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Abstract. This paper is presented as a study of
the overlapping clustering algorithms that have been
developed in the last years, researchers have been
working on these algorithms in different ways, in some
cases they are based on widely known algorithms such
as k-means and in others that work with heuristics or
graphs. The need to work in clustering algorithms
with overlap is due to the fact that currently there
are many problems that require that the obtained
groups be non-exclusive and for which it gives the
guideline for this analysis. The algorithms included
in this analysis are: ADditive CLUstering, Overlapping
K-means, Dynamic Overlapping Clustering based on
Relevance, Overlapping Clustering based on Density
and Compactness, MCLC, A tree-based incremental
overlapping clustering method, INDCLUS and Hybrid
K-means.

Keywords. Clustering algorithms, supervised classifica-
tion, overlapping cluster.

1 Introduction

The classification of objects or elements according
to the similarities is one of the fundamental
bases to learn and understand. The classification
of elements arises in the human being since
childhood, for example, to place objects by
colors or shapes. The cluster analysis helps
in the development of methods and algorithms
to group and classify. Also, the problem
of clustering data is being widely studied in
data mining and machine learning, being its
applications included to sumaries, learning, image
segmentation, and marketing.

There are different ways to classify clustering
algorithms, in particular, by the type of obtained

clusters, [14] propose the following classification:
disjoint, when an element belongs to exactly
one cluster, for example, cluster movies by their
content(AA, A, B, B15, C and D), in fuzzy, when
an element belongs to all clusters but with a certain
degree of belonging, for example, the clustering of
a range of a million colors; and finally those that
are overlapped, where an element may belong to
more than one cluster, for example, the likes of
feeding people.

Another categorization, where an exclusive
and non-exclusive classification is proposed, is
indicated in [14]. The first considers disjoint
clusters, and the second one allows overlaps.
Within the exclusive classification, it is used the
intrinsic, where a proximity matrix is used, it is also
known as unsupervised learning. The extrinsic
classification uses labels for the elements.

The intrinsic classification is sub-classified in
hierarchical and partitioned depending on the
imposed structure of the data. The hierarchical
clustering can be divisive (these algorithms
form clusters by separating the existing ones)
considering some similarity measure. The
partitioned clustering takes into account a k
parameter, which indicates the number of clusters.
This taxonomy is shown in 1.

Following with the hierarchical algorithms,
different authors have developed algorithms of
this kind, working on different domains [7, 17],
with coverage subgraphs to cluster documents [2],
density subgraphs [3], suffix trees [22], center
based [9], density [11], objective functions and
dendograms [12], using the closest neighbor for the

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 575–581
doi: 10.13053/CyS-24-2-3391

ISSN 2007-9737



Fig. 1. Classification types (referenced by Jain & Dubes)

identification of duplicates [5] and predictions [10],
among others.

Among the iterative algorithms, there are jobs
where researchers work with maximum likelihood
[16], using EM with Gaussian Mixtures [21], hybrid
algorithms using GSA y K-means [13], etc. The
used techniques are varied and with different
results, these techniques have been applied in
different types of data, such as texts, images and
with discrete, numeric and categorical data.

In the particular case of the present study,
it is carried out on clustering algorithms with
overlap. The work is organized as follow, it
starts with an explanation of the chosen algorithms,
to continue in the next section with an analysis
of the computational behavior of the presented
algorithms, and the specification of the tested data
with each technique, the last section will contain
the conclusions.

2 Clustering Algorithms with Overlap

This section explains the solutions that different
authors have given to the clustering problem,
taking into account overlapping clusters.

2.1 ADditive CLUStering (ADCLUS)

One of the first works is [1] where a new
model of clustering is described, in this model,
the restrictions of the clustered objects in an
exhaustive or mutually exclusive categories is
relaxed allowing the establishment of overlapping
clusters. It is notorious that many datasets to be
grouped do not require exclusive clusters, it is from

there the need of a solution with overlap, but create
all possible overlapping sets gives a total of 2n−1

clusters, therefore, heuristics are needed to select
potential groups.

ADCLUS is the proposed model, which cluster
elements that meet some property, with a certain
weight. ADCLUS considers n objects to be
grouped and a symmetric proximity matrix M =
n(n−1)/2. The data is transformed into similarities
in the [0, 1] interval. The underlying basic equation
of ADCLUS is:

Ŝij =

m∑
k=1

wkPikPjk, (1)

where Ŝij is theoretically the reconstructed
similarity in the objects between i y j, wk is a
non-negative weight. So, the similarity between a
pair of objects is the sum of the weight of those
groups that contain both objects. In addition, the
MAPCLUS algorithm builds a matrix starting of a
set of weights and defined subsets, surpassing
ADCLUS.

2.2 Overlapped K-Means (OKM)

The reason for performing an overlapping algo-
rithm based on K-Means[4], is due to different ap-
plications in information retrieval, natural language
processing, chemistry, biology, medicine; among
others, where an overlapping data coverage is
required, so an objective criterion is proposed as-
sociated with the OKM algorithm that generalizes
the K-means algorithm.

The objective criterion is defined as follows:
Given a set of data vectors X = {xi}ni=1 with
xi ∈ Rn, to find a k-way coverage {πc}kc=1, where
πc represents the cth group; such that the following
goal is minimized:

J ({πc}kc=1) =
∑
xi∈X

‖xi − φ(xi)‖2, (2)

where each xi must be in at least one group, so:⋃k
c=1 πc = X y φ(xi) denotes the image of xi

defined by the combinations of the (mc) prototypes
for the group xi as:

φ(xi) =

∑
Ai
mc

|Ai|
, (3)
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where Ai the assignment set of: xi : {mc|xi ∈ πc}.
So an heuristic for obtaining the optimal coverage
was developed.

2.3 Dynamic Overlapping Algorithm based on
Relevance (DClustR)

The DClustR algorithm [18] is an algorithm that
allows the overlap between its groups, as an alter-
native for analysis in social networks, information
retrieval and bioinformatics, this algorithm is based
on graph theory by introducing strategies for the
construction of more precise overlapping clusters
or when the collection changes.

The main idea is to generate a set of clusters
that are a coverage G̃β using ws-graphs and
subsequently improve the initial clusters to obtain
the right one, so “improve” means reducing
both the number of clusters as the overlap
between them.

To define the ws-graph, let Gβ = 〈V ∗,E∗,S〉
a graph of similarity threshold with weight. A
star shape weighted subgraph (ws-graph) inG̃β ,
denoted by G∗β = 〈V ∗,E∗,S〉 is a subgraph of G̃β
having a vertex c ∈ v∗ such that there is an arch
between c and another vertex un V ∗. The vertex c
is called the center of the ws-graph and the rest of
the vertexes are called satellites. Isolated vertexes
are considered degenerate ws-graphs.

Being the ws-graph determined by its center, the
problem is to build the set W = {G∗c1 ,G

∗
c2 , ...,G

∗
ck
}

of ws-graphs, such that W if a coverage of G̃β , can
be seen as the problem of reconstructing the set
X = {c1, c2, ..., ck} such that ci ∈ X is the center of
G̃ci ∈W , ∀i = 1, ..., k.

To avoid analyzing all vertexes in v∗ and
delimit the search space, a selection criterion is
established, DClustR introduces the concept of
relevance of a vertex, for which it can be selected
those vertexes with the highest degree, and its
about maximizing the number of added vertexes to
the G̃β coverage in each iteration.

2.4 Overlapping Clustering based on Density
and Compactness (OCDC)

The OCDC algorithm [19], introduces a new graph
coverage and a new filter strategy, with which
a small set of overlapping clusters are can be
obtained. The collection of objects are represented
as a graph of similarity threshold with weight G̃β ,
the overlapped clustering is realized in two phases:
the initialization and the improvement.

In the initialization phase, an initial set of
groups of coverage vertexes is built G̃β , using
the ws-graphs, in this context, each of these
graphs make up an initial group. In this step,
the algorithm seeks to reduce the search space,
and OCDC introduces the concepts of density
and compactness of a vertex v. The density
of a vertex v ∈ V , is calculated by using the
following equation:

v.density =
v.pre dens

|v.Adj|
, (4)

where v.pre dens is the number of adjacent
vertexes to v, having a degree not greater than
the degree of v, and v.Adj is the total of adjacent
vertexes to v.

The compactness of a vertex v ∈ V , is estimated
as follow:

v.compactness =
v.pre compt

v.Adj
, (5)

where v.pre compt is the number of vertexes u ∈
v.Adj such that Aprox Intra sim(G∗v)
≥ Aprox Intra sim(G∗u), where G∗v and G∗u are
ws-graphs determined by v y u, respectively.
The greater value of the compactness is included
in coverage and therefore it is the best cover-
age graph.

2.5 MCLC Algorithm

The MCLC algorithm is proposed to discover
overlapping communities [6], for which is used a
random path in a line graph and attraction intensity.
Unlike the traditional random path that starts from
a node, it starts from a link. In the first instance,
a network graph is transformed into a weighted
linear graph, and the random path in this linear
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graph is associated with a string of Markov. In
order to obtain the probability of the Markov’s
chains, a similarity between the pair of leagues
is obtained. Then, the leagues can be grouped
into “league communities” where those nodes can
be overlapped.

The league communities become “node com-
munities”, and a attraction intensity is defined
for the control of the overlap’s size. Finally the
communities that allow overlapping are detected.

The distance or similarity between pairs of
leagues is obtained by calculating the probability
transition of random paths in the linear graph. A
matrix of M ×M , can be associated to a chain of
M-Markov’s states, the transition matrix P = [Pαβ ],
is defined as:

Pαβ =
hαβ∑
β hαβ

. (6)

The number of repetitions of random paths
that start from the league α, [P t]αβ should be
considered and is the probability that the path
starts from α and remain in β which is

∑T
t=1[P

t]αβ
(1 ≥ t ≥ T ).

The cluster analysis can use “peer league
pairs” in communities of candidate leagues, so a
similarity (symetric)φαβ is proposed as follow:

φαβ = φβα =

T∑
t=1

([P t]αβ + [P t]βα). (7)

The distance dαβ between pair of leagues (α,β)
is obtained by the complement of the similarity and
normalization of the results between 0 and 1:

dαβ = dβα = 1− φαβ −min φ
max φ−min φ

. (8)

2.6 Clustering Method with Incremental
Overlapping based on Trees

The clustering method with incremental overlap
based on trees [20], uses the tripartite decision
theory. A tree is represented by points that
can improve the relevance of the search result.
The overlapped clusters are represented by the
tripartite decision with a set of intervals. Tripartite
decision strategies are designed for the update of

clusters, at the moment that the data increases.
Further, with this method is possible to determine
the number of clusters during the process.

To define the tripartite decision clustering, be
U = {x1, ...,xn, ...,xN} the universe, and the
resulting clusters C = {C1, ...,Ck, ...,CK} a family
of clusters of the universe. xn is an object, which
has D attributes, xn = (x1n, ...x

d
n, ...,x

D
n ), where

xdn represents the value of the d-th attribute of the
object xn, where n ∈ {1, ...,N} y d ∈ {1, ...,D}.

The algorithm starts calculating the
distance(Euclidean) between objects. The
similarity between the objects is obtained with
the complement of distance. Subsequently, the
representative points are calculated using the
following condition: if |Neighbor(r)| ≥ ζ, r is a
representative point and represents the object in
the area where r is centered and with radius δ.

The next step is the construction of an indirect
G graph based on the R representation points,
this is achieved using the tripartite decision and
the calculated representative points. Finally, the
algorithm search in the subgraph those who are
strongly connected in the graph G. This design
allows the growth of the data, but when increasing,
it is required to simulate different situations to
evaluate the performance of the method.

2.7 INDCLUS

In this section is examined the scalability of
the ADCLUS and INDCLUS models [8], which
are techniques that can be used to extract
overlapping clusters with similar data. In
this paper was taken the models ADCLUS
and INDCLUS appropriately and were designed
different metaheuristics extensions to have more
relaxed models.

For the INDCLUS model, N elements are con-
sidered, with a similarity matrix S = (sij){N×N},
and is required a group of a known number of M
overlapped clusters possibilities. The INDCLUS

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 575–581
doi: 10.13053/CyS-24-2-3391

Beatriz Beltrán, Darnes Vilariño578

ISSN 2007-9737



model requires to minimize the optimization func-
tions:

min

K∑
k=1

N∑
i=1

∑
j 6=i

(
Skij −

M∑
m=1

wkmPimPjm − ck

)2

wkm ≥ 0,∀k = 1, ...,K;m = 1, ...,M ,

ck ≥ 0,∀k = 1, ...,K, (9)
Pim ∈ {0, 1}∀i = 1, ...,N ;m = 1, ...,M ,

where K is the number of subjects, N is the
number of elements to be stored and skij is the
similarity of the elements i and j del sujeto k. If
K = 1 the model is reduced to ADCLUS.

The used heuristics with these algorithms
are: alternating approach of minimum squares
(SINDCLUS), a symmetric approach applied to
SINDCLUS (SYMPRES), simulated annealing
(SA-SINDCLUS), tabu search (TABU-SINDCLUS),
and relaxed solution space (SMC-Relax). The
tests were realized with medium size real
datasets, SMC-Relax had the a better execution
than SINDCLUS and SYMPRES. The use of
heuristics makes the ADCLUS and INDCLUS
models scalable.

2.8 Hybrid K-Means

In [15] is described an algorithm (HKM-OKM)
that combines harmonic k-means with overlapped
k-means. By making use of the overlapped
k-means algorithm; which is an extension of
k-means is sensitive to the centroid of the initial
cluster but when is combined with harmonic
k-means this limitation can be overcome.

The main idea in this method is to use the
output HKM method to initialize the centroids of the
OKM method. The OKM method was explained
in section 2.2. The HKM algorithm introduces
a bias(using the weight) to move the cluster
centers to the data points that are most important
according some criteria.

Similar to the k-means algorithm, the HKM
method can be formulated as an optimization
problem where the objective is to minimize:

Q′′(π) =

n∑
i=1

k∑k
j=1

1
‖−→xi−−→zj‖p

, (10)

where p is a free parameter (typically p ≥ 2), and

the expression
(

k∑k
j=1

1
‖−→xi−

−→zj‖p

)
is the harmonic

media. To calculate the harmonic media, the
algorithms needs to calculate the cluster centroid
−→zj by using:

−→zj =
∑n
i=1m(−→zj |−→xi)w(−→xi)−→xi∑n
i=1m(−→zj |−→xi)w(−→xi)

, (11)

where m(−→zj |−→xi) is a member of the data point −→xi to
the cluster centroid j calculated by:

m(−→zj |−→xi) =
‖−→xi −−→zj‖−p−2∑k
j=1 ‖

−→xi −−→zj‖−p−2
. (12)

And w(−→xi) is the associated weight which each
−→xi point, calculated by:

w(−→xi) =
∑k
j=1 ‖

−→xi −−→zj‖−p−2(∑k
j=1 ‖

−→xi −−→zj‖−p
)2 . (13)

The HKM-OKM algorithm starts by finding
centers, using the HKM, initializes OKM using the
found centers. A set of medical data is used,
because it is required to model elements with
overlap. It improves the obtained results by OKM.

3 Algorithms Analysis

The analyzed algorithms have a maximum time
complexity of the quadratic order as they are:
OCDC, MDLC based on trees, INDCLUS with
hybrid heuristics and k-means; the particular case
of OKM maintains the order of the algorithm
on which it was based (k-means), and only the
ADCLUS algorithm is of the cubic order. This
information can be reviewed in table 1.

In the experiments the number of instances that
were used with these algorithms varies, being the
minimum of 105 and a maximum of 102, 294
instances. Further, the objects are of different
types: discrete, qualitative or documents. In
all experiments were tested stable datasets, for
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Table 1. Comparison between clustering algorithms with overlap.

Algorithm Datatype Amount of Data Complexity
ADCLUS Discrete 105 O(n3)

OKM Qualitative - Documents 1,308 O(t·n· k log k)
DClustR Qualitative – Documents 16,006 O(|V |+ |Eβ |)
OCDC Documents 16,006 O(n2)
MCLC Discrete 1,133 O(m2n)

Based on Trees Discrete 5,473 O(n2 + n log n)
INDCLUS Qualitative – Documents 102,294 O(n2)

Hybrid K-Means Qualitative 699 O(n2)

example, the repository UCI Machine Learning1 is
used, testing the cancer dataset, heart disease,
parkinson, among others, also the dataset on
the karate Zachary2, KDD, ISOLET were used;
Reuters-215783, TDT24, were mainly used for the
dataset with documents.

In general, clustering algorithms with overlap
are based on others algorithms that do not
support overlap and even improve some aspects
of the same.

4 Conclusion and Future Work

In this article, the clustering algorithms with overlap
were analyzed.

Over the last years, the interest in the
development and improvement of this type of
algorithms has been constant and researchers
continue to seek to improve the obtained results.

Different techniques have been used in this
type of algorithms, from basic algorithms such as
k-means, using heuristics to have scalability. In
addition, graph theory has also been used and
finally, the combination of algorithms was used to
counteract some deficiencies of the algorithms.

The amount of elements that have been worked
with these algorithms isn’t very large in general,
standardized datasets are used and the quality of
the algorithms is verified by standard measures
such as F-Measure or F-Bcubed.

1https://archive.ics.uci.edu/ml/index.php
2http://konect.uni-koblenz.de/networks/ucidata-zachary
3http://www.daviddlewis.com/resources/testcollections/reuters21578/
4https://catalog.ldc.upenn.edu/LDC2001T57
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