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Abstract. In this work we present a supervised
approach to partially order word embeddings, through a
learned order embedding, and we apply it in supervised
hypernymy detection. We use neural network as
an order embedding to map general purpose word
embeddings to a partially ordered vector set. The
mapping is trained using positive and negative instances
of the relationship. We consider two alternatives to deal
with compound terms: a character based embedding of
an underscored version of the terms, and a convolutional
neural network that consumes the word embedding of
each term. We show that this distributional approach
presents interesting results in comparison to other
distributional and path-based approaches. In addition,
we observe still good behavior on different sized portions
of the training data. This may suggest an interesting
generalization capability.

Keywords. Hypernymy, word embedding, order
embedding, neural network, Siamese network.

1 Introduction

Hypernymy refers to the general-specific relation-
ship between two lexical terms. Such is the case
of biology taxonomies (e.g vertebrate-mammal,
mammal-pangolin), professions (e.g. composer-
Lennon)1 and colors (e.g. color-green), among
many others. The general term is called the
hypernym and the specific one the hyponym. This
relationship is crucial in language understanding
and generation.

1Strictly speaking, Lennon is not a hyponym for composer,
it is an instance. In our work we are using a broader notion
for the hypernymy relation, including instances of a class as its
hyponyms.

In natural language processing, hypernymy can
be useful for several tasks such as question
answering [7], textual entailment [4] and image
detection [18].

A hand-tailored well known resource is WordNet
[20]. It is a large lexical database with lexical
relations including hypernymy among them. It was
originally created for the English language and
later other languages have been included through
scheme transfer and translations of the English
version.

The original English version consumed a
considerable human effort for its creation and
maintenance. The derived other languages
versions suffer from incompleteness and eventually
from inadequacies resulting from the transferred
scheme. Furthermore, different applications re-
quire the expansion of the hypernymy relationship
to particular instances like celebrities, song names,
video games, and so on. In this context, it is
not surprising that automatic hypernymy detection
has been an active NLP research area in the last
decades.

Supervised hypernymy detection has been
mainly addressed based on the use of two
sources of corpus based information. On the one
hand, the so-called path based approaches, that
use the sequence of terms that connects joint
occurrences of related pairs (e.g., vertebrates such
as mammals) [11, 22].

These methods can present low recall due to the
difficulty to find both terms in the same context. On
the other hand, the distributional approaches use
the context information of each term independently.
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Several distributional approaches have been car-
ried out through the use of word embeddings [2].

Word embeddings are a popular NLP technique
that has been used on various tasks with
successful results. It consists on assigning vector
representations to words using their contexts in
a large text corpus. These methods condense
distributional information of words or characters in
a large corpus, based on the idea that a word can
be characterized by its use [8]. Many methods
to learn word embeddings have been proposed
recently [19, 23, 17, 13].

HypeNET [26] combines both approaches:
distributional and path-based. It is a neural
network model that takes as input the word
embeddings of two candidate terms and a path
based representation. The latter is built from the
LSTM [12] representation of the paths distribution
in the corpus. They showed the improvement
of this approach in comparison to the best
distributional one in a dataset created for such
purposes. This dataset contains two partitions
depending on the intersection of the vocabularies
among train, validation and test: a randomly
performed and a lexically disjoint split to take into
account the possibility of lexical memorization [17].

In this work we propose to build an order
embedding as a method for hypernymy detection.
An order embedding is a mapping between two
partially ordered sets that is injective but not
necessarily surjective. Using the order embedding
learning strategy presented by Vendrov et al. [29]
we realize that is possible to partially order
word embeddings and we apply it to perform
hypernymy detection. We use, for the order
embedding itself, an artificial neural network
that consumes pretrained word embeddings and
outputs non negative vectors. The network is
trained contrastively using positive and negative
instances of the relationship.

Compound terms like "grizzly bear" are common
in language. To deal with them we consider
two alternatives: a character based embedding
of an underscored version of the terms, and
a representation using the embedding of each
word and convolutional layers as the input layers
of the neural network. We try different feed

forward networks for the mapping. We perform our
experiments on a publicly available dataset [26].

We show that this simple approach overcome
the results of the best distributional and path-based
approaches in same conditions of data usage.

Our use of the order embeddings in conjunction
with a neural network exhibits the shape of a
Siamese Network [21] with an asymmetric distance
measure. Influenced by the use of Siamese
Networks in one-shot learning, we study the
behavior of the presented model by training it on
different slices of the training data.

2 Related Work

Hypernymy detection in NLP can be focused
as a supervised or an unsupervised learning
task, depending on the available information.
Supervised approaches relies on pairs annotated
with the information of whether they belong to the
relationship or not. On the contrary, unsupervised
approaches do not use annotated instances, they
rely solely in the distributional inclusion hypothesis
[33] or entropy based measures [25].

Supervised approaches have been addressed
mainly using two types of information: paths
and contexts distributions (or word embeddings).
Path-based approaches use the paths of words
that connect pairs holding hypernymy relationship.
Hand-crafted paths were used as patterns for
hypernymy extraction [11]. For example, the path
"is a type of" would match cases like "tuna is a
type of fish" allowing to conclude that "tuna" is an
hyponym of "fish".

In addition, paths in a syntactic dependency
tree of joint occurrences in a corpus result useful
for hypernymy [27]. In later works, path patterns
are generalized using part-of-speech tags and
ontology types [22]. The main disadvantage of
path-based approaches is that both candidates
must occur simultaneously in the same context.

Distributional based approaches use the con-
texts of the words in a corpus to represent each
term. Many methods propose supervised classi-
fication after applying a binary vector operator to
the pair of term representations. Operators such
as vector concatenation [2] and difference were
considered [24, 9, 32]. Vylomova et al. studied
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vector difference behavior in a wider set of lexical
relations and they remarked the importance of
negative training data to improve the results [31].
Ustalov et al. performed hypernyms extraction
based on projection learning [28]. Instead of
classifying the pair of representations, they learned
a mapping to project hyponyms embeddings to
their respective hypernyms remarking also the
importance of negative sampling.

Shwartz et al. combined path-based and
distributional information to improve hypernymy
detection [26]. They concatenated the embedding
of both terms to be classified with a representation
of all paths between the terms in a dependency
parsed corpus. The representation was built with
the average of the LSTM resulting representation
of each path. Additionally, they introduced a
dataset for lexical entailment where they tested
their model.

LEAR (Lexical Entailment Attract-Repel) [30]
gives state-of-art performance on hypernymy
detection specializing word embeddings based
on WordNet constraints. The direction of the
asymmetric relation was encoded in the resulting
vector norms while cosine distance jointly enforces
synonyms semantic similarity. The resulting
vectors were specialized simultaneously for lexical
relatedness and entailment.

3 Model

In mathematics, an order embedding is a
monotone function from one partially ordered
set into another. In this work we apply
the order embedding presented by Vendrov
et al. [29] to hypernymy detection, using for
the mapping a neural network that consumes
pretrained word embeddings as input. The neural
network is trained via back-propagation through
supervised examples. We show that the learned
transformation can unravel embeddings to detect
hypernymy relationship.

The supervised data consist on hypernymy
instances (positive examples) and unrelated pairs
(negative examples). We consider two alternatives
for compound terms: feed forward networks that
consume a character based embedding of the
whole terms, and convolutional neural networks to

obtain the compound term representation through
the embedding of each word.

Vendrov et al. already provided an application
to hypernymy detection. They showed the
representational power of the introduced order
embeddings comparing their results to the transi-
tive closure using a randomly split dataset from
WordNet constraints. Their application is built
using uniquely WordNet constraints. Our work
differs in that we pretend to study the capability
of pretrained word embedding for hypernymy
detection through a supervised trained neural
network order embedding.

Particularly, we are interested in the capability
of the model to predict the relationship between
two terms that have not been seen during training.
Note that in their application example the model
is not capable to predict an adequate answer
for unseen pairs, since it does not have any
information of neither of the two terms. In that
sense, our work presents more similarities with
their application to textual entailment. In the latter
they consider a GRU [6] sentence representation
using word embeddings as input and performing
transfer learning.

We observe that the presented use of order
embeddings in conjunction with a neural network
exhibits the shape of a Siamese Network [21].
Siamese networks come from the area of computer
vision and were introduced in application to
signature verification [3]. They mapped image
pairs using the same convolutional neural network
to take signatures of the same person to equal
output vectors. They use vector distance as a
measure of equality. Later, Siamese Networks
were used in one-shot learning [16] showing strong
capabilities to discriminate features of images in
scenarios where one image example of each
class is observed on training time. In NLP
Siamese Networks were considered for sentence
similarity using LSTM based representations for
input sentences [21].

3.1 Order Embeddings

An order embedding is a function between two
partially ordered sets f : (X,�X) → (Y ,�Y ) that
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Fig. 1. Siamese Neural Network architecture to map from word to order embeddings

preserves and reflects the order relationships. That
is to say, x1 �X x2 if and only if f(x1) �Y f(x2).

Note that an order embedding is necessarily
an injective function but it may not be surjective,
differentiating it from an order isomorphism. In fact,
an order embedding provides a way to embed one
partially ordered space into another preserving the
order structure.

Vendrov et al. present a way to embed an
arbitrary a set with an application dependant
hierarchical structure into <m

≥0. For that purpose
they consider the reversed product order on <m

≥0
defined by the conjunction of total order on each
coordinate as follows:

x � y ⇐⇒
m∧
i=1

xi ≥ yi, (1)

where x, y ∈ <m
≥0 and xi and yi correspond to the

i-th component of x and y, respectively. Note that
this relationship is anti-symmetric and transitive
and that ~0 is the top element of the hierarchy.

3.1.1 Loss Function

The partial order relation (�,<m
≥0) defined above

allows to define measures to quantify the degree
to which a pair of two elements does not satisfy the
relationship. Let us consider:

Ep(~x, ~y) = ||max(~0, ~y − ~x)||2, (2)

where ~x, ~y ∈ <m
+ and max is the maximum function

component wise. Note that Ep indicates the
unrelatedness degree and Ep(x, y) = 0 iff ~x � ~y.

Additionally, Ep is forced to be higher than
a threshold α for unrelated terms through a
max-margin loss. Lets consider ~x′, ~y′ ∈ <m

≥0 then:

En(~x′, ~y′) = max{0,α− Ep(~x′, ~y′)}. (3)

Note that En(~x′, ~y′) is 0 when Ep(~x′, ~y′) ≥ α

guaranteeing that ~x′ � ~y′. Then, summing
(2) and (3) the resulting loss function, which
consists of minimizing Ep and En jointly, has the
following expression:

L =
∑

(x,y)∈P

Ep(~x, ~y) +
∑

(x′,y′)∈N

En(~x′, ~y′), (4)

where P and N are sets of positive and negative
examples, respectively. Note that L is differentiable
allowing to fit a mapping to be an order embedding
through gradient descent.
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3.2 Mapping and Compound Terms

As we commented before, we consider neural
networks as order embeddings to embed word
embedding, partially ordered by hypernym relation,
into a non negative vector space ordered by the
reversed product order.

We consider equation (4) for the loss function to
train the neural network. We expect that if word
embeddings contains the needed information to
distinguish hypernymy it could be revealed by the
learned transformation.

So, lets consider fW : <n → <m
≥0 to be a neural

network with weights W then, using (4), the loss
function is: ∑

(x,y)∈P

Ep(fW (x), fW (y))+

∑
(x′,y′)∈N

En(fW (x′), fW (y′)).
(5)

The used dataset contains compounds terms,
that is to say, terms constituted by many words
(e.g. "contemporary art"). We considered
two variants for compound terms treatment: 1)
One-dimension convolutional layers as input layers
to represent the compound term from the word
embedding of each of its parts. 2) A FastText
generated representation replacing spaces by
underscores. This representation is then the input
of a feed forward network.

We performed most of our experiments consid-
ering the second approach since it presents better
results and allows to use the complete dataset
because absence of out of vocabulary words.
Figure 1 shows a diagram of the model.

The activity function of the network defines
the output values. Hence, for this model we
were limited to consider activity functions with
non negative outputs (such as sigmoid function
and ReLU). We considered three variants of
feed forward networks according to their activity
functions: (1) ReLU network, (2) SELU-ReLU a
network with a ReLU output layer and SELU [15]
functions on its hidden layers, and (3) tanh-sigmoid
a network that used sigmoid function on its output
layer and tanh on its hidden layers.

4 Experiments

In this section we describe the experiments
conducted, the used resources and the model
parameters. First we describe the supervised
dataset and word embeddings used, followed by
the model structure and parameters. We conclude
this section with comments about the results and
an error analysis.

4.1 Datasets and Word Embeddings

We use the dataset introduced by Shwartz et
al. [26] to perform our experiments. Such dataset
is constituted by related and unrelated pairs of
words. It was created using distant supervision
from a variety of knowledge resources such as
WordNet [20] and DBPedia [1], among others.

The dataset provides two variants: lexical and
random split. Each variant consists of a division
into train, validation and test sets. The concept of
lexical split refers to a partitioning without lexical
intersection between any of the three parts. That
is, if a pair occurs in one subset it will not occur
in any pair of the other two subsets. The other
split was performed randomly. The dataset size
information is detailed on Table 1.

For the word embeddings we consider the
publicly available English GloVe 6B2 and the
FastText [13] vectors trained on English Wikipedia
with default parameters3.

The supervised data presented out - of -
vocabulary (oov) terms in GloVe 6B embeddings
and we discarded the affected tuples for training
and evaluation. The amount of discarded
examples varies between 45% and 50% on
each partition.

In the case of the embeddings built using
FastText there is not a problem of out-of-vocabulary
terms, as they are character based.

2http://nlp.stanford.edu/data/glove.6B.zip
3http://mattmahoney.net/dc/enwik9.zip

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 565–574
doi: 10.13053/CyS-24-2-3390

Order Embeddings for Supervised Hypernymy Detection 569

ISSN 2007-9737



Table 1. Shwartz’s dataset size for random and lexical splits

Positive Negative Total
Train 9,942 39,533 49,475

Random Valid Random 681 2,853 3,534
Test Rand. 3,512 14,158 17,670
Train 4,067 16,268 20,335

Lexical Valid 270 10,80 1,350
Test 1,322 5,288 6,610

Table 2. Results on test set

Prand Rrand Frand Plex Rlex Flex

Best Distributional [26] 0.901 0.637 0.746 0.754 0.551 0.637
HypeNET Integrated [26] 0.913 0.890 0.901 0.809 0.617 0.700
Siamese ReLU 0.936 0.876 0.905 0.958 0.615 0.749
Siamese SELU-ReLU 0.932 0.845 0.887 0.740 0.872 0.801
Siamese tanh-sigmoid 0.967 0.836 0.897 0.788 0.756 0.771

4.2 Mapping Details

We tried several hyperparameters configurations
for the neural networks. We considered ReLU,
tanh, sigmoid and SELU layers. For the firsts
three with use dropout between them and for the
latter we use alpha dropout. We consider a 0.2
of drop probability for dropout and 0.1 for alpha
dropout. We initialize SELUs with LeCun normal
initialization and ReLUs using Glorot uniform
initializer [10].

We observed improved behavior on the model
with SELUs for the firsts layers and ReLU units in
the output layer. For the convolutional approach,
we considered one and two convolutional layers
next to the input, with a convolution size of two
words vectors, 64 filters each, and max pooling.
The convolutional approach did not improves the
results obtained by the underscored FastText
approach. We think that compound terms are
not so numerous and varied to take advantage of
the convolutions.

We train our models using Adam [14] with a
learning rate of 5 × 10−4 over mini-batches of 64
examples. We stopped the training using early
stopping and we checked out the best model in the
whole run against the validation set.

We considered the model output classified as
positive if Ep is lesser than 0.02 and we use 1.0
as margin for negative examples margin. We used
Keras [5] to implement our models.

4.3 Results

In Figure 2 we show the SELU-ReLU model
accuracy evolution in the lexical split on the
training and validation sets. It can be seen the
joint progress of accuracy on train and validation
sets, suggesting the capability of the model to
distinguish hypernymy relation between terms that
have not seen during training.

We evaluate our models using precision, recall
and F measures. We present the obtained results
on Table 2. We include for comparison the
results of the best distributional model reported
by Shwartz et al. [26] and HypeNET combined.
The reported results are the best, according to
the validation set, of three runs of a three layered
network of 600, 400 and 200 units on input, hidden
and output layer, respectively.
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4.4 Results on Reduced Data

Inspired by the success of Siamese Networks in
one shot learning we study the performance of the
considered model restricting the available training
data. In Figure 3 we show the F measure obtained
with the SELU-ReLU model trained on gradually
increased sizes of the available training data. Note
that the results increase rapidly in the first 20% of
the training data in both, random and lexical, splits.

We include the results detailing precision and
recall in Table 3. Note that the model first achieves
high coverage and then seems to refine its results.

4.5 Results Analysis

In this section we include some analysis of the
results obtained with the SELU-ReLU model on the
lexical split dataset.

In Table 4 we include the confusion matrix. Note
that 169 pairs were hypernyms that the model was
unable to detect. Of those 169, 100 present a
value lesser that 1.0 for the asymmetric score. We
compare against 1.0 because that is the chosen
margin for negative examples.

A sampling of pairs where the model fails to
predict correctly can be found on Table 5. We note
that many of the positive pairs that the model fail
to predict correspond to ambiguous terms. In the
samples presented, note for example that stubbs
refers to the surname of William Stubbs but it can
be confused with the artist George Stubbs, among
others. The same stands for sting, that can be
confused with the singer.

Regarding to the pairs that the model wrongly
detects as related we detect that the term novel
is involved in 129 instances of the 405 false
positives. We detect that many of this terms are
incorrectly labelled in the dataset. For example,
terms as pollyanna, aelita and jaws, are presented
as negative examples when in fact they are
positive hyponyms of novel. Although, novel is
unique massive hypernym that fails that have been
detected, there are other examples of terms that
were predicted as negative and seems to be
wrongly labelled in the dataset.

In Table 6 we show a sampling pairs that
seems to be incorrectly labelled as negative and
the model predict as positive. Note that this

Table 3. SELU-ReLU results on different training sizes

Prand Rrand Plex Rlex

5% 0.703 0.899 0.495 0.893
10% 0.694 0.904 0.495 0.895
20% 0.712 0.916 0.574 0.896
30% 0.909 0.869 0.583 0.862
50% 0.916 0.866 0.611 0.912
80% 0.925 0.862 0.630 0.889

Table 4. SELU-ReLU model confussion matrix in lexical
split

False True
False 4883 405
True 169 1153

Table 5. SELU-ReLU false negative samples

Hyponym Hypernym
building structure

contentment happiness
diver swimmer

cosmos flower
moment present
stubbs historian
sting pain

Table 6. SELU-ReLU false positve samples that seems
incorrectly labelled

Hyponym Hypernym
voltaire writer

bill mantlo writer
fledgling novel

summerland novel
sathyaraj actor

ferdinand de saussure linguist
menecrates sculptor
nicomedes mathematician

kofax software
encarta encyclopedia
abode place
beretta weapon

examples principally correspond to occupations
(like writers or actors) and creations (like novels).
However, there are also other pairs that seem to
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Fig. 2. Accuracy evolution on each epoch in the SELU-ReLU model

Fig. 3. F measure result of SELU-ReLU model on different portions training set.

be incorrectly labelled that does not correspond
to particular instances such as occupations or
creations.

For example, terms like abode as hyponym of
place and beretta as hyponym of weapon are

predicted as related while in the data appear as
negative examples.

Finally, the Table 7 presents a sample of terms
that have been incorrectly predicted as related.
The difference between this samples and the
presented in Table 6 is that these ones does not
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Table 7. SELU-ReLU false positve samples

Hyponym Hypernym
stump tree
rice sake

tofee sugar
nucleus brain

wjre country
edge limb

seem to be incorrectly labelled. However, note that
in the case of stump as hyponym of tree, although
it is not a variety of tree, it is a tree that have fallen
or that have been cut down. And, in the case of rice
and sake there is and composed-of relation, since
the sake is made of rice.

5 Conclusion

We present a distributional model for supervised
hypernym detection. The model relies on learning
an order embedding from word embeddings
into a non negative vector space. For the
order embedding itself we consider feed forward
artificial neural networks and we explore different
model configurations.

We show that this approach gives competitive
results on a publicly available dataset in com-
parison to the best distributional and path-based
approaches reported on same data. We study the
performance of the model restricting the available
training data. We found that the model give
relative good results using less than 10% of the
training data. This suggest that the model tends
to learn the order from data even when relatively
few examples are provided.
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