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Abstract. For many web sites, money earning is
crucial for keeping the content production. Advertising
is one of the most common strategies for web content
monetization. To determine where is the more
appropriate place for ad location is an essential task to
get a gentle introduction of the commercial information.
There are algorithms based on keywords appearing
within text; however we consider that implicit meaning
is more adequate for a better harmony between content
advertising. In this work, we present a formal method
that determines the best place for advertising location.
For this, we explore the underlying tree-like structure of
a web page, we extract the text from each (X)HTML node
and compute the semantic similarity (by employing latent
semantic analysis) w.r.t., the advertising source text. We
introduce a unique formula for the numerical calculation
of the web page node relevance. We think it could be
used for measuring the concordance among web page
nodes and the commercial information and for the design
of dynamic ads insertion methods.

Keywords. Semantic similarity, latent semantic analysis,
dynamic advertising.

1 Introduction

Advertising aggregation into web pages is a
common strategy for monetization. Too many
web sites deliver free content and get income
using advertising payment. This kind of
monetization allows them to operate and to keep
information production. Sometimes advertising
causes displeasure for diverse reasons, for
instance, when the amount of publicity is excessive
and others when the commercial message is
discordant for the information read.

Advertising aggregation is an important issue
that must be analyzed from different points of view.
On one side, commercial information is necessary
for guaranteeing the economic survival of web
sites. On the other hand, users read information
about their interest, i.e., they browse and consume
web content according to a specific motivation. We
consider that methods that preserve the thematic
sense between web content and an advertising
message can reduce the reader’s displeasure
when publicity is shown.
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In this work, we consider the thematic sense as
a set of topics which are correlated. For instance, a
football match, which is transmitted by TV, regularly
is related to the consuming of snacks and beer
and, perhaps, within a friend’s meeting. They are
different facts, a football match, snacks, and beer
drinking and friends meeting. However, they are
correlated. A formal approach that is useful to find
out correlations into data is the technique of Latent
Semantic Analysis (LSA [4]).

Here we can state the proposal for this work.
We think that a gentle introduction to the publicity
can be reached if the sense of the web content
concerning the advertising message can be
assured. For this reason, we introduce a formal
method, to measure the level of correlation among
both messages, expressed within text fragments.

Our proposal is motivated, too, by the behavior
of new styles of inRead advertising, which dy-
namically presents commercial information when
a user browses a web page. In this way, web
page fragments could be semantically compared
with the advertising message, and then, the more
similar web page fragment could be determined for
the publicity location.

Now an important issue must be faced, which
web page fragments should be considered for
the analysis?

We could treat the text source as plain
documents. However, web text is formatted using
(X)HTML, i.e., the information is organized in
formatting nodes which frequently provide certain
implicit unity (all the information in a node is
related) imposed by the web designer.

In this way, the main path for this work is going
to be established in the context of approaches
that exploit the text fragments within a web page
and written in natural language. For instance„
those devoted to web filtering such as [1, 10, 17].
Regardless of this focus, formulas here presented
for calculus of semantic similarity among text
fragments can be applied in a seamless way to
any pair of text fragments, and thereby we could
analyze sentences of paragraphs instead of web
page text fragments.

We consider that methods preserving the unity
of (X)HTML nodes are more acceptable. Some
works following this approach are [1, 5, 14, 16]. For

instance, in [1], a method for information extraction
from web pages considering the distance between
(X)HTML nodes as measurement of analysis is
introduced. However, standard tests of similarity,
in the setting of natural language processing,
as a basis for producing text measurements,
are not employed. We believe that it is
necessary to test classical techniques of natural
language processing to establish an adequate
comparison framework.

In this work, we present a formal method for
automatic measuring of semantic similarity among
an advertising text and a web page node, based
on techniques of similarity employed in natural
language processing and inspired on the notion
of latent semantic analysis. Our formal method
requires only once the calculations of LSA, and
then it returns the more relevant web page node
for advertising placement.

One of the main contributions of this paper is the
definition of one formula to determine the semantic
similarity of one text excerpt w.r.t. an advertising
text. The formula is not affected by the size of
text fragments.

The rest of the paper is organized as follows.
In Section 2, Theoretical foundations of our work.
In Section 3, we introduce a formal technique for
relevance calculation based on semantic similarity
and tree-like structure of web pages. Then, in
Section 5, we describe a prototype and a set of
experiments. Finally, we present related work and
conclusions in Section 6.

2 Theoretical Foundations

In this section standard theoretical basis of our
work are introduced.

Salton et al. originally introduced the vector
space model for automatic indexing in [15] and it
is considered a standard representation technique
in information retrieval setting where stored entities
(documents) are compared with each other. Given
a text document d, a dictionary of terms is a set
whose elements are the different words in the
document d.

−→
V (d) denotes the vector associated

to document d, whose components are the weights
for each element in the dictionary.
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In a vectorial representation, typographic sym-
bols such as "," or "-" are ignored. The well-known
stop words are treated in the same way. For web
pages, formatting labels are removed.

2.1 Latent Semantic Analysis

Latent Semantic Analysis (LSA) is a theory and
technical method for extracting and representing
the contextual-usage meaning of words by means
of statistical computations applied to a large corpus
of text [7]. Hence, the underlying idea is that
the aggregate of all the word contexts in which a
given word does and does not appear provide a set
of mutual constraints that largely determines the
similarity of meaning of words and sets of words
to each other [8].

The first step of LSA consists of the construction
of a matrix representation of text, i.e., the matrix
M , in which columns are employed for modeling
documents and rows for terms (words). Each row i
represents a specific term as well as each column
j represents a document. Thus, each cell Mi,j

stands for the frequency in which every term i
appears in the document j. Term frequency tf can
be substituted by some other weighting scheme as
for instance tf .idf [11].

Next, LSA performs the Singular Value Decom-
position process (SVD) on the matrix M . In
the original matrix M , terms and documents are
mutually dependent between them. In SVD, a
rectangular matrixM is decomposed in the product
of the other three matrixes, i.e., M = USV T .
New matrixes will be formed by singular vectors
or singular values. Resultant matrix U will contain
a vector representation of the terms, which will
have linear independency w.r.t. the relationship
with the documents, while V will contain the
vector representation of the documents whose
components will be linearly independent w.r.t. the
relationships with terms in M .

Finally, S is a diagonal matrix in which singular
values are found in descending order, and they
represent the relationships between the other
matrixes. The highest values in S represent
the relations with major variance among terms
and documents.

After SVD decomposition, the original matrix M
can be rebuilt as of the matrix product of the
resultant three matrixes. When a reconstruction
over matrixes is performed it is possible to choose
only the first k elements of the matrixes, i.e., M ′ =
UkSkVk

T , with this, a new matrix M ′ is obtained, in
which the noise introduced by irrelevant relations is
eliminated. Thus, the new values M ′i,j unveil latent
relationships among terms and documents, the so
called human cognitive relations in [8]. SVD is
implemented in many different mathematical tools,
we use JAMA, a basic linear algebra package for
Java [12].

Example 1 Let us consider the documents:

d0 = My computer. It has branded software.

d1 = A PC is useful. Only with branded software.

d2 = A PC (as computer) hardware. It can
be generic.

d3 = Branded software and generic hardware.
Both, go well with my computer.

The dictionary of the document collection is
{computer, software, branded, PC, hardware,
generic}. According to previous speech, the first
row in M is for the representation of the term
computer (second one for software, and so on w.r.t.
the dictionary) and the column 0 will be for the
first document, then M0,3 stands for the number of
times that computer appears in document 3, and so
on. By applying the technique SVD, M = USV T

is obtained:

M =


1 0 1 1
1 1 0 1
1 1 0 1
0 1 1 0
0 0 1 1
0 0 1 1

 ,U =


0.49 0.21 0.35 0.77
0.47 −0.50 0.02 −0.17
0.47 −0.50 0.02 −0.17
0.26 0.14 −0.93 0.22
0.35 0.47 0.08 −0.39
0.35 0.47 0.08 −0.39

 ,

S=


3.19 0.0 0.0 0.0
0.0 1.74 0.0 0.0
0.0 0.0 1.19 0.0
0.0 0.0 0.0 0.6

 ,V
T

=


0.45 0.38 0.46 0.67

−0.46 −0.50 0.73 0.08
0.32 −0.75 −0.36 0.45
0.70 −0.22 0.35 −0.58

 .

Considering k = 2 and reconstructing M :

M ′ =


0.542 0.413 0.986 1.085
1.067 0.993 0.044 0.929
1.067 0.993 0.044 0.929
0.265 0.195 0.557 0.577
0.133 0.019 1.115 0.821
0.133 0.019 1.115 0.821

 .
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If the similarity between vectors representing
the rows 0 and 3 of M is calculated, i.e.,
the comparison of similarity among terms "PC"
and "computer," the result is 0.4, while, 0.99 in
M ′. Although the coincidence of both terms
is given only in one document, correlations in
the rest of documents allow to unveil the major
latent similarity. This insights of relationships will
be exploited later by the algorithms exposed in
this document.

3 Calculating the More Relevant Web
Page Node for Advertising

Now, we describe the main contribution of this
work, i.e., a formal technique for calculating the
more relevant web page node for advertising.

The goal of the technique is to find out the web
page node (of a specific URL) that presents the
best semantic similarity w.r.t. a given advertising
text. An advertising text is a fragment of text in
natural language, which is regularly inserted in a
web page to be exposed.

3.1 Semantic Similarity based on LSA

Measuring the similarity of meanings between
two blocks of text, on the one hand, the text of
a fragment on a web page and the other, the
advertising text, can be defined as an act of
measuring the semantic similarity between texts.

LSA is fully documented for comparison of
similarity among documents of terms. However,
advertising placement requires being determined
by analyzing several text pieces from a web page.
In this setting, a procedure for calculation of
similarity among text excerpts (of variable size)
instead of documents is needed.

Our approach for application of LSA through
M ′ and the discrimination of a set of text
excerpts of different size implies several steps.
We follow the same phases of [13] and some
definitions, to define a unique formula for semantic
computing similarity and its application towards
web page fragments.

We require to incorporate the semantic LSA
information towards distinct sized texts and also, for

the aggregation of the LSA semantic information
upon the similarity calculation.

In this way, our first definition for semantic
similarity measurement is called relative similarity :
If a text fragment fd from document d is being
analyzed, for each term i in collection we put in
vector

−→
V (fd) value 0 if that word does not appear

in fd, and we put value M ′[i][d] if the word appears
in fd, i.e, the corresponding values in vector

−→
V (fd)

are mapped from column d in M ′.

For instance, the vector for the text fragment fd0

"It has branded software" from d0 in the Example
1 is

−→
V (fd0) = 〈0, 1.067, 1.067, 0, 0, 0〉. According

to the dictionary {computer, software, branded,
PC, hardware, generic}, terms "software" and
"branded" appear in d0 and their values are taken
from M ′[0][i]

Let us remember that we are computing
similarities among text fragments of several sizes,
this is the reason why we apply a mapping of
values from the document in M ′ to

−→
V (fd), i.e.,

we do not take the whole document. We could
use relative similarity for comparing text fragments;
however, when there are not common terms in
vectors, then the result produced is 0. Hence, the
strategy of relative similarity needs to be improved.

We must consider that LSA gathers contextual
information w.r.t. the terms in a collection. A
certain kind of measurement of correlations should
be conveniently incorporated into a new scheme of
comparisons among text fragments. This is going
to be examined in the following.

Definition 2 (Mutual similarity matrixM) Given
the reconstructed matrix M ′, where m is the
number of rows and n is the number of columns
in M ′. Let the squared m × m M be the
mutual similarity matrix. Such that Mi,j contains
the similarity value sim(

−→
V (ti),

−→
V (tj)) where

−→
V (ti) = 〈M ′i,0, . . . ,M ′i,n−1〉, i ∈ {0, . . . ,m− 1} and
−→
V (tj) = 〈M ′j,0, . . . ,M ′j,n−1〉 with j ∈ {0, . . . ,m−1}.

Intuitively speaking M is a data structure which
contains the cosine similarity values between all
the terms in the reconstructed matrix M ′.
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Example 3 Let us consider the Example 1, the
mutual similarity matrix of M ′ is as follows:

M =


1.000 0.730 0.730 0.999 0.920 0.920
0.730 1.000 1.000 0.692 0.405 0.405
0.730 1.000 1.000 0.692 0.405 0.405
0.999 0.692 0.692 1.000 0.940 0.940
0.920 0.405 0.405 0.940 1.000 1.000
0.920 0.405 0.405 0.940 1.000 1.000

 ,

Here M[4][5] = 1.000 which is the result of
similarity among term 4 and 5 in M ′, i.e., the
similarity between hardware, in the row 4, and
generic, in the row 5 of M ′. This is due to both
terms appear always in pair in the documents of
Example 1. Similarities between computer and PC
are more obvious. Consequently diagonal matrix is
composed by only ones.

In the matrix of mutual similarities the information
that shows explicitly the numerical similarities
among terms in a collection of documents is
located. Now, it is necessary to exploit such
measures from M to compute the calculus
of similarity of small fragments of text and
guaranteeing that term correlations are taken
into account.

For this, we apply a simple idea: if a term t0 is
highly related (closer to one) with term t4 according
to M and, if we have a text fragment f which
contains t0 and does not contain t4 then, in order
to execute the calculation of similarity of f we will
aggregate to the vector

−→
V (f) the values for t0

and also for t4, i.e.,
−→
V (f) = 〈1, 0, 0, 0, threshold〉

where threshold is an arbitrary value in order
to identify the limit for considering a meaningful
relation between terms. Formally:

Definition 4 (threshold, meaningful relation)
Let the real number µ be threshold such
that 0 < µ ≤ 1, and Mi,j is a meaningful
relation between terms ti and tj in M ′ ⇐⇒
Mi,j ≥ threshold, where i, j ∈ {0, . . . ,m − 1} and
m is the number of rows in M ′.

The threshold defines the least numerical limit
of similarity measure for considering a relation
between terms as important. Each row in M ′

represents a term in the collection of documents,
and the numerical relation between the terms ti, tj
is joined inMi,j

To incorporate main correlations in the vectors
of text fragments, we define the concept of
augmented vector.

Definition 5 (augmented vector) Let
−−→
V4(f) be

the augmented vector of a text fragment f in
the setting of a collection of documents, such
that

−−→
V4(f) = 〈v0, . . . , vm−1〉 where vi is the

corresponding weight of ti ∈ dict(collection) in the
fragment f , which is obtained from:

vi =



weight(ti, f) if ti ∈ dict(f)
threshold if ti /∈ dict(f) but there is a

meaningful relation with
some tj ∈ dict(f)

0 otherwise,
where i, j ∈ {0, . . . ,m − 1}, m is the number of
rows in M ′ and weight(ti, f) is a function that
returns the corresponding weight of ti in f .

When a vector is augmented, not only appears
the weight of those terms present in a fragment
of text; also, the threshold value is incorporated
in the position corresponding for terms which are
not present in the fragment but, they maintain a
correlation (meaningful relation) with some other
terms present in the fragment. Roughly speaking,
in an augmented vector, there are values for
its terms and their correlated terms. Now,
for computing similarity we overload standard
cosine similarity.

Definition 6 (augmented similarity) The
augmented similarity between fragments of
text t1, t2 is defined by:

augsim(t1, t2) =
−−→
V4(t1)·

−−→
V4(t2)

|
−−→
V4(t1)||

−−→
V4(t2)|

,

where the numerator represents the dot product
of the augmented vectors

−−→
V4(t1) and

−−→
V4(t2),

and the denominator is the product of their
Euclidean lengths.

Here, augmented similarity returns the similarity
calculus of two vectors, which were augmented
from correlations among terms.

Finally, intending to harvest the best properties
of relative similarity and augmented similarity, we
define semantic similarity.
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Definition 7 (semantic similarity) Given t1 and
t2, and compsim(t1, t2) = log(relsim(t1, t2) +
0.001) + log(augsim(t1, t2) + 0.001), let:

semsim(t1, t2) =
1

1 + e−compsim(t1,t2)
,

be the semantic similarity between text fragments
t1 and t2.

Fundamentally we apply the product of relative
similarity with augmented similarity, which we call
compsim. Relative similarity has two graceful
properties. First, it takes advantage of LSA
correlations, and on the other hand, it computes
greater values in the case of the presence of
common terms. Then, an initial idea is to compute
the product of relsim and augsim; however,
eventually, the calculus could produce 0, to redress
this, we apply a logarithmic addition. Finally, in
order to normalize the values of calculations in the
range of 0 and 1, we introduce the well known
sigmoid function i.e., f(x) = 1/(1+ e−x) where x is
our compsim.

In this way, semantic similarity combines the
properties of both measurements. Relative
similarity is more affected by the coincidence of
terms in the ad text w.r.t. the analyzed fragment,
while augmented similarity, offers greater values
when a text fragment brings more relationships
with its terms. In other words, it privileges the
number of correlations of its terms.

At this point, a useful formal scheme for comput-
ing semantic similarity between text fragments has
been completely defined. Next, a set of rules for
text fragmentation to determine the more relevant
text from a web page is required.

4 Extraction of Text Fragments from a
Web Page

To define a strategy to extract text fragments from
a web page, we could suggest many criteria.
However, there is the standard scheme DOM,
which organizes the content of a web page in
hierarchical nodes.

Example 8 Let us consider the following web
page:

<html>

<head>

<title>Semantics within web pages</title>

</head>

<body>

Semantics is related with meaning.

<div>

Semantics can be extracted in two ways:

<span>

a) Driven by metadata

</span>

<span>

b) By using mathematical techniques.

One of them is:

<strong>

latent semantic analysis.

</strong>

</span>

</div>

</body>

</html>

DOM model is an adequate scheme. It stands
for Document Object Model, which is a W3C
standard platform—and language-neutral interface
that allows programs and scripts to dynamically
access and update the content, structure, and style
of documents [9].

Its corresponding DOM representation is visu-
alized in a graphical mode in Figure 1. We can
see a web page as a tree-like data structure
where each node is an (X)HTML element, i.e.,
a (X)HTML tag with its contained text and
its attributes, furthermore, its children are the
embedded (X)HTML labels.

In a DOM data structure, if a node contains
nested (X)HTML labels, there is a relation of
embedding between the node and its children. For
instance in Example 8, div node embeds two
span node children.

Definition 9 (web page tree) A web page tree
(V, E) is a directed, acyclic graph whose vertices
V are (X)HTML elements and E ⊆ V ×V is a set of
ordered pairs (v → v′) ∈ E called edges, where v
embeds v′, and there is a root(V, E) node which is
not embedded.
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div

html

head

span1 span2

strong

title body

Fig. 1. The DOM tree of Example 8, visualized in a
graphical way

Given a web page tree P = (V, E) and two nodes
v1, vn ∈ V, if there is a sequence v1, v2, . . . , vn of
nodes in P where (vi, vi+1) ∈ E for 1 ≤ i ≤ n − 1,
then we say that there is a path from v1 to vn in P .
Given u, v ∈ V we say that the node v is reachable
from u if there is a path from u to v. We use→∗ to
denote the reflexive and transitive closure of→.

Now we define candidate branch of a web page
tree in order to compute semantic similarity tests
w.r.t. the web user query.

Definition 10 (candidate branch) Let P = (V, E)
be a web page tree, then B = (V ′, E ′) is a
candidate branch where V ′ = {v ∈ V|v 6=
root(P )} ∪ {w|w is reachable from v} and E ′ =
{(u1,u2)|(u1,u2) ∈ E , and u1,u2 ∈ V ′}

Hence, each node (except the root) of a web page
tree and its children is a candidate branch.

Definition 11 (web text) Let B = (V, E) be a
candidate branch, then text(B) is its web text.

Web text is necessary to get text excerpts for
applying semantic similarity calculations.

Example 12 Let us consider the web page tree of
Example 8, then there are 7 candidate branches,
i.e., those which are compound by the following
(X)HTML elements:

B1={head, title}

B2={title}

B3={body, div, span1, span2, strong}

B4={div, span1, span2, strong}

B5={span1}

B6={span2, strong}

B7={strong}

Their contained texts were not drawn.
Hence, the set of candidate branches is
{B1,B2,B3,B4,B5,B6,B7}, and with respect
to the function text, for instance, text(B6)
returns the text excerpt "By using mathematical
techniques. One of them is: latent semantic
analysis." and text(B7) returns the string: "latent
semantic analysis.", i.e., we extract the text without
(X)HTML labels.

Definition 13 (semantically relevant nodes)
Given L = {< B, s > | B a candidate branch, A
an advertising text and s = semsim(text(B),A)
} be the ordered set of semantically relevant
nodes induced by the total order � where
< Bx, sx >�< By, sy > if sx ≥ sy.

Example 14 Here the shape of the semantically
relevant nodes is basically an ordered list
composed by candidate branches and their
corresponding semantic similarity w.r.t. an ad
text, for instance: L = {< {span2,. . . }, 0.53 >
,< {div,. . . }, 0.5 >,< {body,. . . }, 0.42 >
,< {span1}, 0.28 >,< {strong}, 0.28 >,<
{head,. . . }, 0.0 >, . . .}, would show the branches
(without text drawing) and their semantic similarity.

Once semantically relevant nodes of a web page
were computed, we are able to offer the most
significant text excerpts as a result of an ad text.

Next, we present a definition of relevant web
page node for advertising placement. For this
reason, we require some auxiliary functions:
highest(L) returns the web page node with greater
semantic similarity found in a set of semantically
relevant nodes. In the above example, the function
would return < {span2, . . .}, 0.53 >. Formally,
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Definition 15 (relevant web page node) Given a
web page url and an advertising text A, let
node = highest(L) be the more relevant web page
node for advertising placement, where L are the
semantically relevant nodes of url with respect
to A.

In Figure 2 we present an algorithm to determine
the more relevant web page node for advertising
location from a given web page.

The first step of the algorithm prepares a
collection from contextual documents. Then,
it constructs the matrix M by indexing text
from the collection. After, it computes sin-
gular value decomposition, reconstructs M ′,
and calculates the mutual similarity matrix M,
once this was done, it has all elements for
computing semantic similarity between nodes
and advertising text. There, we introduce
a function: semantically_relevant_nodes(w,A)
which computes the list of semantically relevant
nodes from a particular web page and by
considering A as text advertising.

The last part of the algorithm extracts the highest
semantically related web page node w.r.t. the
advertising text and returns it. In other words, the
algorithm determines which web page node has
more semantic similarity w.r.t. an advertising text.

5 Prototype and Experiments

In this section, some aspects of the practical
approach for web page node relevance calculation
are presented, a relevant node is the more
semantically related w.r.t. a text advertising. The
computational tool is shown in Figure 3.

Once the target web page is defined, the
web page is downloaded, for this, a parser is
employed. Jericho [6] allows us to retrieve and
to filter web pages and their text. Inclusive, it
is possible to walk through their tree structures,
visiting each node, and recovering their text.
DOM node tree is visited to take one node,
each time, for analysis. Then, DOM node and
advertising text are augmented, and finally, a value
of semantic similarity is computed. The node
that presents the highest semantic similarity is

chosen as the more appropriate place for particular
commercial information.

Figure 4 is devoted to the natural language
processing phase explanation. The first step refers
to text preparation. Naturally, the tool requires a set
of documents whose content must be in the same
context as text advertising. It is crucial because
LSA will calculate correlations between terms,
which is useful for measuring semantically related
texts, and to be exploited in our relevance analysis.

Then, the standard actions of natural language
processing are shown: text cleaning, stop words
deleting, and so on. For that phase, a proper
library has been developed. Each document is
treated, next, matrix M is formed by indexing text
from the collection of documents. SVD calculus is
performed by using a library of the third part, M ′

is reconstructed, and the mutual similarity matrix
is computed. Roughly speaking, this process
performs latent semantic analysis.

5.1 Experiments

In this section, we describe an experiment per-
formed upon the prototype, and correspondingly
upon the formal technique. The collection was
composed of text documents from a set of web
pages whose links are the following.

1. http://lsa.colorado.edu/whatis.html

2. https://en.wikipedia.org/wiki/
Latent_semantic_analysis

3. http://recommender-systems.org/
latent-semantic-indexing/

In this experiment, all web pages compose the
collection of documents for LSA feeding. Next,
we employ a little paragraph of text advertising to
determine the more semantically related web page
node (in each URL), i.e., the more relevant node
for advertising placement.

Each web page was downloaded, and their
DOM nodes were extracted by means of our
DOM parser (based on Jericho [6]), then a text
file with the set of nodes from each URL was
prepared. Next, the whole process of the formal
technique introduced in Section 3 was computed
to determine the semantic similarity of every node
and as a consequence, the best adequate place for
commercial information.
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Input: U a set of contextual documents; w the target web page
for advertising; A, an advertising text; k dimensions for matrix
reconstruction
Output: node, the relevant web page node
Initialization: Collection := {}
Begin

For each u ∈ U
let du := text(u)
Collection := Collection ∪ {du}

let M := indexing as of Collection
let USV T := SV D(M)
let M ′ := UkSkV

T
k

let M := mutual similarity matrix of M ′

let Lw := semantically_relevant_nodes(w,A)
let node := highest(Lw)

End
Return: node

Fig. 2. An algorithm for computing the more semantically related web page node for advertising location
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Fig. 3. A tool for web page node relevance calculation

The advertising text is: singular value de-
composition (SVD) to the matrix; for this
reason, we developed a tool that receives a
text and returns each text fragment and its
corresponding measurements. Thereby the
decision is taken by considering the web page
node with the highest semantic similarity.

In the Table 1 a set of measurements are
presented, there, a series of 26 nodes f from
http://lsa. colorado.edu/whatis.html
are put through testing.

 LSA
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M 
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factorization

M’ = 

reconstruction of 

M 

mutual similarity matrix calculation M 

Text preparation

d0 … dn 
text 

cleaning 

stop words 

deleting 
stemming 

Fig. 4. Semantic NLP process

The first calculus shown is sim, which
represents the standard cosine similarity between
the ad text an the analyzed node. The second
one is the result of the relative similarity relsim.
The third one represents the augmented similarity
augsem. Next column presents results of
composed compsim similarity, i.e., the product
of relative and augsem, then semsim is
calculated by using the logarithmic approach.
semsim unveils the result of the query, i.e., frag-
ment 22 from the http://lsa.colorado.edu/
whatis.html URL. For each node of the web
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Table 1. Measurements for http://lsa.colorado.edu/whatis.html nodes

f sim relsim augsim compsim semsim terms % terms text of f
1 0.14 0.137 0.336 0.046 0.2090 508 30.71 What is LSA? What is ...
2 0 0 0.091 0 0.0173 1 0.06 What is LSA?
3 0 0 0.862 0 0.0446 17 1.02 Note: If you linked ...
4 0 0 0.892 0 0.0452 9 0.54 click here to open ...
5 0 0 0.997 0 0.0473 3 0.18 The information on this page is based
6 0 0 0.867 0 0.0447 9 0.54 Landauer, T. K., Foltz, ...
7 0 0 0.888 0 0.0451 4 0.24 which is available for ...
8 0 0 0.780 0 0.0428 68 4.11 Latent Semantic Analysis (LSA) is a ...
9 0 0 0.995 0 0.0473 3 0.18 Latent Semantic Analysis

10 0 0 0.091 0 0.0174 1 0.06 (LSA)
11 0.21 0.154 0.804 0.124 0.2882 70 4.23 Research reported in, and ...
12 0 0 0.997 0 0.0474 2 0.12 semantic space
13 0 0 0.833 0 0.0440 33 1.99 LSA can be construed ...
14 0 0 0.753 0 0.0422 72 4.35 As a practical method ...
15 0 0 0.735 0 0.0417 76 4.59 Of course, LSA, as ...
16 0 0 0.853 0 0.0444 24 1.45 However, LSA as currently...
17 0 0 0.750 0 0.0421 98 5.92 LSA differs from other...
18 0 0 0.729 0 0.0416 105 6.34 However, as stated above...
19 0 0 0.874 0 0.0449 6 0.36 Preliminary Details about ...
20 0 0 0.842 0 0.0442 47 2.84 Latent Semantic Analysis is ...
21 0.05 0.163 0.822 0.134 0.2955 29 1.75 The first step is to ...
22 0.45 0.234 0.754 0.176 0.3204 62 3.74 Next, LSA applies singular ...
23 0 0 0.859 0 0.0445 17 1.02 Landauer, T. K., ...
24 0 0 0.867 0 0.0447 4 0.24 Basic and applied memory...
25 0 0 0.863 0 0.0446 15 0.90 Landauer, T. K., & Dumais...
26 0 0 0.182 0 0.0232 2 0.12 Psychological Review, ...

page, the maximum semantic similarity w.r.t. the
ad text is calculated, and then the best location for
advertising is discovered.

Now let us focus in a series of properties of the
technique and let us observe its behavior through
the results in the Table 1.

The technique is independent of the size
of the text node analyzed. Initially, it is
more straightforward computing calculations in
simple documents than complete documents
(or web pages). DOM nodes present the
phenomenon of embedding. For instance, node
body embeds all the paragraphs on a web
page. Fragment 1 constitutes the biggest node
in http://lsa.colorado.edu/ whatis.html
and, nevertheless, it does not bring the highest
semsim.

The technique offers maximum qualification
for keyword coincidences. In column semsim,
maximum values are those that present relsim
different of 0, i.e., there is keyword shared in
analyzed node and ad text. If there are not
common keywords, the discriminating values will
be those from augsim. And some interesting, we

can obtain results inclusive when nodes do not
contain common terms.

The technique exploits LSA results. augsim
determines a nice measurement among text
fragments. Each vector is enriched with
meaningful relationships of terms. Hence augsim
calculates the quality of correlations between
terms. Let us observe the fragment number
5. Its text is short. However, the word
information appears more than 40 times in
https://en.wikipedia.org/wiki/
Latent_semantic_analysis, this is the reason
why its measurements are higher in Table 1.

6 Related Work and Conclusions

To the best of our knowledge, there are many
research works focused on measuring the success
of advertising campaigns [2, 3]. However, there
are not for measuring the best place for publicity
location on a web page. It may be that this
concern is more attractive for companies and, the
solutions they reach are implemented instead of
being published. However, from an academic point
of view, it is interesting to measure the meaning of
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Fig. 5. A prototype for automatic relatedness calculation among advertising text and web page nodes

advertising w.r.t. the meaning of the web content
which a user reads. In this work, we proposed a
method for the numerical comparison. Other future
work will be devoted to analyzing the success of
this criterion for publicity location.

In summary, we have introduced a formal
technique for semantic similarity between web
page nodes and advertising messages, which
presents several advantages: always returns a
value, is independent of the size of text fragments,
privileges (numerically) the existence of common
words in text node and ad text, outperforms results
of cosine similarity, only once calculation of LSA
is required to produce any number of comparisons
from an ad text.

The exposed formula of semantic similarity
is based on that presented in [13], some
formalizations are included here. And finally, the
technique is described in a technological style
(fully procedural), which is convenient to replicate
the tool.

We have developed a pair of tools, one for web
page (Jericho [6] based) parsing and other for text
fragment ranking (Figure 5).

For future work, we are testing deep methods
based on word embedding, to produce a paramet-
ric framework for web filtering and web indexing.

The potential applications of the technique are
the following: analysis of similarity among content
and advertising, filtering of web pages (since we

rank DOM nodes with semantic similarity), the
transformation of web pages, determining of hot
sections in a web page, production of industrial
tools, and other more.
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