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Abstract. Testing is a well-known technique for 
identifying errors in software programs. Testing can be 
done in two ways: Static analysis and Dynamic analysis. 
Symbolic execution plays a vital role in static analysis for 
test case generation and to find the unreachable path 
with minimum test cases. Unreachable path is a part of 
a program which can never be executed i.e., the 
symbolic execution doesn’t continue for that path and the 
current execution stops there. It generates a test suite 
for loop-free programs that is achieved by path 
coverage. In the best case program loops implies 
increase in the number of paths exponentially and in the 
worst case the program will not terminate. The functions 
of symbolic execution are test input generation, 
unreachable path detection, finding bugs in software 
programs, debugging. In this paper, we focus on dead 
code detection and test input generation using symbolic 
execution. Our execution for Java programs uses Java 
Path Finder (JPF) model tester. Our analysis shows that 
the symbolic execution method can be used to reduce 
symbolic execution time and to find out the unreachable 
path with less number of test cases. 

Keywords. Symbolic execution, path coverage, 
unreachable path, test input generation. 

1 Introduction 

Testing is very important in the software evolution 
and maintenance process as it is required to find 

out the defects that were made in the development 
phase [21].  

It is used for identifying the correctness and 
improving the quality of the software application. 
Testing can be done using static analysis or 
dynamic analysis. Symbolic execution plays an 
important role in static analysis for the test case 
generation and to explore the unreachable path 
with minimum number of test cases. Symbolic 
execution evaluates a program by considering 
inputs that results in execution of a program. This 
execution depends upon choosing of paths that are 
operated by a set of input values. A program is 
executed with symbols instead of real inputs in 
symbolic execution. Here, a source code is given 
as input for generating symbolic execution tree. 

There are several reduction algorithms to 
reduce the symbolic execution tree. The reduction 
of the symbolic execution tree is done by 
eliminating the unreachable path and hence we 
generate the reduced test case generation. It 
basically focuses on generation of the test cases, 
unreachable path detection and model checking of 
concurrent programs which take inputs as the 
complex structures. The basic applications of 
symbolic execution are test input generation, 
unreachable path detection, finding bugs in 
software programs, debugging. 
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Khurshid et al. [2] presented a two-fold 
observation of the traditional symbolic execution. 
Firstly, it enables the model checking of the 
concurrent programs to perform symbolic 
execution of the program.  

Secondly, it provides a framework based on the 
symbolic execution algorithm that handles the 
complex data structures such as linked lists and 
trees. The symbolic execution is an efficient 
method that mainly focuses on achieving high 
coverage test suites, generates per-path 
guarantees and depicts the errors in the 
software  programs. 

Symbolic execution has been considered in the 
context of Symbolic Path Finder (SPF) [12].  

SPF is an emblematic execution system based 
on the Java Path Finder (JPF) [13] show checking 
instrument set for Java Byte code investigation. 
Various applications of symbolic execution are test 
input generation, unreachable path detection, 
finding bugs in software programs, debugging.  

In this paper, authors focus on dead code 
detection and test case generation techniques. 

The paper is organized as follows. In Section 2, 
a sample program on symbolic execution is 
presented. Various dead code detection 
techniques proposed in the literature are presented 
in Section 3. Section 4 provides the symbolic 

execution techniques that are used in testing. In 
Section 5, the overall discussion on various 
techniques proposed in the literature for test case 
generation and dead code detection along with 
their advantages and disadvantages 
are presented. 

2 Symbolic Execution Tree 

A sample program to illustrate symbolic execution 
and the corresponding symbolic execution tree is 
shown as in Fig. 1. 

int x = œ, y = ß, z = ɼ; 
int p = 0, q = 0, r = 0; 
if (x < 5) { 
p = -1; 
} 
if (x + y < 10) { 
if (!x && z) 
{ 
q=1; 
} 
r=2; 

Initially x, y and z have the symbolic values ɼ, ß 
and œ respectively. At each branch point, Path 
Condition (PC) is updated so that alternative paths 
can be chosen.  

If the path condition evaluates to false, i.e., no 
data inputs pass through that path then it implies 
that the symbolic state is infeasible or is an 
unreachable path.  

The unreachable path indicates that the 
symbolic execution for that path can not be 
continued and the current execution stops there. 

3 Dead Code Detection Techniques 

Dead code is the part of a program that can never 
be executed and whose result is never used in any 
other estimation. Various researchers [9, 22] and 
other sources as in [23] have found that the 
classical software code bases contains 5-10% 
“dead code”, i.e., code that can be eliminated 
without lowering the functionalities. 

There are different techniques used for the 
detection of the dead code analysis. These 
techniques are described in the 
following  subsections. 

 

Fig. 1. A sample program on symbolic execution and 
the corresponding symbolic execution tree with 
symbolic values 
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3.1 Forward Reachability Analysis 

Yih-Farn Chen et al. [9] basically found the 
representation logics that are used for reachability 
of code and detection of unreachable code 
techniques. These two tasks help to eliminate 
excess software baggage and holds software 
reuse metrics.  

Forward Reachability Analysis is used for 
detecting dead code by determining a Reachable 
Entity Set and computing software reuse metrics. 
The reuse metrics is used to compute the code 
reuse and improve the quality and productivity. 
Reuse metrics consists of cost benefit analysis, 

percentage of reuse, reusability assessment, 
maturity assessment and failure modes analysis. 
There are two choices based on reachability of 
code and are described as follows: 

 Software Reuse: It is also known as code 
reuse. It means using the existing software or 
to build a new software by using software 
knowledge. The goal of this is to reduce the 
cost of software production. 

 Dead Code Detection: The part of the source 
code of a program which can never be 
executed, i.e., the symbolic execution does not 

 

Fig. 2. Shows that all the members of the test class are exercised for the sample Tree class 

 

Fig. 3. Dependencies of Program entities on BinTree: size i.e. directly or transitively 
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continue for that path and the current 
execution stops there: 

Class Tree { 
Public: 
Tree (int); 
Tree (Char*, Tree); 
Tree (Char*, Tree, Tree); 
Tree (Char*, Tree, Tree, Tree); 
Tree (Const Tree & a); 
~Tree () { 
if (-–b->use == 0) 
delete b;}}; 
void operator = (const Tree & a); 
main () {  
Tree t = Tree (“-”, Tree (“*”, 7), Tree (“+”, 5, 3), Tree (“-”, 4, 

5, 6));  
cout<< t << “\n”;  
t = Tree (“-”, t, t); 
cout<< t << “\n”;  
t = Tree (“+”, t, t, t); 
cout<<t<<”\n”;} 

3.2 Reverse Reachability Analysis 

Various authors have examined to use this 
technique of reachability code analysis. 
Researchers have found to support the complete 
reachability analysis that has been defined as an 
objective patterns at the selected abstraction level 
so that the programmers has the ability to analyze 
the different safeness implementations.  

Reverse Reachability Analysis helps 
programmers to determine all the program entities 
that are dependent on an entity either directly or 
indirectly. If BinTree::size is altered, then other 
entities in the graph may be affected and is shown 
as in Fig. 3. 

3.3 Visibility Analysis 

Gansner et al. [9] accomplishes the reachability 
investigation on the regulation relationship in the 
class legacy chain of importance and discovers all 
part capacities and factors obvious to class 
BinaryNode in Koenig's illustration [10]. Regulation 
relationship happens between each parent class 
and a part.  

Perceivability Analysis settles which part 
capacities and factors in a class legacy chain of 
command are seeable to a determined class. All 
part capacities in BinaryNode are seeable to itself. 
All open and shielded individuals from Node are 
likewise noticeable to BinaryNode on the grounds 

that BinaryNode has an open legacy association 
with Node.  

Likewise, Node is a companion of Tree and 
along these lines all individuals from Tree are 
noticeable to Node. The visibility analysis of 
BinaryNode and Node is shown in Fig. 4. 

4 Symbolic Execution Techniques in 
Testing 

In this section, different techniques used for 
symbolic execution is presented. 

4.1 Dynamic Symbolic Execution (DSE) 

Data Flow Testing (DFT) [6] focuses on introducing 
a hybrid DFT structure. The heart of the structure 
is based on DSE and checks the reachability in 
software model checking to improve the 
testing performance.  

DSE is a dynamic approach. It is a novel and 
efficient approach for automatic generation of the 
test cases. It combines the classical symbolic 
execution with real execution and generates many 
possible program pathways in the given amount of 
time. It aims at covering feasible pairs.  

It takes the desired def-use pair du (ld, lu, x) as 
input and the Control Flow Graph (CFG) is 
constructed. It determines the test case for feasible 
test objectives and removes infeasible test 
objectives. It starts with arbitrary test input values. 
These test input values cause the execution path 
to cover the def-use pair. There are two 
approaches to deal with this problem.  

Firstly we remove the invalid branching nodes 
by redefinition pruning technique and secondly, it 
applies Cut-Point Guided Search (CPGS) to 
choose which branching point to initially take. This 
approach can develop the DFT by 60-80% as 
compared to the testing span.The search results 
shows that the Dynamic Symbolic Execution 
approach reduces the DFT by 40% as compared 
to testing span to improve the testing performance 
than the Counter Example-Guided Abstraction 
Refinement (CEGAR) based approach.  

Path explosion is a challenging problem in this 
approach because in a cheap amount of time to 
trigger the desired pair. Henceforth, more work will 
be done based on this approach to enhance the 
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data flow testing technique on large programs. Fig. 
5 shows the workflow of DSE.  

It starts with an arbitrary test inputs values 
followed by an execution path. Then, it removes 
the invalid branching nodes by redefinition pruning 
technique and finds the known paths by generating 
the constraint system. 

4.2 Counter Example-Guided Abstraction 
Refinement (CEGAR) 

CEGAR [6] is a static approach. It is utilized for 
creating the experiments and checking the fleeting 
wellbeing properties of the product. Here, a source 
program and an impermanent wellbeing 
determination is taken, which either demonstrates 
that the program fulfills the particular or produces 
a counter example to show the infringement.  

This approach works in two stages: show 
checking and experiment created from the 
counterexamples. It first begins with a base or 
coarse program deliberation and over and again 
channels it so as to test for infeasible combine. We 
have to set a checkpoint to decide if the variable 
banner is valid.  

The defutilize match is infeasible when the 
check point is inaccessible and a counterexample 
is returned when the def-utilize combine is 
attainable.  

This approach is more intense than DSE 
approach as it enhances the scope by 20%. 
Consequently, more work will be done to make a 
profound correlation between both the 
methodologies. The workflow of CEGAR is shown 
in Fig. 6.  

A C program is taken as input to the 
abstract model.  

It then goes to the model checker where it 
automatically checks whether the model satisfies 
the given requirements and generates no error or 
bug found.  

Then by the help of model checker, it goes to 
the simulator by taking counterexample as input 
where a program allows a computer to execute 
programs written for a different operating system 
by generating the simulation successfully and 
detecting the bug.  

After that it goes to the refinement process 
where it removes the invalid the execution paths. 

4.3 Document-Assisted Symbolic Execution 
(DASE) 

DASE [3] is another novel approach for 
programmed age of the experiments and mistake 
recognizable proof to expand the adequacy and 
effectiveness of the representative execution. 
DASE separates the information impulse from 

 

Fig. 4. Visibility analysis of BinaryNode and Node 

 

Fig. 5. Workflow of Dynamic Symbolic Execution 
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archives consequently and afterward utilizes the 
info impulse to center around testing mistake 
dealing with codes, which are vital that assistance 
the inquiry systems to enhance the representative 
execution and process the execution ways.  

A program report is given as info that naturally 
separates the information impulse from that. There 
are two classes of info impulse: the setup of an 
information record and the substantial information 
estimations of order line decision.  

The outcome shows that when contrasted with 
KLEE, DASE recognized 12 obscure imperfections 
that KLEE neglected to distinguish and out of 88 
just 6 have been affirmed by the engineers.  

DASE improves line investigation, branch 
examination and call investigation by 14.2–
120.3%, 2.3–167.7%, and 16.9–135.2% in 
contrast with KLEE. Testing with invalid 
information is a testing issue. Subsequently, 
keeping in mind the end goal to test a program with 
invalid info esteems DASE approach centers by 
counterbalancing the information requirements. 

4.4 Directed Automated Random Testing 
(DART) 

DART [11] approach is also known as Concolic 
testing [14]. It dynamically operates the symbolic 
execution when the program is accomplished on 
real values. It supports two events: a real event 
and a symbolic event. A real event outlines all 
mutable to the real values and a symbolic event an 
outline all mutable to the non-real values.  

A program is taken as input and the 
corresponding symbolic execution tree is drawn. It 
first starts with the generation of random inputs and 
execute the program concretely and symbolically. 
At each branch point, either it will follow the true 
path or it will end with the false path and generates 
the Path Condition (PC) for each path.  

It finally surveys that all the paths of the 
program are examined and generates the test 
inputs. Path explosion and constraint solving is a 
challenging problem. There are two approaches to 
solve the path explosion problem: heuristics 
approach and sound program analysis approach. 

There are two approaches to solve the 
constraint solving problem: irrelevant constraint 
elimination approach and incremental solving. 
Hence, more research can be performed for 

automatic generatation of test inputs that covers 
the software bugs; generates the test suite that 
achieves high coverage; gives per-path 
guarantees and finding defects in software from 
low-level to high-level application programs. 

The program analyzer which analyzes the 
behavior of the computer programs is divided into 
two parts. The first part is path selector in which 
control flow graph is taken as input and the second 
part is test data generator in which both control 
flow graph and data dependence is taken as input. 

Data dependence is a condition where the 
program instruction refers to the data of the 
previous instructions. Then the path selector 
generates the selected paths and goes to the test 
data generator where the selected path information 
is taken as input to the path selector and produces 
the test data. Fig. 7 shows the workflow of DART. 

4.5 Executed-Generated Testing (EGT) 

EGT approach [15] is the instance of the modern 
symbolic execution techniques. It functions entirely 
between the real event and the symbolic event of 
the program. A source program is given as input 
and operated in the same program when the 
values are real.  

It has the ability to mix both real and symbolic 
execution dynamically before finding all actions 
when the input values are all real. If so, then the 
action is executed in the same program or if more 
than one value is symbolic, the operation is 

 

Fig. 6. Workflow of Counter Example-Guided 
Abstraction Refinement 
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executed symbolically by maintaining a path 
condition for each path.  

The disadvantages of this approach are 
elimination of irrelevant constraints, path explosion 
and memory modeling.  

Hence, more research can be done in 
contributing a fashion to develop the test inputs 
that finds the errors which ranges from low to high-
level syntactic features. Fig. 8 shows the workflow 
of EGT. 

4.6 conc-iSE: Incremental Symbolic Execution 
Approach of Concurrent Programs 

Incremental Symbolic Execution approach [16] for 
simultaneous programming is an approach to 
produce new test contributions by investigating the 
new execution ways between the two program 
variants.  

These two program renditions i.e., old program 
variant P and new program form P' with an 
arrangement of execution abstract of program P is 
taken as information and over and over break 
down the present execution ways utilizing P'. Its 
yield is to examine the new recognition in P'.  

This could be conceivable by evacuating the 
excess execution ways by rundown based 
calculation.  

Consequently, amid the representative 
execution of P′, it breaks the regressive change-
affect investigation. In this investigation, it 
fundamentally measures the arrangement of 
directions that may influence the changed 
guidelines set up of estimating the arrangement of 
guidelines that may be influenced by the changed 
directions [17].  

The outcome demonstrates that this approach 
would overall be able to lessen the emblematic 
execution time and to expel the excess execution 
ways and string interleaving in the incremental 
representative execution.  

The upper piece of the figure begins with the 
two program variants i.e., old program form P and 
new program adaptation P' with an arrangement of 
execution summation of program P is taken as info 
and more than once examine the present 
execution ways utilizing P' and produces the new 
recognition in P' by pruning the repetitive states or 
execution ways.  

The lower some portion of the figure begins with 
a subjective current test inputs. Amid the 
representative execution, the new states are 
created and each new state produces another 
match incorporates the information info and string 

 

Fig. 7. Workflow of directed automated random testing 

 

Fig. 8. Workflow of executed-generated testing 

 

Fig. 9. Workflow of incremental symbolic execution 
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interleaving to touch base at the new state. The 
workflow of conc-iSE is shown in Fig. 9. 

4.7 Loop-Extended Symbolic Execution 
(LESE) 

Another representative execution strategy called 
LESE is proposed in [18] that sums up from the 
genuine execution to an arrangement of program 
executions that includes the distinctive number of 
redundancies for each circle as in the underlying 
execution.  

Circle Extended Symbolic Execution is utilized 
to acquire appropriate outcomes when contrasted 
with emblematic execution when it is utilized as a 
part of projects with circles.  

It makes mistake recognizing apparatuses 
more proficient and permits age of the experiments 
to achieve high test scope as fast as could 
reasonably be expected. A source program with 
circles is adopted as contribution to this strategy.  

It begins with the predicate which is otherwise 
called inquiry predicate.  

The predicate might be the branch condition 
related with the program point, and an execution 
that achieves the point, yet does not fulfill the 
predicate and after that yields to determine that the 
condition on a contribution to the program which 
creates the execution brings about a similar way 
and furthermore points the predicate to be valid.  

It has the issue of recognizing and deciding 
support abundance impulse that produces on 
unmodified Windows and Linux sets. 

The outcome demonstrates that the Loop-
Extended Symbolic Execution can make an 

assortment of program examination, including the 
security applications, faster and more 
productive 19]. The workflow of LESE is shown in 
Fig. 10. 

5 Discussion 

In this section, we present the test case generation 
and dead code detection proposed in the literature 
along with their advantages and disadvantages, 
which are summarized in Table 1. 

6 Conclusion 

Various techniques used in symbolic execution 
provide a way to improve the test case generation 
and bug detection that achieves high test coverage 
suites, gives per-path correctness guarantees.  

It also reduces the overall symbolic execution 
time and has the capacity to mix both real and 
symbolic execution [20]. In this work, we present 
different techniques that reduce the DFT in terms 
of testing time to improve the testing performance. 

From the study, it is found that reduction of path 
explosion, constraint solving, determining buffer 
excess compulsion and the reduction of execution 
time in testing are some of the explored area in this 
field and can be taken as future work. 

 

Fig. 10. Workflow of Loop-Extended Symbolic Execution 
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