
Axiomatization, Computability and Stability for Discrete Event Time
Algorithms

Zvi Retchkiman Königsberg

Instituto Politécnico Nacional,
Centro de Investigación en Computación,

Mexico

mzvi@cic.ipn.mx

Abstract. This work proposes a formalization of discrete
event time algorithms. A Church type thesis, its
proof, and the notion of stability for discrete event time
algorithms are presented. The Church thesis for discrete
algorithms motivates us to consider the Church thesis for
the case when we are dealing with discrete event time
algorithms. The notions of discrete event time algorithm
and discrete event time dynamical system are postulated
to be equivalent. The stability concept for discrete
event time algorithms is defined. The stability analysis
presentation starts concentrating in discrete event time
algorithms, i.e., discrete event time dynamical systems,
whose Petri net model is described by difference
equations, and continues considering Lyapunov energy
functions in terms of the logical structures of the
vocabulary. A stability analysis based on the reachability
tree of the Petri net model is also discussed.

Keywords. Discrete event time algorithms, discrete
event time dynamical systems, Church thesis, Petri nets,
stability.

1 Introduction

In this paper the notion of discrete time event algo-
rithms is introduced. The paper starts proposing a
formalization, free of any interpretation, of discrete
event time algorithms, and continues discussing
computability issues. A Church type thesis, its
proof, and the notion of stability for discrete event
time algorithms are proposed.

The Church thesis for discrete algorithms
motivates us to consider the Church thesis for

the case when we are dealing with discrete event
time algorithms. Gurevich [1] has shown that
any algorithm that satisfies three postulates can
be step-by-step emulated by an abstract state
machine (ASM). Adding two more postulates,
Dershowitz and Gurevich [2] proceeded to prove
that all notions of algorithms for common
discrete-time models of computation in computer
science are covered by this formalization.

This includes Turing machines, Minsky counter
machines, Post machines, random access memory
(RAM) and so on. Bournez, Dershowitz and
Neron [3] have formalized a generic notion of
analog algorithm, their proposed framework is
an extension of [1, 2]. They provide postulates
defining analog algorithms in the spirit of those
given for discrete algorithms, and continue proving
some completeness results. Our presentation
follows a similar construction to the one given for
analog algorithms.

The notions of discrete event time algorithm
and discrete event time dynamical system are
postulated to be equivalent. The stability concept
for discrete event time algorithms is defined. The
stability analysis presentation starts concentrating
in discrete event time algorithms i.e., discrete event
time dynamical systems, whose Petri net model is
described by difference equations, and continues
considering Lyapunov energy functions in terms of
the logical structures of the vocabulary.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1561–1569
doi: 10.13053/CyS-24-4-3875

ISSN 2007-9737

A stability analysis based on the reachability tree
of the Petri net model is also discussed. The paper
is organized as follows. In section 2, axiomatization
and computability issues related to discrete event
time algorithms are presented. Section 3,
discusses the stability problem for discrete event
time algorithms in terms of its equivalent discrete
event time dynamical system. Section 4 presents
an application example. Section 5 discusses the
states, (equivalently strucures), stability problem
for discrete event time algorithms in terms of
Lyapunov energy functions, and finally in section 6,
a stability analysis based on the reachability tree is
also discussed.

2 Discrete Event Time Algorithms, the
Church Thesis

Gurevich [1] has shown that any algorithm that
satisfies three postulates can be step-by-step
emulated by an abstract state machine (ASM).
Adding two more postulates, Dershowitz and
Gurevich [2] proceeded to prove that all notions
of algorithms for common discrete-time models
of computation in computer science are covered
by this formalization. Bournez, Dershowitz and
Neron [3] have formalized a generic notion of
analog algorithm, their proposed framework is an
extension of [1, 2].

They provide postulates defining analog algo-
rithms in the spirit of those given for discrete
algorithms, and continue proving some complete-
ness results. The next presentation follows a
similar construction to the one given for analog
algorithms, adapting it for discrete event time
algorithms. In this section the formalization, free
of any interpretation, of the notion of discrete event
time algorithm as well as a Church type thesis
based on the previous cited work are presented.

The reader looking for a more detailed discus-
sion of the ideas behind the following presentation
is encouraged to review [1, 2, 3] but in particular [1]
is recommended.

Definition 1 A dynamical system is a four-tuple
{T ,X,A,φt}, where T is called the time set, X is
a state space, A is the set of initial states A ⊂ X
and φt : X → X is a family of evolution operators

parameterized by t ∈ T satisfying the following
properties: for x ∈ X,φ0(x) = x, and φt+s = φt◦φs.

Remark 2 Note that in our definition of dynamical
system, it is allowed to have, in general, more than
one evolution operator.

When T = N = {0, 1, 2, · · · } we speak of a
discrete event time dynamical system. We will
consider T equipped with the absolute value as
a normed space i.e., (T , | · |) . A discrete event
time dynamical system is generally represented by
difference equations.

Remark 3 When dealing with discrete event time
dynamical systems determined by difference
equations on Rn, we define the euclidean metric

d as: d(x, y) =| x − y |=
[
n∑
i=1

(xi − yi)2
] 1

2

,∀x, y ∈

Rn. X equipped with the above euclidean metric
defines a metric space.

Definition 4 A discrete event time dynamical
system is said to be computable if and only
if its family of evolution operators (also called
its trajectories) is obtained as solutions of its
mathematical model.

Postulate A. A discrete event time algorithm is a
discrete event time dynamical system.

Definition 5 A vocabulary V is a finite collection
of fixed-arity (possibly nullary) function symbols.
We assume that V contains the scalar (nullary)
function true. A first-order structure X of
vocabulary V is a non-empty set S, the base
set (domain) of X, together with interpretations
of the function symbols in V over S, denoted
by ‖f‖X . Similarly, the interpretation of a
term f(t1, · · · , tn) in X is recursively defined by
‖f(t1, · · · , tn)‖X = ‖f‖X(‖t1‖X , · · · , ‖tn‖X). Let
X and Y be structures of the same vocabulary V.
An isomorphism from X onto Y is a one-to-one
function ζ from the base set of X onto the base
set of Y such that f(ζt1, · · · , ζtn)) = ζ(t0) in Y
whenever f(t1, · · · , tn) = t0 in X.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1561–1569
doi: 10.13053/CyS-24-4-3875

Zvi Retchkiman Königsberg1562

ISSN 2007-9737

Definition 6 A state transition system, consists of
a set of states S, a subset I of initial states,
transition functions on states, which determines the
next-state relation, (states with no “next” state, will
be terminal states).

Postulate B (Abstract state). States are
first order structures with equality, sharing the
same fixed, finite vocabulary. States and
initial states are closed under isomorphism.
Transitions preserve the domain, and transitions
and isomorphisms commute.

Remark 7 In more simple words, states are
structures which are invariant under isomorphism,
and as a consequence they result to be very
general and therefore any model of computation
results to be a special case of this. The transitions
are governed by a finite description.

Definition 8 An abstract transition system is a
state transition system, whose function symbols
f are interpreted as functions, and that satisfies
postulate B, where the transition function on states
is equal to φt.

Postulate C. A discrete event time algorithm is an
abstract transition system.

Definition 9 If f is a j-ary function symbol in
vocabulary V, and a is a j-tuple of elements of the
base set of X, then the pair (f , a) (also denoted by
f(a)) is called a location. We denote by ‖f(a)‖X
its interpretation in X. If (f , a) is a location of
X then (f , a, ‖f(a)‖X) is an update of X. When
Y and X are structures over the same domain
and vocabulary, Y \ X denotes the set of updates
4+ = {(f , a, ‖f(a)‖Y) : ‖f(a)‖Y 6= ‖f(a)‖X |}.

Definition 10 An infinitesimal generator is a
function 4 that maps the state space X to a set
4(X) of updates, and preserves isomorphisms
i.e., if ζ is an isomorphism of states X,Y , then for
all updates (f , a, ‖f(a)‖X) ∈ 4(X), we have an
isomorphic update (f , ζa, ζ‖f(a)‖X) ∈ 4(Y).

Definition 11 A semantics ψ over a class C of sets
S is a partial function mapping initial evolutions
over some S ∈ C to an element of S.

Definition 12 The infinitesimal generator associ-
ated with a semantics ψ maps the state space X,
such that ψ[X, f , a] = ψ(‖f(a)‖φt(X)) is defined for
all locations (f , a), to the set of updates 4ψ(X) =
{(f , a,ψ[X, f , a]) : (f , a) ∈ X}

Remark 13 When T = N , an example of
semantics over the class of all sets would be the
function ψN mapping f to ψN (fn) = fn+1,n ∈ N .

Remark 14 From now on, we fixed the semantics
ψ to be equal to the function ψN mapping f to
ψN (fn) = fn+1,n ∈ N . However,it is assumed
that the class of discrete event time dynamical
systems is restricted to those that guarantee the
existence of the respective semantics and as a
result its associated set of updates is well defined.
Therefore, not all possible discrete event time
dynamical systems are allowed.

Postulate D. For any discrete event time algorithm,
there exists a finite set Terms of variable free terms
over the vocabulary V, such that for all states X
and Y that coincide for Terms, 4ψ(X) = 4ψ(Y).

An abstract state machine, or ASM , is a
state-transition system in which algebraic states
(no predicate symbols) store the values of
functions of the current state. Transitions update a
finite number current states and are programmed
using a convenient language based on guarded
commands for updating individual states. ASM
captures the notion that each step of an algorithm
performs a bounded amount of work, whatever
domain it operates over, so are central to the
development.

Definition 15 [1] An abstract state machine
(ASM) is given by: a set S of algebraic states (no
predicate symbols), closed under isomorphism,
sharing a vocabulary V, a set (or proper class) I
of initial states, closed under isomorphism, and a
program P , consisting of finitely many commands,
each taking the form of a guarded assignment:

if q then t := u,

for terms t and u over the vocabulary, and q is a
conjunction of equalities and inequalities between

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1561–1569
doi: 10.13053/CyS-24-4-3875

Axiomatization, Computability and Stability for Discrete Event Time Algorithms 1563

ISSN 2007-9737

terms i.e., given a state α which belongs to
S, program P defines and therefore computes
the following sub-set of the set of updates 4+,
{f(‖s‖α) := ‖u‖α : (if q then f(s) := u) ∈
P and ‖q‖α = true}.

In addition to the rule of the ASM program (see
definition 15), we introduce the following rules.

Definition 16 If each R1,R2, · · · ,Rk are rules of
the ASM i.e.:

if q then t := u,

then:
par R1,R2, · · · ,Rk endpar,

is a rule which executes them in parallel, with
4ψ(X) equal to the union of the same sub-set
of updates given in definition (15) for each
R1,R2, · · · ,Rk.

Definition 17 A rule of the form
Dynamic(f(t1, t2, · · · , tj), t0) where f is a
symbol of arity- j and, t0, t1, t2, · · · , tj are
variable free terms, then the rule is defined by
ψ[X, f , (t1, t2, · · · , tj)] = ψ(f(t1, t2, · · · , tj)) := t0,
where {ψ[X, f , (t1, t2, · · · , tj)]} is an element
of the set of updates 4ψ(X). In addition if
R1,R2, · · · ,Rk are rules of the form Dynamic
then:

par R1,R2, · · · ,Rk endpar,

is also a rule, with 4ψ(X) being equal to the
union of {(fi, ai,ψ[X, fi, ai]) : (fi, ai) ∈ X} for
i = 1, · · · , k.

Definition 18 If φ is a Boolean term and R1 and
R2 are rules then, if φ then R1 else R2 is a rule.

The following result plays a fundamental role in the
proof of the Church thesis for discrete event time
algorithms [3].

Theorem 19 For every algorithm of vocabulary V,
there is an ASM program, which for all states has
the identical set of updates i.e., emulates it step by
step.

Example 20 [6] Let us consider the matrix
difference equation describing the discrete event
time dynamical behavior of a Petri net (PN) with
m places and t transitions represented as [5]:

Mn+1 = Mn +ATun,n ∈ N ,Mn ∈ Nm

and un ∈ {0, 1}t. (1)

This evolution is described by its associated set
of updates of the following program rule:

par

Dynamic

(
Mn(p1),Mn(p1) +

t∑
j=1

aj1un(j)

)
,

· · · , (2)

Dynamic

(
Mn(pm),Mn(pm) +

t∑
j=1

ajmun(j)

)
endpar.

Notice that if M´can be reached from some other
marking M = Mn for some n ∈ N through a firing
sequence {u0,u1, ...,ud−1} writing equation (1) for
each one of the elements of the firing sequence,
and summing up, we obtain that:

M´= M +ATu, u =

d−1∑
k=0

uk. (3)

Equation (3) would result in an ASM program,
where the program rule (2) appears d times.

Definition 21 A ψ−ASM comprises the following:
an ASM program, a set S of first-order structures
with equality over some finite vocabulary V closed
under isomorphisms with a subset S0 of S closed
under isomorphisms, and a well defined update set
of computations 4ψ associated with ψ.

Definition 22 A discrete event time algorithm is a
ψ−ASM which satisfies postulates A,B,C and D.

We are assuming for that for each discrete event
time algorithm, the trajectories can be computed
from the description of its discrete event time
dynamical system. In other words not all discrete
event time algorithms are contemplated just those
of them which guarantee their existence.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1561–1569
doi: 10.13053/CyS-24-4-3875

Zvi Retchkiman Königsberg1564

ISSN 2007-9737

Definition 23 A semantics ψ is unambiguous if for
all sets S of first-order structures over some finite
vocabulary V closed under isomorphisms, and for
all subsets S0 ∈ S closed under isomorphisms,
whenever there exists some φ and a ψ − ASM ,
then φ is unique.

Theorem 24 Assuming ψ is unambiguous, for
every process (algorithm) satisfying the postulates
A,B,C and D, there is an equivalent ψ −ASM .

Remark 25 In simple words it emulates any
algorithm that satisfy the postulates.

Theorem 26 (The Church thesis for discrete
event time algorithms) The discrete event time
algorithm is computable if and only if the ψ −
ASM computes its equivalent discrete event time
dynamical system.

Proof. By hypothesis the discrete event time
algorithm is computable which implies that its
equivalent discrete event time dynamical system is
computable (recall definition 4). Therefore, there
exists a procedure (algorithm) which computes
its trajectories from its mathematical model
description and as a consequence, the ψ −
ASM program will be able to emulate the
algorithm step by step and therefore compute
these trajectories by a proper definition of its
rules (see 19, 21). For the other side of the
implication, given a ψ − ASM program which first
interprets the fixed discrete event time dynamical
system and then computes its trajectories, we
define a numerical procedure which mimics it
and therefore computes the discrete event time
dynamical system’s trajectories.

3 Stability of Discrete Event Time
Algorithms

In this section, we will focus our attention to study
the class of discrete event time dynamical systems
whose Petri net model is described by difference
equations, leaving the reachability tree analysis
technique for section 6. We will begin by recalling
some basic definitions in stability theory for this
class [6, 8].

Definition 27 (Stability)
Let us consider a discrete event time dynamical
system represented by the following difference
equation:

x(n+ 1) = f [n,x(n)] : x(no) = x0,

n ∈ Nn0 ,x(n) ∈ Rn,

f : Nn0
×Rn → Rncontinuous (4)

We say that state x = 0 of system (4) is stable if
and only if, ∀n0 ∈ N and ∀ε > 0 ∃ δ = δ(n0, ε) > 0
such that if || x0 ||< δ ⇒ || x(n,n0,x0) ||< ε ∀n ∈
N+
n0

.

Now, let us divide the set of structures i.e.,
the set of states of the discrete event time
dynamical system, in unstable and stable sets X =
{Xun,Xs}.

Definition 28 A discrete event time algorithm is
said to be stable if and only if the discrete event
time dynamical system is stable. A discrete event
time dynamical system is stable if and only if
the unstable structures are empty or they are not
attained as the program of the ψ−ASM executes.

Let us suppose that it is possible to pass from
unstable structures to stable structures by properly
defining the rules of the ψ − ASM program, then
we will obtain a stable discrete event time algorithm
i.e., we have managed to stabilize the unstable
algorithm i.e., the discrete event time dynamical
system is stabilizable.

Definition 29 A discrete event time algorithm is
said to be stabilizable if and only if it is possible to
avoid the unstable structures by properly defining
the rules of the ψ −ASM program.

Let us consider the matrix difference equation
describing the discrete event time dynamical
behavior of a Petri net with m places and t
transitions represented as [5]:

M´= M +ATu, u =

d−1∑
k=0

uk. (5)

Pick as our Lyapunov function candidate v(M) =
MTΦ with Φ an m vector (to be chosen). Then we
can state and prove the following result [6].

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1561–1569
doi: 10.13053/CyS-24-4-3875

Axiomatization, Computability and Stability for Discrete Event Time Algorithms 1565

ISSN 2007-9737

Proposition 30 Let PN be a Petri net. PN is stable
if there exists a Φ strictly positive m vector such
that:

∆v = uTAΦ ≤ 0. (6)

Moreover:

∆v = uTAΦ ≤ 0⇔ AΦ ≤ 0.

Remark 31 Notice that since the state space of
a timed Petri net (TPN) is contained in the state
space of the same now not timed PN, stability of
PN implies stability of the TPN.

Define as our vector Lyapunov function v(M) =

[v1(M), v2(M), ..., vm(M)]
T

; where vi(M) =
M(pi), 1 ≤ i ≤ m then [6].

Proposition 32 Let PN be a Petri net. PN
is stabilizable if there exists a firing transition
sequence with transition count vector u such that
the following equation holds:

∆v = ATu ≤ 0. (7)

4 Discrete Event Time Dynamical
Systems: A Case Study [6, 7]

Consider a two server queuing system (Fig 1.)
whose timed Petri net model is depicted in Fig
2. Where the events (transitions) that drive the
system are: q: customers arrive to the queue, s1,
s2: service starts, d1,d2: the customer departs.
The places (that represent the states of the queue)
are: A: customers arriving, P: the customers are
waiting for service in the queue, B1, B2: the
customer is being served, I1, I2: the servers are
idle. The holding times associated to the places
A and I1, I2 are Ca and Cd respectively, (with
Ca > Cd).

The incidence matrix that represents the PN
model is:

A =


0 1 0 0 0 0
0 −1 1 −1 0 0
0 −1 0 0 1 −1
0 0 −1 1 0 0
0 0 0 0 −1 1

 .

Fig. 1. Two server queuing system

Fig. 2. Timed Petri net model

Therefore since there does not exists a Φ strictly
positive m vector such that AΦ ≤ 0 the sufficient
condition for stability is not satisfied.

Moreover, the PN (TPN) is unbounded since
by the repeated firing of q, the marking in P
grows indefinitely. However, by taking u =
[k, k/2, k/2, k/2, k/2]; k > 0 we get that ATu ≤ 0.
Therefore, the PN is stabilizable which implies that
the TPN is stable i.e., the load has to be equally
divided between the two servers. We have already
discussed a ψ − ASM whose program describes
the discrete event time dynamical behavior of a
Petri net (see 20, equation (3)), therefore setting
in our program m = 6, t = 5, and u =
[k, k/2, k/2, k/2, k/2], we are able to bound the
marking in P or equivalently to avoid the unstable
states of the queuing system i.e., the set Xun of
our discrete event time algorithm.

We conclude that by choosing properly the
rules of the program ψ − ASM the discrete event
time algorithm for the two server queuing system
is stabilizable.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1561–1569
doi: 10.13053/CyS-24-4-3875

Zvi Retchkiman Königsberg1566

ISSN 2007-9737

Remark 33 It has been shown by employing Max-
Plus techniques, that we can set k = Ca [7].

5 Stability of Discrete Event Time
Algorithms in Terms of Lyapunov
Energy Functions for Discrete Event
Time Algorithms

In this section, we consider the the states,
(equivalently strucures), stability problem for
discrete event time algorithms in terms of Lyapunov
energy functions. The results presented in this
section, become a generalization of what was
discussed in section 3 and section 4, and includes
them as particular cases. We will deal with discrete
event time algorithms whose states are structures
of vocabulary V, where now the base set S is a
metric space (S, d), with metric d.

Definition 34 Let us consider a discrete event
time algorithm, we will say that the stateX, with a ∈
S and time-indexed location ft,t0(a), where t and
t0 belong to T , is stable if and only if ∀t0 ∈ T and
∀ε > 0 ∃ δ = δ(t0, ε) > 0 such that if given a′ ∈ S,
with d(a′, a) < δ ⇒ d(‖ft,t0(a′)‖X , ‖ft,t0(a)‖X) < ε
∀t ∈ T .

Definition 35 Let us consider a discrete event
time algorithm, we will say that the state X, with
a ∈ S and time-indexed location ft(a) is continuous
at t ∈ T , if and only if ∀ε > 0 ∃ δ = δ(t) > 0 and a
state Y such that if given t′ ∈ T , with | t− t′ |< δ ⇒
d(‖ft(a)‖X , ‖ft′(a)‖Y) < ε.

Definition 36 A continuous function α : [0,∞) →
[0,∞) is said to belong to class K if it is strictly
increasing and α(0) = 0.

Postulate E. The Lyapunov energy function
associated to the Petri net model of the discrete
event time algorithm at some transition firing time
point t0 ∈ T multiplied by some finite constant
C ≥ 1 bounds the whole Lyapunov energy function,
transferred or transformed of the whole discrete
event time algorithm, as the Lyapunov energy
function evolves in time.

Theorem 37 Let us consider a discrete event
time algorithm having transition firing time points
{t1, t2, · · · } ⊆ T . Assume there exists a Lyapunov
function V : S × T → R+ and two functions α1,α2,
which belong to K, such that:

α1(d(‖ft,t0(a′)‖X , ‖ft,t0(a)‖X)) ≤
V (‖ft,t0(a′)‖X , t) ≤

α2(d(‖ft,t0(a′)‖X , ‖ft,t0(a)‖X))

for all a, a′ ∈ S, t, t0 ∈ T . Assume Postulate E
and that ‖ft0,t0(a′)‖X = a′ holds, then the discrete
event time algorithm is stable.

Proof. We want to show that there exists
a δ = δ(t0, ε) > 0 such that given a′ with
d(a′, a) < δ ⇒ d(‖ft,t0(a′)‖X , ‖ft,t0(a)‖X) < ε
∀t ∈ T . Claim δ = α−12 (C−1α1(ε)) does
the job. d(‖ft,t0(a′)‖X , ‖ft,t0(a)‖X) ≤
α−11 (V (‖ft,t0(a′)‖X , t)) ≤
α−11 (CV (‖ft0,t0(a′)‖X , t0)) = α−11 (CV (a′, t0)) ≤
α−11 (Cα2(d(a′, a))) < ε. Where postulate E
has been used in the second inequality and the
equation ‖ft0,t0(a′)‖X = a′ in the first equality.

6 Discrete Event Time Algorithm
Reachability Tree Analysis

The lack of uniqueness of paths along the
reachability tree of the Petri net which models a
fixed discrete event time algorithm requires a little
bit of extra analysis because, we need to take
into account the possibility of multiple trajectories
starting from each initial marking. This multiplicity
leads us to consider the stability concept together
with the adjectives total and partial. Roughly
speaking, total is used when the stability property
is satisfied for all trajectories starting from each
initial marking. On the other hand, partial is used
when the stability property is satisfied by at least
one trajectory starting from each initial marking.

Definition 38 A discrete event time algorithm for
multiple paths along the reachability tree is the
cartesian product of discrete event time algorithms,
one for each path.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1561–1569
doi: 10.13053/CyS-24-4-3875

Axiomatization, Computability and Stability for Discrete Event Time Algorithms 1567

ISSN 2007-9737

Postulate F. A discrete event time algorithm
for multiple paths along the reachability tree
is a discrete event time dynamical system
{T ,X,A, {φti}i∈N }, where T , X, A are defined
as in Definition 1, {φti}i∈N is an indexed family
of evolution operators parameterized by T , and for
each i ∈ N fixed, there corresponds one member
of the cartesian product of discrete event time
algorithms.

Remark 39 From definition (38) by taking carte-
sian products, it is immediate to generalize all the
properties of discrete event time algorithms, (given
in section 2), to discrete event time algorithms
with multiple trajectories, where now we have
an ASM program associated to each one of
trajectories, and which defines the ASM program
of the discrete event time algorithm for multiple
paths along the reachability set.

Next, we show how all the ideas presented
above are applied in the following simple example.

Example 40 Consider the discrete event time
algorithm whose Petri net model is depicted in
Fig 3.

Fig. 3. Petri net model

The reachability tree of the Petri net, starting
from the initial marking (1, 0, 0) is shown in Fig 4.

This Petri net model has three paths along its
reachability tree, one stable and two unstable.
Therefore the discrete event time algorithm results
to be partially stable. The ASM program of
the discrete event time algorithm that models it,
turns out to be composed by the following three
ASM programs:

— if True then φn1
:= (1,n, 0),

Fig. 4. Reachability tree

— if True then φn2
:= (0,n, 1),

— if True then φn3
:= (0, 0, 1).

The set of updates is given by 4ψ(X) = {(φn1 :=
(1,n, 0), (φn2 := (0,n, 1)), (φn3 := (0, 0, 1))}.

7 Conclusions

This paper introduces the axiomatization, com-
putabilty and stability issues of discrete event
time algorithms. Its main contribution consists in
proposing a formalization free of any interpretation
of discrete event time algorithms and continues
discussing computability and stability issues. A
Church type thesis, its proof and the notion
of stabilty for discrete event time algorithms is
proposed. The stability analysis presentation starts
concentrating in discrete event time algorithms
i.e., discrete event time dynamical systems,
whose Petri net model is described by difference
equations, and continues considering Lyapunov
energy functions in terms of the logical structures
of the vocabulary. A stability analysis based on
the reachability tree of the Petri net model is also
discussed.

References

1. Gurevich, Y. (2000). Sequential abstract-state
machines capture sequential algorithms.
ACM Trans. Comput. Log., Vol. 1.
DOI:10.1145/343369.343384.

2. Dershowitz, N. & Gurevich, Y. (2008). A natu-
ral axiomatization of computability and proof of
Church’s Thesis. The Bulletin of Symbolic Logic,
Vol. 14, DOI:10.2178/bsl/1231081370.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1561–1569
doi: 10.13053/CyS-24-4-3875

Zvi Retchkiman Königsberg1568

ISSN 2007-9737

3. Bournez, O. & Dershowitz, N. (2016).
Axiomatizing Analog Algorithms.

4. Retchkiman Königsberg, Z. & Dershowitz,
N. (2019). The Church thesis, its proof, and
the notion of stability and stabilization for
analog algorithms. Communications in Applied
Analysis, Vol. 23, No. 2.

5. Murata, T. (1989). Petri nets: Properties,
analysis, and applications. Proc. IEEE, Vol. 77.
DOI:10.1109/5.24143.

6. Retchkiman, Z. (2005). Stability theory for a
class of discrete event time dynamical systems
modeled with Petri nets. International Journal of
Hybrid Systems, Vol. 4, No. 1.

7. Retchkiman, Z. (2012). Timed Petri Net Mod-
eling and Lyapunov/Max-Plus-Algebra Stability
Analysis for a type of Queuing Systems by
means of timed Petri nets, Lyapunov methods
and max-plus algebra. International Journal of
Pure and Applied Mathematics, Vol. 77 No. 3.
DOI:10.12732/ijpam.v86i2.6.

8. Lakshmikantham, V., Matrosov, V.M., &
Sivasundaram, S. (1991). Vector Lyapunov
Functions and Stability Analysis of Nonlinear
Systems. Kluwer Academic Publ., Dordrecht.

Article received on 12/09/2020; accepted on 01/10/2020.
Corresponding author is Zvi Retchkiman Königsberg.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1561–1569
doi: 10.13053/CyS-24-4-3875

Axiomatization, Computability and Stability for Discrete Event Time Algorithms 1569

ISSN 2007-9737

