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Abstract. The mental illness or abnormal brain is
recorded with EEG, and it records corollary discharge,
which helps to identify the schizophrenia spontaneous
situation of a patient. The recordings are in a time
interval that shows the brain’s different nodes normal
and abnormal activities. The spiking neural network
procedure can be applied here to detect the abnormal-
ities of patients. The abnormal spikes are detected
using the temporal contrast method, and Poisson
probability has been used to find the probability of
abnormality discharge of each channel. Then recurrent
neural network advance version long short-term memory
trained with nine channels of probability values to
generate the probability of spontaneous EEG activity
during schizophrenia. On learning of a long short-term
memory trainer, Adam gradient optimization technique
is implemented. Finally, using decoded temporal
contrast method schizophrenia patients predicted by
the above procedure accuracy using cross-validation

method predicted as 97% whereas actual positive rate
showing computes the area under the receiver operating
characteristic curve as 100% area. Again, after a
threshold implement of the temporal contrast method,
it is predicted 100% accuracy with the testing dataset.
The novelty and robotic of a spiking neural network
model called probabilistic spiking neuron model are
shown after the mathematical formulation of input data
set to generate the spikes carefully and intelligently
like Hz value of EEG should be fixed accurately for
the schizophrenia patients and selection of suitable
recurrent supervised classifier.

Keywords. EEG, spiking neural network, long short-
term memory, temporal contrast, Poisson probability
distribution, schizophrenia, probabilistic spiking neuron
model, electroencephalography spikes.
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1 Introduction

Schizophrenia (SZ) is marked by a variety of
behavioral deficits, including disturbances of atten-
tion, language processing, and problem-solving.
SZ results in spontaneous brain activity without
external interference [41]. It somehow overpowers
the subtleness in the unity of consciousness and
magnifies cognitive deficits [50]. At the same time,
SZ is characterized by biological abnormalities,
including disturbances in specific neurotransmitter
systems (e.g., dopamine and norepinephrine) and
anatomical structures (e.g., the prefrontal cortex
and the hippocampus). The brain structure of
SZ patients is different from a normal person.
The lateral ventricles of SZ patients are enlarged
compared to the normal patient.

Lateral ventricles generate cerebrospinal fluid
that circulates different areas. When involved in
speaking tasks, healthy control (HC) subjects have
higher levels of salivary cortisol in comparison to
SZ [25]. However, the behavior and biology of SZ
have remained separate fields of inquiry. To bridge
this gap between behavior and biology, irregularity
in brain activity is often determined from EEG
signals [58], and it helps to diagnose abnormality
of brain activity in SZ patients who perceive the
external activity as an internal activity. Evidence
indicating crucial differences in the frontal lobes
and temporal lobes. SZ patients show a different
functioning of the frontal lobes and have a smaller
temporal lobe structure in comparison to normal
humans [46].

The delusional and hallucinatory experiences
of SZ patients create critical reflection and
prevent distinguishing the reality or validity of the
experiences. Based on elusive, diffuse, defying
description and understanding, the psychotic
experiences arise [44, 37]. SZ may be positive
or negative according to the patient’s psychotic
experiences. Positive symptoms of SZ implies
talking nonsense words, changing thoughts,
moving slowly, unable to take decisions, forgetting,
having problems in the sense of feelings, hearing,
and looking, etc. Negative symptoms of SZ
imply a deficiency of emotions, energy, speaking,
motivation, interest in life, withdrawal from family,
friends, and social activities, etc. [25].

The human brain’s electrical activities can be
measured through Electroencephalography (EEG),
which is useful in detecting SZ. The international
system “10-20” describes the location of scalp
electrodes for an EEG test. Identification of
SZ patients can be found out by analyzing the
complexity of the EEG signals [58]. They worked
on EEG signal complexity to find out SZ against
normal subjects. They found out that it is possible
to detect SZ with an analysis of EEG signals
complexity at the time of mental activity.

For monitoring and diagnosing
pathological/psychological brain states, EEG
is a practical tool, and non-linear-based algorithms
can interpret these EEG signals to detect SZ. For
SZ diagnosis, combine features of signals shows
100% accuracy and concluded that it is possible to
detect it with non-linear combinations of features
instead of linear [22]. The SZ can be detected by
analyzing EEG signals with 100% accuracy, and
the potential of 16 electrodes can be analyzed for
reducing the computational complexity [53].

When analyzing EEG signals, the value of
Shannon entropy of HC is more significant in
comparison to SZ which implies, the higher
information possible to get from HC to SZ patients
[39]. The EEG data from 877 SZ and 753
normal control SZ subjects (NCSs) shows there
are linear and nonlinear abnormalities in SZ, and
these abnormalities help to detect SZ in the
pathophysiology test [33]. The study of brain
activity of two groups, an SZ group, and an HC
group, shows that visualization of complexities of
EEG signals of 16 channels helps to classify SZ
patients and HC subjects [31].

EEG data (256 channel records) of 38 SZ
patients and 20 HC are classified using supervised
machine learning techniques with accuracy in
classification [59]. An experiment with 40 SZ
patients and 12 HC participants showed that
EEG features consistent with low-frequency activity
for memory encoding, memory retention, and
elevated resting in the case of SZ [24]. A
further study of 45 SZ and 39 HC subjects,
has shown that 16 channels of EEG signal
complexity help psychiatrists diagnose patients
with SZ [32]. With 15 SZ and 18 HC subjects, three
EEG analysis methods, complexity, variability, and
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spectral measures are studied and distinguished
the features for SZ [48]. It was an experiment with
12 channel signals from 4 SZ and HC subjects,
which has shown frontal lobe channels have
increased in delta and theta waves the occipital
lobe have decreased in alpha waves in case of
SZ in comparison to HC patients [2]. 19-channel
EEG signals were collected from HC and SZ with
different kernel-based classifiers experimented
with an accuracy of classifications [23].

To automatically detect SZ from the EEG signals
data, we can use different machine learning tech-
niques [49]. One of the advanced machine learning
techniques, SNN shows excellent performance on
detecting and classifying the EEG signals [42, 20,
5, 51, 35, 21, 28, 17, 16, 56, 27, 7, 47, 29, 38].
SNN with deep learning in the hidden layer has
an efficiency to classify and predict the target in
supervising form [57, 61]. The SNN model can be
formulated with a different concept of probability of
different neural models and can classify according
to requirement [42, 20].

We have found a variety of different machine
learning classifiers are implemented with EEG
signals to identify the SZ patient’s EEG recording
distinguish structure [59, 24, 48, 23, 43, 45,
14, 9, 10, 52, 62, 6, 1, 34, 36], but particular
abnormalities in the signals are not taken into
consideration. SNN technique can emphasize the
spectrum pattern to study the abnormal spikes
generated in the case of SZ in comparison to
the HC subject. Hence the encoding of the
particular abnormalities in terms of spikes of the
different channel which are an abnormal indication
of signals for SZ and doing manipulations
with the spikes, it can give better result in
less manipulation. And the spikes’degree of
importance in the classifier is included with the
training of LSTM, which sequentially considers the
neurons’spikes since SNN has the advantage of
spiking identification and is trained with the deep
learning approach.

EEG signals collected from scalps show brain
activities, and by analyzing that spectrum sharply,
we can visualize the abnormal activities and slow
processing of neurons.

The SNN approach first emphasis going through
the deep dataset pattern to generate spikes and

EEG recording signals oscillations are fluctuated
according to the brain electrical activities in a time
series, so it is a suitable approach to model an
SNN for identifying SZ electrical activities in the
brain from EEG signals and predict the SZ patient
and HC.

[15] included 34 SZ and 33 HC evaluated
somatosensory potentials evoked through the right
median nerve that have a deficiency in information
processing for SZ patients. [55] included 32 SZ,
28 first-degree relatives, and 31 HC participants
with 128 channels recording it was found that
lower power spectral density in the case of SZ.[60]
summarised that TMS and EEG could help for
pathophysiological information processing to find
out deficits in SZ patients. With the identification of
SZ patients through EEG recording, it is possible
to give treatment with neurofeedback (NBF) and
can have a successful performance [54]. The EEG
signals of 256-channel found out the abnormalities
and slow-wave oscillations for SZ in comparison to
HC [11].

EEG signals 9 deficit SZ, 10 non-deficit SZ and
10 HC showed alpha band time-series signals
difference in the frontal lobe [12]. EEG recording
is simple, low-cost, shows hallucinations and
abnormalities for SZ, and through it, possible to
analyze the posterior temporal lobes connectivity
and functional associations of auditory processing
[18]. The signals from the cerebral cortex show
the symptom of functional impairment association
for SZ patients, and a review highlighted the
way of impairment in cortical network imbalances
and abnormalities in signals and disturbances
functional output [30]. A study of 64 EEG channels
recording showed low frequency, abnormal slow
frequency of beta, and unique endophenotypes for
SZ subject [40].

2 Methods

Our objective is from EEG recording of SZ patients
in a time interval are analyzed to manipulate
the spikes where spike implies the units of
frequency and prediction is generated whether
the spikes from different neurons in the time
intervals are combinedly showed the symptom of
spontaneous schizophrenia patients (SZ) or control
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Fig. 1. The image is a brain structure of the SZ patients in comparison to non -schizophrenia. The upper image is
the structure of the brain. The lower image is pointing to the locations of nodes from where the nine EEG signals
are collected for the experiment. Since the abnormal structure of frontal and temporal lobes of the brain causes SZ
abnormalities, so signals of electrodes Fz (Midline Frontal), FCz (Midline Frontal Central), Cz (Midline Central), FC3
(Frontal Central 3), FC4 (Frontal Central 4), C3 (Central 3), C4 (Central 4), CP3 (Central Parietal 3), CP4 (Central
Parietal 4) are analyzed. Regions of interest are placed with the electrodes where the Left frontal is indicated with blue
color, the Frontal is indicated with red color, the Right frontal is indicated with purple color, and the Central is indicated
with yellow color

healthy subject (HC). The prediction accuracy
and evaluation are manipulated to check the
performance. We have used SNN with Temporal
contrast, pSNM, SpikeProp, and LSTM to classify
HC and SZ.

For the implementation, we have used Python
3.6, Excel, and CSV files with Windows 10 OS.

We have taken the time series data set of EEG
recordings from the Kaggle database1. A simple

1https://www.kaggle.com/broach/buttontonesz2
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Fig. 2. EEG signals pattern of subjects, which is either SZ or HC. The image shows nine channels Fz electrode, FCz
Electrode, Cz Electrode, FC3 Electrode, FC4 Electrode, C3 Electrode, C4 Electrode, CP3 Electrode, CP4 Electrode
signals. Maximum channels have signals’ frequency of approximately 7Hz

Fig. 3. The graph represents the signals of channels Fz electrode, FCz Electrode, Cz Electrode, FC3 Electrode, FC4
Electrode, C3 Electrode, C4 Electrode, CP3 Electrode, CP4 Electrode according to HC and SZ patients. Approximately
all frequency of channels is about 7Hz, where HC patients have approximately more than 2Hz, and SZ patients have
approximately less than 2Hz
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Fig. 4. The graph of nine EEG signals of channels Fz electrode, FCz Electrode, Cz Electrode, FC3 Electrode, FC4
Electrode, C3 Electrode, C4 Electrode, CP3 Electrode, CP4 Electrode for HC subjects

Fig. 5. The graph of nine EEG signals of channels Fz electrode, FCz Electrode, Cz Electrode, FC3 Electrode, FC4
Electrode, C3 Electrode, C4 Electrode, CP3 Electrode, CP4 Electrode for SZ subjects

button-pressing task is organized to collect EEG
data from 32 HC subjects and 49 SZ patients
in which subjects either pressed a button to
immediately generated a tone, heard the tone,
or pressed a button without tone generation and
the corollary discharge is studied in people with
SZ comparison to HC. Between 1 to 2 seconds,

the subjects pressed a button with the sound of
1000Hz, 80dB, and there was no delay between
button press and tone generated.

The task was of 100 tones deliberations. The
EEG data are collected from 64 channels, but after
pre-processed, we have only nine electrodes to
be considered.
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The pre-processing is applied with raw EEG data
of each subject. The sequence of pre-processing
followed is a high-pass filter of 0.1Hz, the
outlier channels of continuous EEG data are
interpolated, data recorded in 3 seconds (1.5
seconds before an event and 1.5 seconds after
an event)and a total of 9 seconds per subject,
the baseline of signals corrected -100ms to
0ms, muscle, and high-frequency white noise
artifacts are removed using canonical correlation
analysis, outliers single trials are rejected, a
spatial independent components’analysis is used
to remove some components, and within single
trials, outlier channels are interpolated.

Event-Related Potentials (ERPs) are calculated
by averaging across trials for every sample in the
time series, separately for each subject, electrode,
and condition. Hence the ERP data is a derived
data that includes 9 electrodes Fz (Midline Frontal),
FCz (Midline Frontal Central), Cz (Midline Central),
FC3 (Frontal Central 3), FC4 (Frontal Central 4),
C3 (Central 3), C4 (Central 4), CP3 (Central
Parietal 3), CP4 (Central Parietal 4). Since SZ
patients show a different functioning of the frontal
lobes and have a smaller temporal lobe structure
in comparison to normal human [14], so the above
9 channels included for the experiment is justified
for classifying SZ and HC. The nodes are pointed
in Fig. 1. When the button-pressing task is
performed by the 81 subjects, their EEG recording
is represented in Fig. 2, and the recordings of
channels are depicted with HC subjects against SZ
patients in Fig. 3.

Fig. 4 shows the nine EEG signals of HC
subjects, and Fig. 5 shows the nine EEG signals of
SZ subjects and Fig. 2 shows the nine EEG signals
of subjects that are of both HC and SZ subjects.

All description mentioned above is extracted
from the data set, and the data description is
summarized in Table 1.

3 Results

EEG data are recorded in time intervals of
13,500ms for approximately every subject. It is a
study that approximately all SZ patients have 7Hz
or less than 7Hz frequency. In contrast, maximum
HC subjects have higher than 2Hz, and maximum

SZ subjects have less than 2Hz for each of the nine
channels (from the fitted curve in Fig. 3). Using
the encoded Temporal contrast method with a
threshold value of 2Hz, spikes are generated from
the recorded signals of nine channels. The spikes
rates for HC plotted in Fig. 6, and SZ subjects
are plotted in Fig. 7. Finally, we have derived the
average spike rate for HC and SZ patients for every
nine channels, which are depicted in Fig. 8.

The probability of spikes towards SZ patients
is calculated for each channel using Poisson
distribution probability as defined in equation
4, and we have got the probability of SZ
patients according to each channel independently.
Probabilities to be an SZ patient on behave of
each channel are represented in Fig.9 for 81
subjects where 32 are HC subjects, and 49 are
SZ subjects. After calculating probability, we
have combined the nine-channel probabilities re-
currently or sequentially using supervised machine
learning techniques LSTM.

The LSTM is used two times, with 110 epochs
to optimizes the weights and classifying. We have
taken 50% of the data set for training and 50%
taken for testing. Using the 1-fold cross-validation
method, 96% accuracy is predicted when trained
with LSTM to predict an SZ patient. Also, the
ROC AUC curve shows a 100% true positive rate,
which is depicted in Fig.10. After trained with the
LSTM model, every 81 subjects are evaluated with
sequential combinations of nine channels, and the
result is depicted in Fig.11.

Finally, decoding the temporal contrast method
generates the output spikes with the threshold
for finding the spikes is 0.707. Spikes predict
SZ patients. Thus, this SNN model shows
100% accuracy with a threshold value of 0.707
when validated with 81 subjects with a one-fold
cross-validation method and taking 50% as a
training subset and 50% as a validation subset.
The result is showing that the classifier and
predictor are with 100% accuracy, and the
performance shows the robotic result, as shown
in the following confusion matrix and Table 2.
Confusion Matrix: (

41 0
0 39

)
.
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Table 1. The information of 81 subjects EGG recording data from nine channels (Fz, FCz, Cz, FC3, FC4, C3, C4, CP3,
CP4) are summarised. Also, the subject’s information is noted

Information about subjects and their EEG recording
Number of subjects 81
Number of males 67
Number of females 14
Maximum age of subjects 63
Minimum age of subjects 19
Number of control subjects 32
Number of uncontrol patients 49
Number of electrodes recorded 64
Number of electrodes after filtered 9 (‘Fz’, ‘FCz’, ‘Cz’, ‘FC3’, ‘FC4’, ‘C3’, ‘C4’, ‘CP3’, ‘CP4’) channels.
Time interval recorded per subject 9000ms approximately
Different conditions control, uncontrol
Frequency of Channels recorded Each 1.5ms approximately
Each subject has instances 9,000 approximately
Total number of instances 7,46,496

Table 2. Classification Evaluation of the SNN model (say pSNM) on the schizophrenia EEG data set is summarized

Precision Recall F1-score Support
1 1.00 1.00 1.00 41
0 1.00 1.00 1.00 39

Accuracy 1.00 80
macro avg 1.00 1.00 1.00 80

weighted avg 1.00 1.00 1.00 80

4 Discussion

The Kaggle database of EEG recording of SZ
disorder patients was implemented with traditional
classifiers SVM, RF, ANN, and NB by [4]. We
have proposed a probability SNN model for
the classification of EEG signals collected from
the subjects suffering from spontaneous and
controlled SZ.

Different works are found relating to SZ
disease, EEG signals, machine learning classifiers,
recurrent neural network LSTM, and SNN. A study
of nine nodes Fz, FCz, Cz, FC3, FC4, C3, C4,
CP3, CP4 are channels extracted from patients
having an abnormal brain disorder. The graphical
representation Fig. 2 shows that the data used are
data extracted from patients who have an abnormal
brain disorder since the readings of each of the 9
electrodes are below 7Hz. Usually, the frequency
of the waves of an awakening adult is 8Hz and
above, and wave frequency of 7Hz or less is shown

with abnormal in awake adults or children or asleep
adults who are asleep [26]. EEG recording of 23
channels of 78 SZ patients is analyzed, and in
conclusion, that from EEG recording, it is possible
to identify SZ patients [58].

We have taken the EEG dataset of the SZ
people with control and spontaneous attitudes
for our experiment. Different machine learning
techniques classify and predict SZ patients. The
study of EEG signals of 31 SZ patients is
analyzed to classify as controlled and spontaneous
patients. 22 channel recording features are
considered with the classifiers BDLDA, standard
LDA, Ada Boost, SVM, FSVM, and BDLDA
shows robustness performance [8]. Some papers
concern the diagnosis of SZ patients suffers from
several cardinal problems, and a classifier called
TFFO proposed with three number of well-located
electrodes [19].

The said 3rd generation machine learner pSNM,
a model type of SNN, may be implemented for
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Fig. 6. The graph and bar representation of spike rates according to channels Fz electrode, FCz Electrode, Cz Electrode,
FC3 Electrode, FC4 Electrode, C3 Electrode, C4 Electrode, CP3 Electrode, CP4 Electrode for HC are plotted

classifying EEG recordings. LSTM RNN model is
proposed for EEG data classification.

Low/high arousal, valence, and liking are
the feature of emotion and, according to EEG
recordings, are different, which are classified using
LSTM and given good accuracy compared to other
machine learning methods [3].

100% accuracy with specificity, sensitivity can be
found out using RNN on EEG signals of epileptic
seizer detection [38]. Hence, after deriving spikes

from EEG signals, it is possible to use LSTM RNN
for classification.

The SZ patient’s EEG data set collected from
the Kaggle database is of 81 subjects with 49
SZ and 32 HC patients. Spikes are generated
from each channel using an encoded temporal
contrast method.

The mean spike rate is manipulated to evaluate
the probability, and LSTM is implemented for
sequentially combining each channel probability to
evaluate and predict the SZ patient.
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Fig. 7. The graph and bar representation of spike rates according to channels Fz electrode, FCz Electrode, Cz Electrode,
FC3 Electrode, FC4 Electrode, C3 Electrode, C4 Electrode, CP3 Electrode, CP4 Electrode for SZ are plotted

LSTM trained the classifier with 97% accuracy
after 110 epochs with a 100% true positive rate.
Then the decoded temporal contrast method is
used to predict the result or state of the SZ
subject. Finally, 100% accuracy is showed with
the pSNM model of the SNN. Since the pattern
of EEG signal depends on brain electrical activity,
so generating spikes using different rate codes
with the mathematical formulation is a challenging
task. By emphasizing those formulations, in
the future, we may model a classifier having
robust performance.

Although SNN discussed in the Appendix is not
implemented with EEG signals of SZ patients, we

have found out some experiments on EEG signals
of SZ patients with Deep learning, NN, and other
classifiers.

The same dataset was also implemented with
CONVNETS deep learning approach and showed
63% accuracy in classifying after 100 epochs2.
Implementation of Kernel-SVM with 58 subjects’
EEG recordings, the experiment has concluded
with the classification of SZ against healthy
subjects is possible with machine learning (ML)
techniques [59].

2https://www.kaggle.com/dianapeysakhovky/test-for-
schizophrenia-by-eeg-using-convnets
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Fig. 8. The bar diagram represents the mean spike rate of channels Fz electrode, FCz Electrode, Cz Electrode, FC3
Electrode, FC4 Electrode, C3 Electrode, C4 Electrode, CP3 Electrode, CP4 Electrode according to both HC and SZ. It
is found that the average spike rate of SZ is more comparable to HC for every channel

Fig. 9. The diagram represents the spike probability of channels Fz electrode, FCz Electrode, Cz Electrode, FC3
Electrode, FC4 Electrode, C3 Electrode, C4 Electrode, CP3 Electrode, CP4 Electrode independently where spikes
indicate the patient is SZ

ML technique SVM has experimented with 52
subjects, and the EEG recordings of them are
classified according to SZ and HC subjects with
74% accuracy [24]. EEG signals of 33 subjects are
classified with ML technique K-NN and with 94%
accuracy, it has classified SZ and HC subjects [48].

The traditional machine learning techniques
were implemented with 19 EEG recording chan-

nels to classify SZ and HC patients and have
shown with a certain level of accuracy to classify
successfully [23].

A convolution neural network model is trained
with EEG data of SZ and has scored better
performance and is suggested to identify SZ with
the pathological study of scalp areas and SZ
conditions [36].
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Fig. 10. The output of the LSTM implementation result is depicted in a ROC-AUC curve. The blue line shows the
performance of the classifier, and the red line indicates the worst performance borderline. The ROC-AUC curve area
shows 1.00. Hence 100% true positive rate and the classifier performance is excellent

ANN classification technologies can ably classify
symptoms of brain disorder in relating to SZ,
and it also summarized that more computation is
required in ANN for classification [34]. A study
was carried on children’s EEG recording to find
out the development of SZ on them, and recurrent
convolution neural network and traditional machine
learning are implemented with it. The conclusion
suggests that the capability of deep learning
models with EEG recording allows detecting the
psychosis of children at the early stages [1]. An
experiment on 28 participant’s EEG spectrum with
ML random forest classifier showed 96% accuracy
on classifying 14 SZ and 14 HC subjects [9].

CNN is trained with two EEG datasets and
successfully classified SZ and HC subjects with
a level of accuracy 95% and 97% and reach
after the relationship between frequency of signals
and SZ and showed from images of frequency,
the difference between SZ and HC subjects [6].
CNNV-RF and CNNV-mSVM are implemented

with resting-state EEG streams and found out
well performance in classifying schizophrenia
patients [14].

A deep learning model MDC-CNN is imple-
mented with EEG recording to classify SZ and
HC subjects and has 91% accuracy[45]. An
eleven-layered convolutional neural network (CNN)
model was experimented with 14 SZ and 14 HC
subjects and has shown an excellent performance
of above 85% accuracy in classifying [43]. The
19 channels EEG signals from 14 healthy and
paranoid schizophrenia subjects are classified with
random forest machine learning techniques with
100% accuracy [10]. An approach DNN-DBN
is experimented with for classifying SZ and HC
subjects, and well performance was shown in
comparison to traditional machine learning [45].

A convolutional neural network approach was
implemented to classify SZ and HC subjects, and
this ANN has shown successfully in classifying with
above 86% accuracy [52].
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Fig. 11. After implementing LSTM on nine channels (the probability of spike independently for each channel) which
combinedly predict a result as the chances of the spike to be an SZ patient, the probability is depicted on the above
figure in terms of the graph as well as a bar for 32 HC and 49 SZ patients

Random forest classifier has implemented with
9 EEG recordings from 81 subjects and was
classified successfully [62].

5 Appendix

5.1 Spiking Neural Network Algorithm

The machine learning technique SNN has three
layers, i.e., the input layer, an output layer, and the

hidden layer. The input layer containing input data,
which generates the spikes, the hidden layer train
the spikes, and the output layer also generate the
spikes of target evaluations.

The encoding procedure transfers the real value
of input information to discrete sequences of spikes
as a new format of inputs to SNN models. The
Temporal contrast or Threshold-based encoding
method is a simple method to generate the spikes.
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The encoding of spikes is generated using
equation 1:

Spike(ti) =

{
1 if S(ti) ≤ θ,
0 Otherwise, (1)

where S(ti) units value at time interval [t(i−1), ti]
and θ is the threshold value.The output decoding
procedure transfers the real value of output
information to a discrete sequence of spikes.
The decoding of the spike is found out following
equation 2:

Spike(ti) =

{
1 if P (ti) ≥ θ,
0 Otherwise, (2)

where P (ti) chances of the spike at time ti and θ
is threshold value. The probabilistic spiking neuron
model (pSNM) has considered the following steps
to model a spiking neural network:

1. (P(cj ,i)(t)) is the probability of a spike arrival
from pre-synaptic neuron nj to postsynaptic
neuron ni .

2. Probability (P(sj ,i)(t)) is the spike potential
when neuron nj generates the spikes towards
post-synaptic neuron ni.

3. The post-synaptic potential (PSP) reaches the
threshold (Pi(t)) where PSP is found out by
sum total of the probability of the post-synaptic
neuron ni .

Thus, the graphical representation with nine
neurons with pSNM is elaborated in Fig. 12.

The state of postsynaptic neurons is represent-
ing the probabilities of the spike on behave of the
nine neurons. The postsynaptic potential PSPi(t)
is calculated using equation 3:

PSPi(t) =

t∑
p=t0

m∑
j=1

ejg(pcj ,i(t− p)),

f(psj ,i(t− p))wj,t(t) + η(t− t0).

(3)

The proposed model is finally manipulated for
decoding with threshold value evaluation on the
basis of equation 3, where ej = 1 if spiking is

emitted and 0 otherwise. g(p(cj ,i)(t − p)) = 1 with
a probability p(cj ,i)(t) otherwise 0. f(p(sj ,i)(t)) = 1
if synopsis have probability p(sj ,i)(t), otherwise 0.
w(j,t)(t) is the connection weight. The probability
of spiking may be manipulated using Poisson
distribution as equation 4:

P (x;λ) = e(−λ)/(x!λx), (4)

where λ is the mean value of the existing
population of spikes.

Learning in this SNN model follows SpikeProp
where SpikeProp refers to the number of firing
detection for a given set of input patterns. From
the input values, we get post-synaptic values
that generate the fires. The functions of error
minimization and weight values that connect pre
and post-synaptic are used to interpret the firing
spikes. Recurrent Neural Network (RNN) can
solve the purpose of sequence handling to learn
the model. RNN is the sequence of the same
network with each network passing information to
the successive network. A modified version of
RNN, LSTM is selectively considered the previous
values of the features. LSTM is comprised of
different cells mechanism shown in Fig. 13.

Algorithm 1 Temporal contrast encoding algorithm

1: Input:Signals S, threshold Th
2: Output: Bit sequence B
3: Length← length(S)
4: for t← 1 to Length− 1 do
5: difference←| S(t+ 1)− S(t) |
6: end for
7: difference = [0, difference]
8: for t← 1 to Length do
9: if difference(t) < Th then

10: B(t)← 1
11: else
12: B(t)← 0
13: end if
14: end for

The neuron blocks are manipulated with three
major mechanisms as forget gate, input gate, and
output gate as shown in Fig. 14. Two well-known
functions the hyperbolic function tanh and sigmoid
function are used in a cell of neural network. For a
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Fig. 12. N1,N2,N3, · · · ,N9 are the inputs from which spikes generated, then it’s probability are manipulated using
poisson distribution as P (m1),P (m2), · · · ,P (m9) combine all probabilities using advance RNN, LSTM to find the
probability of spike and finally threshold value Pi(t) decides whether it‘s the spike of disease. Evaluate PSPi(t)
using LSTM

Algorithm 2 Temporal contrast decoding algorithm
1: Input:Probability of spike P, threshold
2: Output: O
3: if P > Threshold then
4: O(t)← 1
5: else
6: O(t)← 0
7: end if

cell, three gates are used which are manipulated
according to equations 5 to 9. Equation 5
represents the forget gate which generates the
value between 0 and 1 for the state value of the
cell. Here 1 is interpreted as the state value
is completely kept and 0 says the state value is
completely not considered and the middle value
between shows the degree that cell state value
is considered.

Then the input gate is to be considered using
the equations 6 to 8. Here the sigmoid function
is used to determine which value should be kept,

as define equation 6 and tanh function creates a
vector of state values as equation 7 to consider
state value. Finally, the state value of the cell
evaluated considering both equations 6 and 7 as
presented in equation 8.

Next output gate is evaluated using the
equations 9 and 10 where ot is updated out value
and ht is the updated state value for the cell:

ft = σ(wf · [h(t−1),xt] + bf ), (5)

it = σ(wi · [h(t−1),xt] + bi), (6)

ct = tanh(wc · [h(t−1),xt] + bc), (7)

ct = ft 0 c(t−1) + it 0 ct, (8)

ot = σ(wo · [h(t−1),xt] + bo), (9)

ht = ot × tanh(ct), (10)

where h(t−1) is the state value of the previous
neural cell, xt is the input value for the existing cell,
bf ,bi ,bc, and bo are biased values, wf , wi, wc and
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Fig. 13. Each neuron evaluation of recurrent neural network model LSTM where neuron evaluation depends on previous
neuron evaluation value, evaluation of current neuron value and importance value of neuron. Input gate is for previous
neuron evaluation, output gate is for evaluation of current neuron, and forget gate is for importance value for neuron [35]

wo are the weight values, σ is the sigmoid function
where σ(v) = 1/(1 + e(−v), tanh is hyperbolic
function where tanh(v) = (e2v − 1)/(e2v + 1).

5.2 Gradient Descent Optimization Method

We have a cost function define as equation 11:

Costfunction = (1/N)
∑

(Y ′ − Y )2, (11)

where Y ′ are the predicted values for the
classification model and Y is the actual values that
are observed. N is the total number of training data
and error is Y ˘Y ′. To optimize the weight values
in the neural network, the cost function is to be
minimized. This is possible by using derivative on
the cost function and differential calculus methods
said gradient of the cost function. Using the

first and second moments, weights are updated in
exponential rates and it is the Adam version of the
gradient optimization technique.

5.3 Evaluation Method

The machine learning skills can be evaluated using
the cross-validation method which is a statistical
procedure. According to the procedure of the
cross-validation method, the data set is divided
into two sets i.e., the training set and testing set.
The classifier is trained with a training subset of a
dataset and the classifier skills are evaluated using
the testing subset of the data set. This method is
said as a one-fold cross-validation method. This
procedure can be followed more than one time to
evaluate the classifier more accurately.
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Fig. 14. Pointing the Input gate, output gate and forget gates evaluation sketch [13]

If we follow the method k times then it is called
the k-fold cross-validation method. In the k-fold
cross-validation method, we divide the dataset into
k parts where k-1 parts are taken for training the
classifier and one part is taken for evaluating the
classifier. This procedure is followed k-1 times
with each time one different subset is taken for
validating and k-1 subset are taken for training.
Finally, the average of testing values is considered
as the skill of the classifier.

The receiver operating characteristic curve
(ROC) is depicted for measuring the performance
of a classification machine learning method with
a dataset at all various thresholds generated for
the classifier. It is plotted by manipulating the true
positive rate (TPR) and false positive rate (FPR)
where FPR is plotted on the x-axis and TPR is
plotted on the y-axis. We can measure the TPR
and FPR using equations (12, 13):

TPR = TP/(TP + FN), (12)

FPR = 1− FP/(TN + FP ), (13)

where TP stands for observed true positive, TN
stands for observed true negative, FN stands
for observed false negative, and FP stands for
observed false positive. The area under the
ROC curve (AUC) represents the quality of the

classification model by ranking random positive
data against random negative data. The value of
AUC-ROC lies between 0 and 1. If the value is
1.0, the prediction is 100% true, if the value is
0.0, the prediction is 100% false and if the value
lies between them, then the prediction truthiness is
accordingly interpreted.

The summary of our work is presented in Fig. 15.
The prediction results on a classification model

are summarized in a confusion matrix as in
Table 3.

Table 3. Representing the evaluation matrix of a
classifier trained using the machine learning method

Positive Negative
rate rate

prediction prediction
Real positive rate TP FN
Real negative rate FP TN

It shows the ways the model is confused in
prediction and also make ready to face errors and
type of errors that are being made.

Then we can calculate accuracy, recall, precision
and F-measure as follows:
Accuracy = (TP + TN)/(TP + TN + FP + FN),
Recall = TP/(TP + FN),
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Fig. 15. We have collected the EEG recordings which are already pre-processed. According to the research
experiments’ opinion, we have analyzed the data and used the temporal contrast method to generate spikes. Then
each channel spikes are combinedly interpreted using LSTM recurrent method. Again, the contrast method has been
used to generate the predicted spikes which show uncontrolled schizophrenia

Precision = TP/(TP + FP ),
F -measure = (2 × Recall × Precision)/(Recall +
Precision).

If the classifier shows 99% accuracy it is
interpreted as excellently trained with the machine
learning technique. The class prediction correctly
recognizes if we have a high recall value. High
precision indicates positive label prediction is
positive and there is a small number of false
positives. The high F-Measure shows nearer to the
higher value of Precision or Recall.

5.4 Algorithmic Representation of the
Proposed Approach

Our proposed approach is based on SNN, where
each neuron or channel is interpreted recurrently

one by one using LSTM. For the simulations, we
have followed the steps as defined below:

— Step 1. We have generated the spikes
from each signal in a specific time interval
using a temporal contrast method where the
temporal contrast encoding algorithm is as in
Algorithm 1.

— Step 2. For time intervals, we find out the
rate code by calculating the average number
of spikes generated for a time interval.

— Step 3. Using Poisson probability distribution,
the probability of spike is calculated for each
neuron.
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— Step 4. Using recurrent algorithm LSTM, all
probabilities generated from each neuron are
combined to predict the probability of spike to
be simulated for indicating the abnormality of
the signal.

— Step 5. Again, temporal contrast decoding
algorithms are implemented to conclude
whether an abnormality signal is the prediction
of an event where the event may be
a symptom of SZ. The temporal contrast
decoding algorithm is as Algorithm 2.

— Step 6. Spike in term of 1 concluded the
disorder symptoms (SZ), whereas 0 indicates
the normal control symptom (HC).
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