
Test Case Generation Using Symbolic Execution

Saumendra Pattnaik1, Bidush Kumar Sahoo2, Chhabi Rani Panigrahi3,
Binod Kumar Pattanayak1, Bibudhendu Pati3

1 Siksha ‘O’ Anusandhan,
Dept. of Computer Science & Engineering,

India

2 Gandhi Institute for Education & Technology Bhubaneswar,
Dept. of Computer Science & Engineering,

India

3 Rama Devi Women’s University,
Dept. of Computer Science,

India

{saumendrapattnaik, binodpattanayak, bidush.sahoo,
panigrahichhabi, patibibudhendu}@gmail.com

Abstract. Testing is a well-known technique for
identifying errors in software programs. Testing can be
done in two ways: Static analysis and Dynamic analysis.
Symbolic execution plays a vital role in static analysis for
test case generation and to find the unreachable path
with minimum test cases. Unreachable path is a part of
a program which can never be executed i.e., the
symbolic execution doesn’t continue for that path and the
current execution stops there. It generates a test suite
for loop-free programs that is achieved by path
coverage. In the best case program loops implies
increase in the number of paths exponentially and in the
worst case the program will not terminate. The functions
of symbolic execution are test input generation,
unreachable path detection, finding bugs in software
programs, debugging. In this paper, we focus on dead
code detection and test input generation using symbolic
execution. Our execution for Java programs uses Java
Path Finder (JPF) model tester. Our analysis shows that
the symbolic execution method can be used to reduce
symbolic execution time and to find out the unreachable
path with less number of test cases.

Keywords. Symbolic execution, path coverage,
unreachable path, test input generation.

1 Introduction

Testing is very important in the software evolution
and maintenance process as it is required to find

out the defects that were made in the development
phase [21].

It is used for identifying the correctness and
improving the quality of the software application.
Testing can be done using static analysis or
dynamic analysis. Symbolic execution plays an
important role in static analysis for the test case
generation and to explore the unreachable path
with minimum number of test cases. Symbolic
execution evaluates a program by considering
inputs that results in execution of a program. This
execution depends upon choosing of paths that are
operated by a set of input values. A program is
executed with symbols instead of real inputs in
symbolic execution. Here, a source code is given
as input for generating symbolic execution tree.

There are several reduction algorithms to
reduce the symbolic execution tree. The reduction
of the symbolic execution tree is done by
eliminating the unreachable path and hence we
generate the reduced test case generation. It
basically focuses on generation of the test cases,
unreachable path detection and model checking of
concurrent programs which take inputs as the
complex structures. The basic applications of
symbolic execution are test input generation,
unreachable path detection, finding bugs in
software programs, debugging.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 1035–1044
doi: 10.13053/CyS-26-2-3887

ISSN 2007-9737

Khurshid et al. [2] presented a two-fold
observation of the traditional symbolic execution.
Firstly, it enables the model checking of the
concurrent programs to perform symbolic
execution of the program.

Secondly, it provides a framework based on the
symbolic execution algorithm that handles the
complex data structures such as linked lists and
trees. The symbolic execution is an efficient
method that mainly focuses on achieving high
coverage test suites, generates per-path
guarantees and depicts the errors in the
software programs.

Symbolic execution has been considered in the
context of Symbolic Path Finder (SPF) [12].

SPF is an emblematic execution system based
on the Java Path Finder (JPF) [13] show checking
instrument set for Java Byte code investigation.
Various applications of symbolic execution are test
input generation, unreachable path detection,
finding bugs in software programs, debugging.

In this paper, authors focus on dead code
detection and test case generation techniques.

The paper is organized as follows. In Section 2,
a sample program on symbolic execution is
presented. Various dead code detection
techniques proposed in the literature are presented
in Section 3. Section 4 provides the symbolic

execution techniques that are used in testing. In
Section 5, the overall discussion on various
techniques proposed in the literature for test case
generation and dead code detection along with
their advantages and disadvantages
are presented.

2 Symbolic Execution Tree

A sample program to illustrate symbolic execution
and the corresponding symbolic execution tree is
shown as in Fig. 1.

int x = œ, y = ß, z = ɼ;
int p = 0, q = 0, r = 0;
if (x < 5) {
p = -1;
}
if (x + y < 10) {
if (!x && z)
{
q=1;
}
r=2;

Initially x, y and z have the symbolic values ɼ, ß
and œ respectively. At each branch point, Path
Condition (PC) is updated so that alternative paths
can be chosen.

If the path condition evaluates to false, i.e., no
data inputs pass through that path then it implies
that the symbolic state is infeasible or is an
unreachable path.

The unreachable path indicates that the
symbolic execution for that path can not be
continued and the current execution stops there.

3 Dead Code Detection Techniques

Dead code is the part of a program that can never
be executed and whose result is never used in any
other estimation. Various researchers [9, 22] and
other sources as in [23] have found that the
classical software code bases contains 5-10%
“dead code”, i.e., code that can be eliminated
without lowering the functionalities.

There are different techniques used for the
detection of the dead code analysis. These
techniques are described in the
following subsections.

Fig. 1. A sample program on symbolic execution and
the corresponding symbolic execution tree with
symbolic values

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 1035–1044
doi: 10.13053/CyS-26-2-3887

Saumendra Pattnaik, Bidush Kumar Sahoo, Chhabi Rani Panigrahi, et al.1036

ISSN 2007-9737

3.1 Forward Reachability Analysis

Yih-Farn Chen et al. [9] basically found the
representation logics that are used for reachability
of code and detection of unreachable code
techniques. These two tasks help to eliminate
excess software baggage and holds software
reuse metrics.

Forward Reachability Analysis is used for
detecting dead code by determining a Reachable
Entity Set and computing software reuse metrics.
The reuse metrics is used to compute the code
reuse and improve the quality and productivity.
Reuse metrics consists of cost benefit analysis,

percentage of reuse, reusability assessment,
maturity assessment and failure modes analysis.
There are two choices based on reachability of
code and are described as follows:

 Software Reuse: It is also known as code
reuse. It means using the existing software or
to build a new software by using software
knowledge. The goal of this is to reduce the
cost of software production.

 Dead Code Detection: The part of the source
code of a program which can never be
executed, i.e., the symbolic execution does not

Fig. 2. Shows that all the members of the test class are exercised for the sample Tree class

Fig. 3. Dependencies of Program entities on BinTree: size i.e. directly or transitively

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 1035–1044
doi: 10.13053/CyS-26-2-3887

Test Case Generation using Symbolic Execution 1037

ISSN 2007-9737

continue for that path and the current
execution stops there:

Class Tree {
Public:
Tree (int);
Tree (Char*, Tree);
Tree (Char*, Tree, Tree);
Tree (Char*, Tree, Tree, Tree);
Tree (Const Tree & a);
~Tree () {
if (-–b->use == 0)
delete b;}};
void operator = (const Tree & a);
main () {
Tree t = Tree (“-”, Tree (“*”, 7), Tree (“+”, 5, 3), Tree (“-”, 4,

5, 6));
cout<< t << “\n”;
t = Tree (“-”, t, t);
cout<< t << “\n”;
t = Tree (“+”, t, t, t);
cout<<t<<”\n”;}

3.2 Reverse Reachability Analysis

Various authors have examined to use this
technique of reachability code analysis.
Researchers have found to support the complete
reachability analysis that has been defined as an
objective patterns at the selected abstraction level
so that the programmers has the ability to analyze
the different safeness implementations.

Reverse Reachability Analysis helps
programmers to determine all the program entities
that are dependent on an entity either directly or
indirectly. If BinTree::size is altered, then other
entities in the graph may be affected and is shown
as in Fig. 3.

3.3 Visibility Analysis

Gansner et al. [9] accomplishes the reachability
investigation on the regulation relationship in the
class legacy chain of importance and discovers all
part capacities and factors obvious to class
BinaryNode in Koenig's illustration [10]. Regulation
relationship happens between each parent class
and a part.

Perceivability Analysis settles which part
capacities and factors in a class legacy chain of
command are seeable to a determined class. All
part capacities in BinaryNode are seeable to itself.
All open and shielded individuals from Node are
likewise noticeable to BinaryNode on the grounds

that BinaryNode has an open legacy association
with Node.

Likewise, Node is a companion of Tree and
along these lines all individuals from Tree are
noticeable to Node. The visibility analysis of
BinaryNode and Node is shown in Fig. 4.

4 Symbolic Execution Techniques in
Testing

In this section, different techniques used for
symbolic execution is presented.

4.1 Dynamic Symbolic Execution (DSE)

Data Flow Testing (DFT) [6] focuses on introducing
a hybrid DFT structure. The heart of the structure
is based on DSE and checks the reachability in
software model checking to improve the
testing performance.

DSE is a dynamic approach. It is a novel and
efficient approach for automatic generation of the
test cases. It combines the classical symbolic
execution with real execution and generates many
possible program pathways in the given amount of
time. It aims at covering feasible pairs.

It takes the desired def-use pair du (ld, lu, x) as
input and the Control Flow Graph (CFG) is
constructed. It determines the test case for feasible
test objectives and removes infeasible test
objectives. It starts with arbitrary test input values.
These test input values cause the execution path
to cover the def-use pair. There are two
approaches to deal with this problem.

Firstly we remove the invalid branching nodes
by redefinition pruning technique and secondly, it
applies Cut-Point Guided Search (CPGS) to
choose which branching point to initially take. This
approach can develop the DFT by 60-80% as
compared to the testing span.The search results
shows that the Dynamic Symbolic Execution
approach reduces the DFT by 40% as compared
to testing span to improve the testing performance
than the Counter Example-Guided Abstraction
Refinement (CEGAR) based approach.

Path explosion is a challenging problem in this
approach because in a cheap amount of time to
trigger the desired pair. Henceforth, more work will
be done based on this approach to enhance the

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 1035–1044
doi: 10.13053/CyS-26-2-3887

Saumendra Pattnaik, Bidush Kumar Sahoo, Chhabi Rani Panigrahi, et al.1038

ISSN 2007-9737

data flow testing technique on large programs. Fig.
5 shows the workflow of DSE.

It starts with an arbitrary test inputs values
followed by an execution path. Then, it removes
the invalid branching nodes by redefinition pruning
technique and finds the known paths by generating
the constraint system.

4.2 Counter Example-Guided Abstraction
Refinement (CEGAR)

CEGAR [6] is a static approach. It is utilized for
creating the experiments and checking the fleeting
wellbeing properties of the product. Here, a source
program and an impermanent wellbeing
determination is taken, which either demonstrates
that the program fulfills the particular or produces
a counter example to show the infringement.

This approach works in two stages: show
checking and experiment created from the
counterexamples. It first begins with a base or
coarse program deliberation and over and again
channels it so as to test for infeasible combine. We
have to set a checkpoint to decide if the variable
banner is valid.

The defutilize match is infeasible when the
check point is inaccessible and a counterexample
is returned when the def-utilize combine is
attainable.

This approach is more intense than DSE
approach as it enhances the scope by 20%.
Consequently, more work will be done to make a
profound correlation between both the
methodologies. The workflow of CEGAR is shown
in Fig. 6.

A C program is taken as input to the
abstract model.

It then goes to the model checker where it
automatically checks whether the model satisfies
the given requirements and generates no error or
bug found.

Then by the help of model checker, it goes to
the simulator by taking counterexample as input
where a program allows a computer to execute
programs written for a different operating system
by generating the simulation successfully and
detecting the bug.

After that it goes to the refinement process
where it removes the invalid the execution paths.

4.3 Document-Assisted Symbolic Execution
(DASE)

DASE [3] is another novel approach for
programmed age of the experiments and mistake
recognizable proof to expand the adequacy and
effectiveness of the representative execution.
DASE separates the information impulse from

Fig. 4. Visibility analysis of BinaryNode and Node

Fig. 5. Workflow of Dynamic Symbolic Execution

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 1035–1044
doi: 10.13053/CyS-26-2-3887

Test Case Generation using Symbolic Execution 1039

ISSN 2007-9737

archives consequently and afterward utilizes the
info impulse to center around testing mistake
dealing with codes, which are vital that assistance
the inquiry systems to enhance the representative
execution and process the execution ways.

A program report is given as info that naturally
separates the information impulse from that. There
are two classes of info impulse: the setup of an
information record and the substantial information
estimations of order line decision.

The outcome shows that when contrasted with
KLEE, DASE recognized 12 obscure imperfections
that KLEE neglected to distinguish and out of 88
just 6 have been affirmed by the engineers.

DASE improves line investigation, branch
examination and call investigation by 14.2–
120.3%, 2.3–167.7%, and 16.9–135.2% in
contrast with KLEE. Testing with invalid
information is a testing issue. Subsequently,
keeping in mind the end goal to test a program with
invalid info esteems DASE approach centers by
counterbalancing the information requirements.

4.4 Directed Automated Random Testing
(DART)

DART [11] approach is also known as Concolic
testing [14]. It dynamically operates the symbolic
execution when the program is accomplished on
real values. It supports two events: a real event
and a symbolic event. A real event outlines all
mutable to the real values and a symbolic event an
outline all mutable to the non-real values.

A program is taken as input and the
corresponding symbolic execution tree is drawn. It
first starts with the generation of random inputs and
execute the program concretely and symbolically.
At each branch point, either it will follow the true
path or it will end with the false path and generates
the Path Condition (PC) for each path.

It finally surveys that all the paths of the
program are examined and generates the test
inputs. Path explosion and constraint solving is a
challenging problem. There are two approaches to
solve the path explosion problem: heuristics
approach and sound program analysis approach.

There are two approaches to solve the
constraint solving problem: irrelevant constraint
elimination approach and incremental solving.
Hence, more research can be performed for

automatic generatation of test inputs that covers
the software bugs; generates the test suite that
achieves high coverage; gives per-path
guarantees and finding defects in software from
low-level to high-level application programs.

The program analyzer which analyzes the
behavior of the computer programs is divided into
two parts. The first part is path selector in which
control flow graph is taken as input and the second
part is test data generator in which both control
flow graph and data dependence is taken as input.

Data dependence is a condition where the
program instruction refers to the data of the
previous instructions. Then the path selector
generates the selected paths and goes to the test
data generator where the selected path information
is taken as input to the path selector and produces
the test data. Fig. 7 shows the workflow of DART.

4.5 Executed-Generated Testing (EGT)

EGT approach [15] is the instance of the modern
symbolic execution techniques. It functions entirely
between the real event and the symbolic event of
the program. A source program is given as input
and operated in the same program when the
values are real.

It has the ability to mix both real and symbolic
execution dynamically before finding all actions
when the input values are all real. If so, then the
action is executed in the same program or if more
than one value is symbolic, the operation is

Fig. 6. Workflow of Counter Example-Guided
Abstraction Refinement

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 1035–1044
doi: 10.13053/CyS-26-2-3887

Saumendra Pattnaik, Bidush Kumar Sahoo, Chhabi Rani Panigrahi, et al.1040

ISSN 2007-9737

executed symbolically by maintaining a path
condition for each path.

The disadvantages of this approach are
elimination of irrelevant constraints, path explosion
and memory modeling.

Hence, more research can be done in
contributing a fashion to develop the test inputs
that finds the errors which ranges from low to high-
level syntactic features. Fig. 8 shows the workflow
of EGT.

4.6 conc-iSE: Incremental Symbolic Execution
Approach of Concurrent Programs

Incremental Symbolic Execution approach [16] for
simultaneous programming is an approach to
produce new test contributions by investigating the
new execution ways between the two program
variants.

These two program renditions i.e., old program
variant P and new program form P' with an
arrangement of execution abstract of program P is
taken as information and over and over break
down the present execution ways utilizing P'. Its
yield is to examine the new recognition in P'.

This could be conceivable by evacuating the
excess execution ways by rundown based
calculation.

Consequently, amid the representative
execution of P′, it breaks the regressive change-
affect investigation. In this investigation, it
fundamentally measures the arrangement of
directions that may influence the changed
guidelines set up of estimating the arrangement of
guidelines that may be influenced by the changed
directions [17].

The outcome demonstrates that this approach
would overall be able to lessen the emblematic
execution time and to expel the excess execution
ways and string interleaving in the incremental
representative execution.

The upper piece of the figure begins with the
two program variants i.e., old program form P and
new program adaptation P' with an arrangement of
execution summation of program P is taken as info
and more than once examine the present
execution ways utilizing P' and produces the new
recognition in P' by pruning the repetitive states or
execution ways.

The lower some portion of the figure begins with
a subjective current test inputs. Amid the
representative execution, the new states are
created and each new state produces another
match incorporates the information info and string

Fig. 7. Workflow of directed automated random testing

Fig. 8. Workflow of executed-generated testing

Fig. 9. Workflow of incremental symbolic execution

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 1035–1044
doi: 10.13053/CyS-26-2-3887

Test Case Generation using Symbolic Execution 1041

ISSN 2007-9737

interleaving to touch base at the new state. The
workflow of conc-iSE is shown in Fig. 9.

4.7 Loop-Extended Symbolic Execution
(LESE)

Another representative execution strategy called
LESE is proposed in [18] that sums up from the
genuine execution to an arrangement of program
executions that includes the distinctive number of
redundancies for each circle as in the underlying
execution.

Circle Extended Symbolic Execution is utilized
to acquire appropriate outcomes when contrasted
with emblematic execution when it is utilized as a
part of projects with circles.

It makes mistake recognizing apparatuses
more proficient and permits age of the experiments
to achieve high test scope as fast as could
reasonably be expected. A source program with
circles is adopted as contribution to this strategy.

It begins with the predicate which is otherwise
called inquiry predicate.

The predicate might be the branch condition
related with the program point, and an execution
that achieves the point, yet does not fulfill the
predicate and after that yields to determine that the
condition on a contribution to the program which
creates the execution brings about a similar way
and furthermore points the predicate to be valid.

It has the issue of recognizing and deciding
support abundance impulse that produces on
unmodified Windows and Linux sets.

The outcome demonstrates that the Loop-
Extended Symbolic Execution can make an

assortment of program examination, including the
security applications, faster and more
productive 19]. The workflow of LESE is shown in
Fig. 10.

5 Discussion

In this section, we present the test case generation
and dead code detection proposed in the literature
along with their advantages and disadvantages,
which are summarized in Table 1.

6 Conclusion

Various techniques used in symbolic execution
provide a way to improve the test case generation
and bug detection that achieves high test coverage
suites, gives per-path correctness guarantees.

It also reduces the overall symbolic execution
time and has the capacity to mix both real and
symbolic execution [20]. In this work, we present
different techniques that reduce the DFT in terms
of testing time to improve the testing performance.

From the study, it is found that reduction of path
explosion, constraint solving, determining buffer
excess compulsion and the reduction of execution
time in testing are some of the explored area in this
field and can be taken as future work.

Fig. 10. Workflow of Loop-Extended Symbolic Execution

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 1035–1044
doi: 10.13053/CyS-26-2-3887

Saumendra Pattnaik, Bidush Kumar Sahoo, Chhabi Rani Panigrahi, et al.1042

ISSN 2007-9737

References

1. Cadar, C., Sen, K. (2013). Symbolic execution for
software testing: three decades later. Proceedings
Communications of the ACM, Vol. 56, No. 2, pp. 82–
90. DOI: 10.1145/2408776.2408795.

2. Khurshid, S., Păsăreanu, C.S., Visser, W. (2003).
Generalized symbolic execution for model checking
and testing. Proceedings International Conference
on Tools and Algorithms for the Construction and
Analysis of Systems, Springer, Berlin, Heidelberg.
pp. 553–568. DOI: 10.1007/3-540-36577-X_40.

Tabla 1. Comparison of the proposed method with state of the art

Sl
No.

Techniques
Used

Test Case Generation
Dead Code
Detection

Advantages Disadvantages

1.

Dynamic
Symbolic
Execution
(DSE)[11]

Analyzes program paths
by determining path
constraints.

Analysis of the
reachability of
code

-Designed a combined symbolic
execution for
automatic DFT.

-Path explosion is a challenging
problem as it is required to find
execution path to cover the
desired pair.
-DSE reduces the DFT in terms
of testing time to improve the
testing performance.

2

Counter
Example-
Guided
Abstraction
Refinement
(CEGAR) [12]

Coverage criteria i.e.,
statement or branch
coverage from
counterexample paths.

Checking the
practicability of
the execution
paths.

-Introduced a smooth
encoding of DFT via CEGAR.

- Applying DFT on large multi-
threaded software programs
produces a broad analysis on it.

3.

Document-
Assisted
Symbolic
Execution
(DASE)[13]

Extracts input compulsion
from documents
automatically and
focuses on execution
paths that resemble valid
inputs for improvement in
the effectiveness of
symbolic execution.

-Proposed and implemented an
approach to improve symbolic
execution for generation of test
cases and bug finding.

-In order to test a program with
invalid inputs, DASE approach
focuses by cancelling out the
input constraints.

4.

Directed
Automated
Random
Testing
(DART) [14]

Generates test suites that
achieve high- coverage.

Examines the
infeasible paths
of the program
using the depth-
first search
strategy.

-Capacity to combine both real and
symbolic execution.
-Proposed an effective symbolic
execution
technique to generate the
inputs and performs
symbolic execution dynamically.
-Provides per-path
correctness guarantees.

- Path explosion

-Constraint solving

5.

Executed-
Generated
Testing (EGT)
[15]

Approves the formation of
high-coverage test suites.

Combines both
real and
symbolic
execution and for
the current path
a path condition
is maintained.

-Capacity to combine both real and
symbolic execution.
-Proposed a strategy to blend
genuine and emblematic execution
powerfully before checking each
activity when esteems are for the
most part genuine.
-Achieves high test coverage
suites.

-Elimination of irrelevant
constraints.

-Path explosion.

6.

conc-iSE:
Incremental
Symbolic
Execution
approach of
concurrent
programs[16]

Analyzes only the
executions that affect the
code changes between
two versions of a
program.

Reduces the
overall symbolic
execution time.

-Adapted an approach for
concurrent programs to generate
the new test inputs between the
two
program versions.
-Reducing the symbolic execution
time and removing the redundant
execution path.

7.

Loop-
Extended
Symbolic
Execution
(LESE)

[18]

Allows to achieve high
test coverage more
quickly and to acquire
better results when it is
used in programs with
loops.

-Analyzing
buffer-overflow
accountabilities
in software
programs after
developing
refuted
candidates.

-Proposed a new approach by
allowing test case generation to
achieve high test coverage and
automatic bug detection tools more
effective.

-Identifying and
determining buffer
excess compulsion is a
challenging problem that
produces on unmodified
Windows and Linux pairs.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 1035–1044
doi: 10.13053/CyS-26-2-3887

Test Case Generation using Symbolic Execution 1043

ISSN 2007-9737

3. Wong, E., Zhang, L., Wang, S., Liu, T., Tan, L.
(2015). Dase: Document-assisted symbolic
execution for improving automated software testing.
Proceedings 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering,
pp. 620–631. DOI: 10.1109/ICSE.2015.78.

4. Csallner, C., Tillmann, N., Smaragdakis, Y.
(2008). DySy: Dynamic Symbolic Execution for
Invariant Inference. Proceedings of the 30th
international conference on Software engineering,
pp. 281–290.

5. Guo, S., Kusano, M., Wang, C. (2016). Conc-iSE:
Incremental symbolic execution of concurrent
software. Proceedings of the 31st IEEE/ACM
International Conference on Automated Software
Engineering, pp. 531–542. DOI: 10.1145/2970276.
2970332.

6. Su, T., Fu, Z., Pu, G., He, J., Su, Z. (2015).
Combining symbolic execution and model checking
for data flow testing. Proceedings 2015 IEEE/ACM
37th IEEE International Conference on Software
Engineering, Vol. 1, pp. 654–665. DOI:
10.1109/ICSE.2015.81.

7. Kersten, R., Person, S., Rungta, N., Tkachuk, O.
(2015). Improving coverage of test cases generated
by symbolic pathfinder for programs with loops.
ACM SIGSOFT Software Engineering Notes, Vol.
40, No. 1, pp. 1–5. DOI: 10.1145/2693208.2693243.

8. Saxena, P., Poosankam, P., McCamant, S. Song,
D. (2009). Loop-extended symbolic execution on
binary programs. Proceedings of the eighteenth
international symposium on Software testing and
analysis, pp. 225–236. DOI: 10.1145/1572272.
1572299.

9. Chen, Y.F., Gansner, E.R., Koutsofios, E. (1998).
A C++ data model supporting reachability analysis
and dead code detection. IEEE Transactions on
Software Engineering, Vol. 24, No. 9, pp. 682–694.
DOI: 10.1109/32.713323.

10. Koenig, A. (1988). An example of dynamic binding
in C++. Journal of Object-Oriented Programming,
Vol. 1, No. 3, pp. 60–62.

11. Godefroid, P., Klarlund, N., Sen, K. (2005). DART:
directed automated random testing. Proceedings of
the 2005 ACM SIGPLAN conference on
Programming language design and implementation,
pp. 213–223. DOI: 10.1145/1065010.1065036.

12. Păsăreanu, C.S., Rungta, N. (2010). Symbolic
PathFinder: symbolic execution of Java bytecode.
Proceedings of the IEEE/ACM international

conference on automated software engineering, pp.
179–180. DOI: 10.1145/1858996.1859035.

13. Anand, S., Păsăreanu, C.S., Visser, W. (2007).
JPF–SE: A symbolic execution extension to java
pathfinder. International conference on tools and
algorithms for the construction and analysis of
systems, pp. 134–138. Springer, Berlin, Heidelberg.

14. Sen, K., Marinov, D., Agha, G. (2005). CUTE: a
concolic unit testing engine for C. ACM SIGSOFT
Software Engineering Notes, Vol. 30, No. 5, pp.
263–272. DOI: 10.1145/1095430.1081750.

15. Betts, A., Chong, N., Deligiannis, P., Donaldson,
A.F., Ketema, J., (2017). Implementing and
evaluating candidate-based invariant generation.
IEEE Transactions on Software Engineering, Vol.
44, No. 7, pp. 631–650. DOI: 10.1109/TSE.
2017.2718516.

16. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin,
D. (2001). Dynamically discovering likely program
invariants to support program evolution. IEEE
Transactions on Software Engineering, Vol. 27, No.
2, pp. 99–123. DOI: 10.1109/32.908957.

17. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.
(2014). Optimal dynamic partial order reduction.
ACM SIGPLAN Notices, Vol. 49, No. 1, pp. 373–
384. DOI: 10.1145/2578855.2535845.

18. Chattopadhyay, A. (2014). Dynamic invariant
generation for concurrent programs. Doctoral
dissertation, Virginia Tech.

19. Nimmer, J.W., Ernst, M.D. (2002). Invariant
inference for static checking: An empirical
evaluation. ACM SIGSOFT Software Engineering
Notes, Vol. 27, No. 6, pp. 11–20. DOI:
10.1145/605466.605469.

20. Allen-Weiss, M. (2007). Data structures and
algorithm analysis in C++. Pearson Education India.

21. Panigrahi, C.R., Mall, R. (2010). Model-based
regression test case prioritization. ACM SIGSOFT
Software Engineering Notes, Vol. 35, No. 6, pp. 1–
7. DOI: 10.1145/1874391.1874405.

22. Streitel, F, Steidl, D., Jürgens, E. (2014). Dead
code detection on class level. Softwaretechnik-
Trends, Vol. 34, No. 2.

23. Pizzutillo, P. (2013). Static analysis: Leveraging
source code analysis to reign in application
maintenance cost.

Article received on 27/12/2020; accepted on 14/11/2021.
Corresponding author is Chhabi Rani Panigrahi.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 1035–1044
doi: 10.13053/CyS-26-2-3887

Saumendra Pattnaik, Bidush Kumar Sahoo, Chhabi Rani Panigrahi, et al.1044

ISSN 2007-9737

