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Abstract. This paper aims to show that generating
and evaluating summaries are two linked but different
tasks even when the same Divergence of the Probability
Distribution (DPD) is used in both. This result allows
the use of DPD functions for evaluating summaries
automatically without references and also for generating
summaries without falling into inconsistencies.
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1 Introduction

The available number of documents in electronic
form has exponentially grown in recent times. It is
impossible for a human to absorb this information
to the rate that is produced. The multilingualism
present in documents on the Internet does not
make the problem any easier. One way to deal
with the issues raised are the Automatic Text
Summarization (ATS) algorithms [32, 33, 17, 16,
34, 24], a Natural Language Processing (NLP)
task. ATS is a compression with losing information.
A summarization algorithm aims to compress a
source document in order to save their essential

content. ATS can produce a relevant synthesis of
the documents, giving the reader the decision to
consult the source literature.

The production of summaries by humans is a
highly subjective cognitive process: not only is it
necessary to have knowledge of the language in
which the document is written but extra-linguistic
domain knowledge is also required in order to
produce relevant abstracts.

There are different types of summaries depend-
ing on: i) the source documents: single-document,
multi-document, monolingual, multilingual, generic,
guided, etc.; ii) the genre of texts: news, scientific,
encyclopedic, etc.; iii) the audience: expert,
general public, etc. Other kinds of summarization
are also possible: blogs summarization, tweets
summarization, etc. For a more complete state of
the art, the reader may consult: [17, 16, 24, 34],
among other readings.

ATS algorithms, despite not generating quality
summaries comparable to those produced by
humans, they are capable of generating exploitable
summaries that give a reduced view of the
source document.
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The term “exploitable” means that the automati-
cally generated summary has certain qualities that
make it interesting:

1. It has to be shorter than the original (mea-
sured in characters, words, sentences, etc.).

2. Good informative content coming from the
source document (the informativity).

3. It has to be coherent, grammatically correct
and readable (the form of the document).

However, the two latter qualities are highly
subjective. How to correctly measure the
informativity and the form at the same time? The
answer to these questions is still open however
partial answers exist [16, 8, 23].

In ATS two processes are clearly differentiated:
a) the production of –relevant– summaries, and
b) the –correct– evaluation of these summaries.
It is not enough to create ATS systems, it is
necessary to correctly evaluate the production
of such systems. Process (a) presents several
intrinsic difficulties: the “comprehension” of the
text, the selection of the informative segments,
their assembly and their possible rewriting.

The production of summaries can be realized
by extraction or abstraction approaches. The
extractive approach selects the most informative
segments from the source, then the algorithm
assembles them into a summary [15, 1, 3].
The abstractive approach aims to generate new
and informative texts from the source document
[16, 34]. Nowadays, most systems use
an extractive approach because the algorithms
for extracting sentences have shown technical
superiority against complex methods of abstract
generation (based on rules or others).

Process (b), quality summary assessment is a
task with its own difficulties [24, 16]. In general,
summary evaluation can be performed manually
(reading and direct evaluation by human judges),
automatically (comparing artificial summaries vs.
references1) or automatically without references
(comparing artificial summaries vs. the source
document) [34].

1References are summaries made by humans (see
Appendix C).

The evaluation with references is dominant in the
literature because it presents a good correlation
with the manual evaluations [11].

In this paper we are interested in automatic
evaluation without references. This way of
evaluating has a great advantage: not needing
human references or judges trying to analyze large
volumes of sources and artificial summaries. In
addition, this type of evaluation has shown a good
correlation with methods using references [14, 34].
However the evaluation without references has
incurred severe criticism.

It can be argued that the evaluation algo-
rithm, being able to evaluate summaries, also
–potentially– has the capacity to generate them.
Supposing that when generating a summary using
the weighting function of an evaluation algorithm
and measuring the quality of this summary using
the same evaluating algorithm is actually cheating.
The aim of this paper is to show that, under certain
assumptions, using the evaluation function during
the generation process does not guarantee that
the optimal summary will be obtained at the same
moment when it is evaluated.

The rest of the paper is organized as
follows: Section §2 discusses the generation and
evaluation of summaries. In Section §3, two
proofs show the difference between generating
and evaluating summaries using divergence of
probability distribution. Finally in Section §4 the
discussion and conclusions are presented. Three
annexes with linguistic motivation complete the
paper: A) the representation of documents as
probability distribution, B) the automatic generation
of summaries and C) their evaluation.

2 Generating and Evaluating
Summaries

Through a classical approach, textual documents
can be normalized and represented in an
appropriate vector space (see A). In this space,
there are algorithms that can calculate a relevant
summary of the text and other algorithms that
evaluate the quality of the informative content of
a summary already generated. In this section we
will formally define the tasks of generating and
evaluating textual summaries.
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2.1 Automatically Generation of Summaries

Let T be a source document consisting of a
set of fi; i = 1, 2, . . . ,P sentences. Let X =
{w1, . . . ,wj , . . . ,wn} be the vocabulary2 of T . The
size of |X | = n words (or tokens). Let fi be a
sentence ∈ T , consisting of a set of normalized
tokens wj . Each token wj has a number of
occurrences associated with the document T ,
denoted by CTw ∈ N. The number of occurrences of
the token wj can also be counted in each sentence
fi as Cfi

w .
The extractive paradigm of summary generation

[15, 1, 3, 16, 34] is currently dominant in literature.
This paradigm involves the selection and extraction
of the k most relevant (informative) sentences
belonging to the source document T . This set of
sentences will be denoted by A and it is calculated
through a weighting (or normalized score between
[0, 1]) of the sentences fi ∈ T . The k sentences
having higher scores become part of A, the rest
are probably deleted.

Formally, let a sentence fi = {w1,w2, . . .} be a
sequence of words and a text T = {f1, f2, . . . , fP }
a set of P sentences. Let Ω(fi) → [0, 1] be
a weighting function 3 that measures normalized
information (0: null information, 1: maximum
information) of a sentence fi. An automatic
summary A is a subset of k sentences of T ,
produced by an algorithm. The number k defines
the compression rate: ρ = k

P . In a summary
generated by extraction, the k sentences of A ⊂ T
and its vocabulary Y ⊆ X .

A summarizer is a function G that generates a
subset A having k sentences, 0 < k < P , such
as: G : T → A; A = {fk} ∈ T is an extract of k
sentences having the highest Ω(fk) weights. k will
be set following the compression rate ρ. There are
several types of algorithms of sentence extraction
(see some heuristics in B).

2Set of unique words in a text. In this article a word will be a
token separated by whitespace.

3The sentence weighting is one of the central problems of
ATS. Examples of sentence weighting functions are: the length
in words Ω(f) = |f |, the number of keywords (nouns, verbs,
...) of f : Ω(f) =

∑
w∈Keywords f , the sum of the TF IDF

of the words: Ω(f) =
∑

w TFw × IDFw (see A), etc. More
complex functions, iterative functions or functions using graphs
of sentences are commonly used to weight sentences.

2.2 Automatically Evaluation of Summaries

There are several manual and automatic methods
with and without references capable of evaluating
text summaries (see C). In this section we only
will deal with the automatic evaluations without
references. This type of evaluation and its
relationship with the summaries generation using
Divergence of Probability Distribution constitute the
critical point of the paper.

Automatic evaluations without references are
based on a measure of divergence between two
probability distributions [7, 12, 13, 14]. Two suitable
divergence measures are the Divergence, Relative
Entropy, or Kullback-Leibler Distance DKL [2] and
the Jensen-Shannon Divergence DJS [4]. The
divergence between the probability distribution T
of the text and the probability distribution A of
an automatically generated summary is calculated.
The value obtained is a score of the summary
information content. Less divergence means
greater similarity between T and A, greater
divergence, the opposite.

Despite the good empirical results of the
evaluation without references [12, 13, 14], a
recurrent criticism towards this kind of algorithms is
that nothing prevents using the divergence function
between probability distributions in the process of
summaries generation.

For example, at each step the algorithm
could compute the weight Ω of the sentence
fi, calculated as a measure dependent on the
normalized divergence between the probability
distributions of the source text T without the
sentence fi and the involved sentence fi; fi would
be guaranteed the lowest possible divergence
from T (or the maximum score Ω(fi)) under any
condition. Proceeding in steps, other sentences
could be added following a constructive heuristic.
This heuristic may generate a summary A with
the k best sentences diverging as little as possible
from the source T , as has been suggested by [34].
Other heuristics are also possible.

Supposing that a summarization algorithm G
using a sentence weighting Ω with a DPD D.
Suppose the divergence D is also used in an
evaluation algorithm E. After the generation
process, if the summary A generated by G is
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evaluated with the algorithm E, the question is
obvious: Can it be guaranteed that the summary A
has the least possible divergence from T ? This is a
delicate point on which our attention is focused on,
because these kinds of heuristics can be blamed
of being the “judge” and “part” in the tasks of
evaluation and generation of summaries. In the
next section we will show that this is not the case.

3 Textual Divergences using
Probability Distributions

3.1 Preliminaries

Let the random variable X be the alphabet (or
vocabulary) of a textual document T . A probability
distribution of a text T is a function T : w →
p(w), ∀w ∈ X . T assigns to each word w in
the vocabulary the probability p(w) that this word
occurs in T .

This probability p(w) can be estimated by:

p(w) =
CTw
|T |

,

where CTw is the number of occurrences of the
word w in the text T and |T | =

∑
w

CTw is the

size of the whole document, i.e the total number
of occurrences that appear in the text T .

Evaluating a summary using a measure of
divergence D is equivalent to calculating the
divergence between the probability distribution of
the source text T , denoted by T , and the probability
distribution of the summary A, denoted by A. We
write this as:

D(T ||A) or D(T || {f1 ∪ · · · ∪ fk}), (1)

when the summary consists of k sentences.
In general D(T ||A) > 0, intuitively, a value close

to zero obtained by the equation 1 implies a high
similarity of the summary A in relation to the text
source T . Values far from zero imply less similarity
of the summary in question. Given a set of
summaries {A1,A2, . . . ,Ar} with r > 2 is ranked
using equation 1, i.e. by measuring their quality
(divergence) in relation to the source document.

Generating a summary requires the use of a
heuristic or m-steps algorithm. Heuristics can
be constructive (by adding selective sentences) or
exhaustive (using a combination of all sentences).
The use of an exhaustive heuristic is dealt with
section 4 and in B.

If the weighting Ω employs a divergence function
D applied on the fi sentences, then generating
the summary A requires an algorithm of a
constructive nature.

This involves calculating the weight of subsets
of the text (one sentence or a group of sentences)
and selecting the best weighted subsets (with
minimum divergence) and concatenating them to
produce the required summary.

Supposing that in the m constructive step, k
sentences have been retained to form part of the
summary Am of T , then Am = {fm1

∪ · · · ∪ fmk
}.

To show that the evaluation of the summary Am is
not equivalent to the constructive generation of it, it
is enough to prove:

D(T || {fm1
∪ · · · ∪ fmk

}) 6=
D(T ||fm1

) + · · ·+D(T ||fmk
).

(2)

In this article we prove for the asymmetric
divergence of Kullback-Leibler [2] and for the
symmetrized divergence of Jensen-Shannon [4]
that evaluating a summary is different from
generating it, even if the same divergence function
was used for both tasks.

To prove equation 2 for these DDPs, we need the
next three assumptions:

1. The source text consists of at least three
sentences, T = {f1, f2, . . . , fP }, with P ≥ 3.

2. The summary A consists of at least two
sentences and

3. |A| < |T |.
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3.2 DDP Kullback-Leibler

Definition 1 The divergence, relative entropy or
Kullback-Leibler distance between two probability
distributions p and q over the same alphabet X is
given by:

DKL(p‖q) =
∑
w∈X

p(w) log2

p(w)

q(w)
.

Hereafter, for purposes of facilitating reading, we
shall agree to write: log2 = log, p(w) = pw and
q(w) = qw.

In addition, we also need to establish some
conventions: for some words w in T , CAw could
be zero, because not all words in the text are
present in the summary, then qw = 0 and pw log pw

0
would be a very large number. For practical
reasons, in order to avoid this situation, we can
use a smoothing (kind of Laplace, Good-Turing,
Back-Off, etc.) that replaces the null values for a
small and positive real number [19, 18]. For the
case of this demonstration, it suffices to suppose a
smoothing where:

qw =

{
CA

w

|A| , if w ∈ A,

α elsewhere; 0 < α < 1.
(3)

The Kullback-Leibler distance is not a metric,
because even though it is true that DKL(p‖q) ≥ 0
with equality if and only if p ≡ q, it also occurs that
DKL(p‖q) 6= DKL(q‖p) and it does not satisfy the
triangle inequality.

Despite this, in the area of automatic summaries,
the Kullback-Leibler distance is used to measure
the divergence between the probability distribution
T of a source document and the probability
distribution A of its summary, and it is defined
as follows:

DKL(T‖A) =
∑
w∈T

pw log
pw
qw

, (4)

where pw =
CT

w

|T | , qw is given by the equation 3, CTw
is the number of occurrences of the word w in T ,
CAw is the number of occurrences of the word w in
A, |T | =

∑
w

CTw and |A| =
∑
w

CAw .

Theorem 1 Let T be a text with P ≥ 3 sentences
and a probability distribution T . Let fi and fj be two
sentences in T , and A = {fi ∪ fj} the summary
or concatenation of fi and fj with a probability
distribution A; then:

DKL(T ||{fi ∪ fj}) = DKL(T ||fi) +DKL(T ||fj),

occurs only when the sentences fi and fj have
length zero.

Proof 1 We will calculate first DKL(T ||fi ∪ fj). To
simplify the notation we will write KLw = pw log pw

qw
.

We know that we can decompose the source
text as:

T = (T \{fi ∪ fj}) ∪ (fi\{fi ∩ fj})
∪ (fj\{fi ∩ fj}) ∪ {fi ∩ fj},

then:

DKL(T ||fi ∪ fj)

=
∑

w∈T \{fi∪fj}

KLw +
∑

w∈fi\{fi∩fj}

KLw

+
∑

w∈fj\{fi∩fj}

KLw +
∑

w∈{fi∩fj}

KLw.

(5)

On the other hand:

DKL(T ||fi) +DKL(T ||fj)

=

 ∑
w∈T \fi

KLw +
∑

w∈fi\{fi∩fj}

KLw

+
∑

w∈{fi∩fj}

KLw


+

 ∑
w∈T \fj

KLw +
∑

w∈fj\{fi∩fj}

KLw

+
∑

w∈{fi∩fj}

KLw


=

∑
w∈T \fi

KLw +
∑

w∈T \fj

KLw

+
∑

w∈fi\{fi∩fj}

KLw +
∑

w∈fj\{fi∩fj}

KLw

+
∑

w∈{fi∩fj}

2KLw.

(6)
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Matching the equations 5 and 6, and performing
the operations we obtain that:

DKL(T || {fi ∪ fj}) = DKL(T ||fi) +DKL(T ||fj),

implies:

∑
w∈T \{fi∪fj}

KLw

=
∑

w∈T \fi

KLw +
∑

w∈T \fj

KLw

+
∑

w∈{fi∩fj}

KLw.

(7)

As we can see, the sum of the left side of the
equation 7 is calculated on the set T \{fi∪fj} while
the sum of the right side is calculated on the whole
set T . Giving that (f1 ∪ f2) ⊂ T , the only way it
occurs that:

T \{fi ∪ fj} = T ,

is when:
fi ∪ fj = ∅.

From the above it is concluded that:

DKL(T ||{fi ∪ fj}) = DKL(T ||fi) +DKL(T ||fj)
⇔ |fi| = |fj | = 0.

this is when the sentences fi and fj have
length zero.

QED

3.3 DDP using Jensen-Shannon

The Jensen-Shannon divergence DJS [4], or
symmetrized Kullback-Leibler distance between
two probability distributions p on the alphabet X
and q on the alphabet Y, where Y ⊆ X is given by:

DJS(p‖q) =
1

2

{∑
x∈X

p(x) log
2p(x)

p(x) + q(x)

+
∑
x∈Y

q(x) log
2q(x)

p(x) + q(x)

}
.

With the same convention (3) used in the
divergence DKL.

Use DJS to measure the divergence between
the probability distribution T of a text T and the
probability distribution A of a summary A = {fi ∪
fj} implies:

DJS(T‖A) =
1

2

{∑
w∈T

pw log
2pw

pw + qw

+
∑
w∈A

qw log
2qw

pw + qw

}
,

with the same meanings for T , A, |T |, |A|, pw, CTw
and CAw (defined for the equation (4)) and in the
Theorem 1.

Theorem 2 Let T be a text with P ≥ 3 sentences
and a probability distribution T . Let fi and fj be two
sentences in T , and A = {fi ∪ fj} the summary
or concatenation of fi and fj with a probability
distribution A. Then:

DJS(T ||{fi ∪ fj}) = DJS(T ||fi) +DJS(T ||fj),

occurs only when the sentences fi and fj have
length zero.

Proof 2 From now on, we will write:

Pw = pw log
2pw

pw + qw
; Qw = qw log

2qw
pw + qw

.

We calculate first :

DJS(T ||fi ∪ fj) =
1

2

{∑
w∈T

Pw +
∑
w∈A

Qw

}

=
1

2

 ∑
w∈T \{fi∪fj}

Pw +
∑

w∈A\{fi∪fj}

Qw


+

1

2

 ∑
w∈fi\{fi∩fj}

Pw +
∑

w∈fi\{fi∩fj}

Qw


+

1

2

 ∑
w∈fj\{fi∩fj}

Pw +
∑

w∈fj\{fi∩fj}

Qw


+

1

2

 ∑
w∈{fi∩fj}

Pw +
∑

w∈{fi∩fj}

Qw

 .

(8)
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On the other hand, we have:

DJS(T ||fi) +DJS(T ||fj)

=
1

2

 ∑
w∈T \fi

Pw +
∑

w∈A\fi

Qw

+
∑

w∈fi\{fi∩fj}

Pw +
∑

w∈fi\{fi∩fj}

Qw

+
∑

w∈{fi∩fj}

Pw +
∑

w∈{fi∩fj}

Qw


+

1

2

 ∑
w∈T \fj

Pw +
∑

w∈A\fj

Qw

+
∑

w∈fj\{fi∩fj}

Pw +
∑

w∈fj\{fi∩fj}

Qw

+
∑

w∈{fi∩fj}

Pw +
∑

w∈{fi∩fj}

Qw

 .

(9)

Matching equations (8) and (9), regrouping
terms and doing the necessary operations we
obtain:

1

2

 ∑
w∈T \{fi∪fj}

Pw +
∑

w∈A\{fi∪fj}

Qw


=

1

2

 ∑
w∈T \fi

Pw +
∑

w∈A\fi

Qw

+
∑

w∈T \fj

Pw +
∑

w∈A\fj

Qw

+
∑

w∈{fi∩fj}

Pw +
∑

w∈{fi∩fj}

Qw

 .

(10)

As in Theorem 1, we can see that the sum of
the left side of equation 10 is calculated on the
set T\{fi ∪ fj} while the sum of the right side
is calculated on the whole set T . Giving that
(f1 ∪ f2) ⊂ T , the only way it occurs that:

T \{fi ∪ fj} = T ,

is when: fi ∪ fj = ∅

From the above it is concluded:

DJS(T || {fi ∪ fj ) = DJS(T ||fi) +DJS(T ||fj)
⇔ |fi| = |fj | = 0,

this is when the sentences fi and fj have
length zero.
QED

4 Discussion and Conclusions

The main contribution of this article is to show
that a DDP used in a summary evaluator algorithm
can not be used in a generator algorithm to
construct a summary without introducing a bias. In
other words, in spite of using the same DDP for
both construction (aggregation of sentences using
heuristics) and for the evaluation of a summary,
it can not be guaranteed that the evaluation
of the given summary can obtain the minimum
divergence with respect to the source. Hence,
it is not unreasonable to use the same DDP in
both tasks.

In this article, we have shown that under the
three next conditions:

1. The divergence definitionD usesDKL orDJS ,

2. The original document T contains at least 3
sentences, and

3. The summary is obtained by extraction and
contains at least 2 sentences, A ⊂ T and
|A| < |T |,

it happens that D(T ||{fi ∪ fj}) 6= D(T ||fi) +
D(T ||fj).

We have tested it with the Kullback-Leibler
probability distributions DKL and Jensen-Shannon
DJS . In the case of the divergence DKL, given
its asymmetry, it can be considered from the
distribution of probabilities T of the text compared
to the distribution of probabilities A of the summary
and vice versa. In this article, we only consider
the case DKL(T ||A), but a similar analysis can
show that the Theorem 1 is also fulfilled in the case
DKL(A||T ).

However, an additional case must be con-
sidered. In the extraction paradigm, a sum-
mary generator G∗ could use an exhaustive
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combinatorial approach combined with an a
posteriori divergence evaluation E. That is,
an algorithm G∗(T ) could theoretically and
exhaustively produce the set {A} of all the r

possible extracts and evaluates each one of them
using E(D(T ||Ai)); i = 1, 2, . . . , r, thus retaining
the subset {a} ⊆ A summaries that minimize
divergence D. If the subset of summaries {a} is
automatically evaluated using the same DDP D,
each of these summaries will have the guarantee
of obtaining the best evaluation for divergence in
relation to T . Yet, in practice this idea would not
work. In fact, the total number r of extracts having
S sentences generated from a document T having
P sentences, is given by the binomial coefficient:

r =

(
P

S

)
=

P !

S!(P − S)!
.

This number can be large enough even for
moderate values of P and S. For example,
from a source having P = 40 sentences and
a compression rate ρ = 20%, the number of
possible extracts of S = 8 sentences is r =
76′904, 685. Generating and evaluating them
exhaustively in order to keep less divergent
summaries is not practical.

Avoiding the exhaustive algorithm, the argument
that we have presented eliminates the main crit-
icism towards summarization evaluations without
references, in the sense that using DDP during
generation and evaluation processes constitutes
cheating. We can state that, under conditions
mentioned above, evaluating and constructing a
summary are two mathematically different tasks,
although the DDP used in both is the same.

A Documents Representation as
Probability Distribution

Preprocessing

Formally, a text is composed of paragraphs,
sentences, words and punctuation marks. In NLP,
a classic preprocessing [19, 18] allows the text to
be split into sentences and tokens. Preprocessing
can eliminate non-informative tokens (articles,
conjunctions, some adjectives, auxiliary verbs,

punctuation, etc.). A deeper preprocessing
can decrease the variability of the morphological
and graphical forms of the remaining tokens
using a normalization of the vocabulary [21].
The normalization can be carried out using a
lemmatization (infinitive verbs, nouns in masculine
singular, etc.) [19], a stemming (pseudo-roots
of the words) [28] or ultra stemming (truncated
words to the first characters). The goal is to
transform words into canonical forms where the
number of occurrences of standardized tokens
allows you to conveniently represent documents in
a small space.

Example 1. Let the text be: “The little prince had
a lamb and a rose. Lambs are nice animals. The
little prince has no friends except the fox and the
lamb... poor prince!”. Text can be preprocessed
to produce the tokenized and normalized output:
T = {[prince have rose lamb], [nice animal lamb],
[prince have friend fox lamb prince]}. In this
representation, the tokens “prince” and “lamb”
occur 3 times, “have” occurs 2 times and the other
words occur 1 time. The vocabulary of T has 8
different tokens: {prince, have, lamb, rose, animal,
nice, friend, fox}.

Vector Space Model and Document
Representation

This representation (and its variants) [19, 18] is
very suitable and extensively used in Extraction
and Information Retrieval tasks, as well as in NLP.
The representation can be formalized as follows:

Let T be a document consisting of a set of P
sentences. Let fi be a sentence ∈ T , consisting
of a set of normalized tokens wij , j = 1, 2, . . . ,n.
Each token wij has a number of occurrences
associated with the document T , denoted by CTwij

;
CTwij

∈ N. The number of occurrences of the
token wij can also be counted in each sentence
fi as Cfi

wij
and can be weighted by CT

wij
combined

with the Inverse Document Frequency (IDFwij
)

in a text T : IDFwij
= log P

dwij
; where P is the

number of sentences of T and dwij is the number
of sentences where wij appears. In this way, words
can be weighted by CTwij

× log P
dwij

.
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In this paper, tokens are not weighted, but their
estimated probability is:

p(w) =
CTw∑

w

CTw
.

In the vector model the order of the tokens in each
sentence is not important and the sentences are
treated as a bag-of-words.

Example 2. In the above example, token
occurrences of “prince” and “lamb” in the text T
and in the sentences f1, f2 y f3 are: CTprince = 3;
Cf1

prince = 1, Cf2
prince = 0; Cf3

prince = 2; CTlamb = 3;

C
f1,2,3
lamb = 1.
The probability distribution of the text T , (|T |=13)

is: T = (prince = 3
13 , have = 2

13 , lamb = 3
13 , rose =

1
13 , animal = 1

13 , nice = 1
13 , friend = 1

13 , fox = 1
13 ).

The probability distribution of the first sentence
f1 (|f1| = 4) is: f1 = (prince = 1

4 , have = 1
4 , lamb =

1
4 , rose = 1

4 ).
Recently, we introduced continuous represen-

tation spaces of words (word embeddings) [22,
9]. These techniques are also employed in
ATS, but in this paper we will discuss only
discrete representations.

B Automatically Generation of
Summaries

The classical extractive paradigm of generation
of summaries [15, 1, 3], is currently dominant in
the literature for several reasons: it is easy to
program, reproducible, language independent, etc.
[16, 34]. The result is not an abstract in the human
sense of the term, but an “extract” composed of
important sentences from the source. However,
recent research focuses on the generation of true
abstracts. This task requires specialized modules
to generate, fuse and/or compress sentences.

After a preprocessing and representation in a
suitable space 4, this paradigm involves the se-
lection and extraction of the k most representative
sentences belonging to the document. This set
of sentences will be denoted A and is calculated
through a weighting Ω (or score normalized

4Space where words can be weighted or not.

between [0, 1]) of the individual sentences from
the source document T : the sentences having
high scores are aggregated to A, the rest are
probably eliminated.

There are several types of summary-generating
algorithms (summarization heuristics):

1. Baselines (Random, Lead/First base, length of
the sentences, etc.) [16].

2. Graph Heuristics [5, 20],

3. Statistical/Neural Heuristics, etc. [10, 16, 35,
9], etc.

4. Linguistic Heuristics [26, 16], etc.

5. Mixed Linguistic-Statistical Heuristics [31, 24],
etc.

6. Other heuristics. In “Other heuristics” we have
two types.

— The first one consists in exhaustively
generating, from a text T having P
sentences, the set {A} of all the
summaries having S sentences. Each
summary of {A} is then evaluated
according to its informative content and
the most informative subset {a} ⊆ {A}
is retained.

— The second one supposes that the
existence of algorithms for the summa-
rization of type 2), 3), 4), 5) or their
combinations whereby the sentence’s
weighting function Ω can also be used in
an evaluation algorithm. In particular Ω
can be a DPD.

C Evaluating Summaries

The DUC/TAC conferences 5 have established
an empirical framework for the evaluation of
summaries since 2001 [24]. In this section, we
will do a quick review of the three types of intrinsic
evaluation of text summaries: manual, automatic
using references and automatic without references.

5See websites: http://duc.nist.gov and http://www.

nist.gov/tac.
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Manual and Automatic Evaluations using
References

Manual evaluation involves direct reading and
analysis by human judges [16]. Of course, there
is a high degree of subjectivity in the task of
evaluation defined in this way. At the granularity
level of the sentence, there is the problem of
whether two different sentences have the same
meaning. Anyway, the objective is dealing with
the semantics of the summary, at this level, the
concordance between judges is not guaranteed at
all. However, a strong hypothesis is that humans
know how to generate and understand abstracts,
their judgments are considered a reference for
evaluating artificial summaries. In particular,
the assessment of linguistic quality is done only
manually [8]. Several methods using human
evaluators have been proposed [23]:

1. Readability: Qualitative score of linguis-
tic quality.

2. Responsiveness: Qualitative score of overall
responsiveness to the given task.

3. Pyramid: A quantitative measure of content
[25, 27].

In NLP, n-grams of words are a convenable
way of represent texts. A n-gram is a sequence
of n words, n = 1, 2, ... whereby the words
may or may not be consecutives. In particular,
if n = 2, we speak of bigrams or sequences
of two words: wiwj . n-grams representation
is a suitable way of capture lexical fragments
beyond the word. Automatic evaluations that use
references to calculate the intersection of n-grams
of words between a candidate summary and a
set of human-based reference abstracts. This
intersection normalized between [0, 1] on the set of
n-grams is a measure of recall.

An automated evaluation system currently
plebiscited by the scientific community is ROUGE
(Recall-Oriented Understanding Gist Evaluation)
[11]. Various systems (ROUGE-1,2, SU4, Basic
Elements BEwT-E [6], CLASSY1, DemokritosGR,
uOttawa3, CS-IITH1-4, etc.) presented in the
TAC 2011 AESOP task (Automatically Evaluating
Summaries of Peers) show a high correlation with

manual evaluations [30]. In these campaigns,
ROUGE has shown to be the best automatic
method using human references [29].

Automatic Evaluation without Human
References

This type of evaluation requires using a divergence
between two probability distributions. The
Kullback-Leibler divergence DKL [2] and the
Jensen-Shannon divergence DJS [4] have been
extensively used in this task. The DPD between
the text T and a summary A represents a
measure of the summary information content:
less divergence implies a greater similarity
between T and A. An immediate advantage
is that these measures do not require human
references to be calculated. This point avoids
the subjectivity present in human references.
The evaluation algorithms (SIMetrix 6, Fresa7,
etc.) that use DPD have given very good
results [7, 12, 13, 14], comparable with results
produced using manual or automatic methods
with references. In addition, these algorithms
have been tested in several automatic text
summarization multi-document/multi-lingual tasks.
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