e~ (m1_64)?1r2(m2_64)2 ,

by getting integer values. Since IMG represents a
continuous gaussian function, a cross section was
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doi: 10.13053/CyS-24-2-3372

produced with zero values for x; < x> to get image
IMG1 with two continuous sections, as is shown in
Figure 1.

In a similar way, image IMG2 was built from IMG
with zero values for z; < 64(1 + sin(wz2/64)).
Figure 2 shows a top view projection for IMG2
(left) as grayscale heat map and a colored angular
projection (right).

In both cases, for IMG1 and IMG2, the insertion
of zero values aims to define black regions and
discontinuities to be studied. Shearlab [12]
software was used to get the shearlet coefficients
for IMG1 and IMG2. For a single shearlet
scale, N = 9 decomposition bands are obtained
for each image. To illustrate how the shearlet
transform coefficients tends to zero in continuous
sections, shearlet coefficients were scaled to
[0,255] to appreciate a 128 x 128 grayscale heat
map where dark pixels mean close to zero values
(shearlet transform converges) and discontinuities
(where shearlet transform does not converge) are
perceived as non-black pixels ("clear” pixels that
tends to white).

Note that by translation to any point 2 € R?, and
not only at (0, 0), the results described in Lemma
4.1 and Theorem 5.1 show that:

1. If we take a point in the black zone of the
shearlet transform (where it tends/converges
to zero) then by Theorem 5.1 the function is
continuous.

2. If we take a point in the white region of the
shearlet transform (the shearlet coefficients
takes large values, meaning that it does not
converge) then by Lemma 4.1 the function is
not continuous.

For IMG1, two illustrative shearlet images were
chosen as high-frequency bands and they are
shown in Figure 3 where clear pixels follow the line
corresponding to x; = z» as it was expected from
Figure 1.

For IMG2, eight shearlet images were chosen
(non-low pass frequency bands) and they are
shown in Figure 4 where there are clear pixels
along z; = 64(1 + sin(wz2/64)) by detecting
the discontinuity.
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Fig. 4.

Shearlet illustration with black pixels
on continuous sections and clear pixels along a

sinusoidal discontinuity.
different direction

Each subfigure refers to a

Note that subfigures of Figure 4 have distinct
directionality of shearlets and non-dark pixels line
up to 8 different directions.

To expose the directionality of shearlets an
image IMG3 with zero values except at (63, 63) with
a 255 value was generated to simulate a pulse
embedded in 128 x 128 pixels. The corresponding
images built from the shearlet coefficients are
shown in Figure 5. Note the directionality change
counterclockwise when reading subfigures from
left to right and top to bottom in Figure 5.

Fig. 5. lllustration of the shearlet directionality for IMG3
from a centered pulse. Zoom to 30 x 30 pixels

Additionally, the 2D discrete shearlet transform
was applied to the "Barbara” image (see Figure 6)
and from the shearlet coefficients 8 subfigures
were generated (see Figure 7) where it is possible
to appreciate pixel patterns that match the different
directions illustrated in Figure 5.

7 Conclusions

There are several works about application of
shearlets, in particular in two dimensions for
images with edges.
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Fig. 7.
Barbara

lllustration of the shearlet directionality for

This manuscript aims to support these appli-
cations, once it was shown that it is possible
to study the continuity of a function in two

Computacion y Sistemas, Vol. 24, No. 2, 2020, pp. 469-480
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dimensions through the convergence of the 2D
discrete shearlet transform. Close to zero shearlet
coefficients are associated to continuous sections
in images, whereas high values of shearlet
coefficients reveal the edges.

Both properties of detecting discontinuities
and providing directionality inside images, make
the discrete shearlet transform an interesting
and useful tool in applications such as image
classification and opens the possibility to extend
these results to higher dimensions.

8 Appendix A
Proof of Claim 1. If j -» —oco, then from (5.2):

Id(Md(.]k)v z, y)a
= h(—y) (P ) (Ma(jk), & + Ma(jk)y),

1
=h=v) detMa(GF)

1

\/detMy(jk)’

N(Inaryh) ™ * f] (@ 4+ Ma(Gk)y).-

(f, Tt maGmyg Iawh) -

= h(—y)

Since h € Cy(R?) and f € L?(R?), then
the convolution (Jar,xh)~ = f is a continuous
function. Then for each d = 1,2, the function Z,
is continuous in GL(R) x Br(0) x R2.

In this case, the Frobenipus norm is taken in
GL(R), where || A|| = (4, A)> .

Now if j — —oo, then from (5.1), for any
(0,$1,y1) S GL(R) X BR(O) x R2:

Id(Md(jk)a z, y)a

lim
(Ma(jk),z,y)—(0, z1,y1)
= lim h(—vy),

(Ma(jk),x,y)—(0, z1,y1) ( y)
(PO F)(Ma(ik), = + Ma(jR)y),
— h(— li PD £ (My(ik), 2a),
() ol (PG, 20)
= h(—y1)F4(0,21) = Zgq(0, 1, y1).

Therefore, for each d = 1,2, the function Z; is
continuous in GL(R) x Br(0) x R2. O
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Proof of Claim 2. Note that if j - oo, and if for

each d = 1,2, take —y = —I + M, '(jk)z, then
from (5.2):
Ta(Ma(jk), x, 1 = My (jk)z),
1
= h(=1+ M, (jk)z) ———,
( < (hz) detMy(jk)

A TaraGronaa ) -
Then, from (3.1):

|Id Md jk) xZ, [ —

< 112 1IAll2 h
<L

My (jk)z)|,

(=l + Mg (jk)z)|.

Now for a given positive integer V, define:

Ga(Ma(jk),1 = My (jk)x),
|Za(Ma(jk), z,1 — My (jk)z)]

ifjel— V,V], &)

12 All2 h

o5 (=l+ M, (R))],

ifj ¢ [-V,V].

Hence:

|Za(Ma(jk), 2z, 1 — My (jk)z)
< Ga(Ma(jk), 1 — My (jk)z),

M) ' (jk)z) € GL2(R) x R2.

)

for all (My(jk),1 —

On the other hand, since h € Cy(R?) thereis L >
0 such that supp h C Br(0). So, there is a positive
integer N > L so that h(—l + M '(jk)x) = 0 for
I = (I,13) € Z* with [; > N for i = 1,2. Hence, it
can be considered the series over [; € Z only from
—Nto N fori=1,2, and since k € [—Q, Q], then:

SN S GalMa(ik), 1 - My (k))]

JEZL kELIEZ2

(E-52)E(£.2)

|Ga(Ma(jk), 1 — My (jk)z)| .

Due to the fact that j - —oo, then from (8.1):

S5 S [GalMa(k).

JEL k€L €72

N

-xy(x v
j=—V k=— llfleszN

|Za(Ma(jk), z,1 — (jk)z)| (8.2)

+2:2me

j=V+1k=—

- Mg (jk)x)|,

2729 f[l> [1hll> \W(—1+ M (jk)x

Note that since from Claim 1, the function Z; is
continuous, it follows that the series in the first term
of (8.2) converges.

On the other hand, if'

S = Sup |h(—1+ M; ' (jk)z)|, it follows that the
series in the second term of (8 2) converges to:

j=V+1

SIfll2 1Ikllz (2N +1)*(2Q + 1) ( Z 2_23).

Thus, ford =1, 2:

S5 Gt -

JEL KELIeZ?

7 (k)]

converges.
Hence, for fixed = € Br(0), the triple series:

SO0 Ta(Malik), @, — M (GR)a),

JEL kEZL eZ?

converges uniformly. O

Proof of Claim 3. By Claim 1, the function Z; is
continuous on GL»(R) x Br(0) x R2, and by Claim
2, the triple series:

SN Ta(My(jk), w1 — My (jk)x),

JEZ kELeL?

converges uniformly on Br(0).
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Then in particular for « = 0, the triple series:

Z Z Z Id(Md(jk)’ 0, l)a

JEL KELeL?

converges absolutely and uniformly on Br(0).
Hence, foreach d = 1, 2:

ty o) = =33

JEL kELIEL?

. . B R
lim Zu(Ma(jk), @,0 = Mg (jR)a) )

= D0 Ta(Mu(ik),0,1) = Wa(0).

JEL kEL 172

This proves Claim 3. O
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