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Abstract. The task of efficient automatic music
classification is of vital importance and forms the basis
for various advanced applications of AI in the musical
domain. Musical instrument recognition is the task of
instrument identification by virtue of its audio. This audio,
also termed as the sound vibrations are leveraged by
the model to match with the instrument classes. In
this paper, we use an artificial neural network (ANN)
model that was trained to perform classification on
twenty different classes of musical instruments. Here
we use use only the mel-frequency cepstral coefficients
(MFCCs) of the audio data. Our proposed model trains
on the full London philharmonic orchestra dataset which
contains twenty classes of instruments belonging to
the four families viz. woodwinds, brass, percussion,
and strings. Based on experimental results our model
achieves state-of-the-art accuracy on the same.

Keywords. Musical instrument recognition, artificial
neural network, deep learning, multi-class classification.

1 Introduction

Music is an essential part of our daily lives for a
majority of the world population. Categorization
of music can be based on various parameters like
genre, performer or composer. Machine Learning
techniques provide numerous ways to perform
music categorization as per need. Automatic
musical instrument recognition and classification
is a non-trivial and practically valuable task as

it effectively classifies music with respect to the
instrument being played in a faster and cheaper
way than carrying it out manually.

Even seasoned musicians face difficulty to
distinguish between two instruments belonging
to the same family, thus manual classification
is also prone to errors. Automatic recognition
of musical instruments forms the basis of more
complex tasks such as melody extraction, music
information retrieval, recognizing the dominant
instruments from polyphonic audio [5], and so on.
Hence the classification task is vital for subsequent
downstream tasks.

This paper proposes a deep artificial neural
network model that efficiently distinguishes and
recognizes 20 different classes of musical in-
struments, even across instruments belonging to
the same family. Additionally, an attempt to
examine the distinctive potency of MFCCs for the
classification task is made.

Currently, MFCCs are being widely used as
deciding feature for numerous cognition tasks
since they take into account the perception of
sound with regards to the functioning of the human
hearing system, by converting the conventional
frequency to the Mel Scale.

The results achieved with the simple proposed
model on a highly imbalanced dataset without
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needing to implement data augmentation tech-
niques or explicitly handling the class imbalance
bolsters the significance of MFCCs. The promising
results can be claimed as a new state-of-the-art
on the particular dataset because previous works
have considered different subsets of the dataset,
while this work considers the entire dataset.

The organization of the paper is as follows.
Section 2 contains the musical instrument recog-
nition related works and literature survey, Section
3 describes the dataset; the pre-processing steps
have been explained in Section 4; Section 5 is the
System Description; the setup and description of
our model is explained in Section 6; the results and
discussions are present under Section 7; finally,
Section 8 concludes the paper with future scopes
and potential improvements.

2 Related Work

Ample research projects have been undertaken to
recognize and classify one musical instrument from
the other. Numerous feature extraction techniques
[2] have been formulated followed by various
machine learning implementations to accurately
perform this particular task of classification. In
1999, a study classified 8 different instruments
with a 30% error rate using gaussian mixture
models and support vector machines (SVM) [8].
Hidden markov models have been used by [3] to
classify audio streams among four instruments on
a dataset containing 600 recordings. Profound
use of The K-Nearest Neighbour classifier to
compare performances with other models has
been observed as well. The Gaussian and K-NN
classifiers were implemented by [4] to classify
instruments with a set of 43 feature inputs. Another
study implemented the K-NN and SVM on cepstral
features of the audio data [6].

With the advent of advancing deep learning
methods, recent studies have exploited the power
of neural networks to attain excellent levels of
classification accuracies. Moreover, deep learning
methods exempt researchers from the tedious
task of manually extracting multiple features to be
fed into a learning model. Convolutional neural
networks (CNNs) have been used by [7, 12], and
[11] on mel-spectrograms, visual representation of

sound signals that encompasses both time and
frequency domain features.

A few studies have worked on the London
philharmonic orchestra dataset and achieved
notable results. ANNs were trained by [13]
on 8 out of the 20 instrument classes currently
present in the dataset. They also conducted
several comparative experiments on different
characteristics of the musical instruments that
might have impacted the resulting accuracy. They
achieved a maximum accuracy of 93.5% on the
base experiment. A stable precision and recall of
94% were achieved by [10] on the classification
performed on 18 classes of the same dataset.
Another study achieved a 99% accuracy using a
CNN, however, the model was trained on only 6
classes [10].

With increase in the number of classes, the
complexity of the classification increases. Unlike
the previously mentioned works that work on
a subset of the dataset, our model is trained
on all 20 classes of the London philharmonic
dataset that are currently available, and achieves
a commendable accuracy of 97%.

3 Dataset

The proposed model has been trained on all
classes of the London philharmonic orchestra
dataset1. At the time of downloading the
dataset, there were a total of 13679 examples
divided non-uniformly among 20 classes of musical
instruments.

For each instrument class, except ‘percussion’,
the samples are musical notes ranging from A1
(note A of the first octave) to G7 (note G of the
seventh octave). The tones have been played with
varying dynamics including forte, fortissimo, piano,
pianissimo; playing techniques, trills and sustains-
staccato, staccatissimo, legato, vibrato, tremolo,
pizzicato, ponticello, thus bestowing us with diverse
samples for a learning system to generalize over.

From Figure 1 it can be observed that the dataset
is highly imbalanced with ‘violin’ having 1502
examples while ‘banjo’ having only 74. Additionally,

1London philharmonic orchestra all instruments dataset pub-
licly available at https://philharmonia.co.uk/resources/

sound-samples/

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 351–360
doi: 10.13053/CyS-25-2-3946

Saranga Kingkor Mahanta, Abdullah Faiz Ur Rahman Khilji, Partha Pakray352

ISSN 2007-9737

https://philharmonia.co.uk/resources/sound-samples/
https://philharmonia.co.uk/resources/sound-samples/


0 200 400 600 800 1000 1200 1400

banjo
bass clarinet

bassoon
cello

clarinet
contrabassoon

cor anglais
double bass

flute
french horn

guitar
mandolin

oboe
percussion
saxophone
trombone

trumpet
tuba
viola
violin

74
944

720
889

846
710

691
852

878
652

106
80

596
146

732
831

485
972
973

1502

Fig. 1. Data distribution among the 20 classes

The class named ‘percussion’ has 39 sub-classes
of percussion instruments ranging from ‘agogo
bells’ to ‘woodblock’. The sub-classes have too
few examples to be treated as individual classes,
hence they are consolidated into a single class
i.e. ‘percussion’.

4 Pre-Processing

The data was already noise-free and consisted
of single instrument tones per example corre-
sponding to the respective class, thus relieving us
from performing complex processing procedures.
The various steps of pre-processing that were
performed have been described in detail in the
following sections.

4.1 Normalization of Audio Files

The audio data have durations ranging from 0.078
seconds to 77.06 seconds, as shown in the Figure
2. In the proposed model, we use MFCCs of the
training examples as input features into the ANN.

It is mandatory that the input dimensions must be
a constant as the input layer of the ANN has a
static number of neurons, thus implying that the
MFCC matrices of all the examples need to have
a fixed dimensional size. To achieve this, each of
the examples must compulsorily have a constant
duration resulting in a fixed number of samples
when sampled with a constant sampling rate.

Out of the 13,679 examples, it was observed that
6,342, 11,097, 12,196, 12,550, 12,701 examples
had durations less than or equal to 1, 2, 3, 4 and 5
seconds respectively.

Since a majority of the audio files had a duration
lesser than or equal to 3 seconds, a fixed duration
of 3 seconds was chosen for all the examples2.

As a result, while loading the examples those
having a duration of more (Figure 3) or less
(Figure 4) than 3 seconds were trimmed or padded
respectively and finally in the preprocessed data
all 13,679 examples had a duration from 0 to 3
seconds.

23 seconds correspond to 66150 samples for the default
sampling rate of 22,050 Hz
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Fig. 2. Durations of all examples
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Fig. 3. Longest audio clip trimmed to 3 seconds
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Fig. 4. Shortest audio clip padded until 3 seconds

It can be concluded that no promising informa-
tion was lost from the trimmed samples because all
of the audio files’ onsets and attacks of the sound
take place within the first 3 seconds following which
the sound either decays or sustain, i.e., the defining
features of the audio clip mostly occur before 3
seconds into the signal and most of the examples
are almost periodic with minuscule periods.

Another reason for not choosing a fixed length
of more than 3 seconds is to limit the number
of sparse values that result from padding and to
reduce dimensional size.

4.2 Extracting Mel-Frequency Cepstral
Coefficients

MFCCs are useful in identifying the formants and
timbre of sound [1], as described in Section 5.1. 13
MFCC coefficients were extracted from each frame
of each audio file. A single frame contained 2048
samples. A hop length of 512 frames was used for
the framing window. The 3 second sound samples
resulted in MFCC matrices having dimensions of
13x130.

These matrices were then simply flattened and
fed into our proposed ANN model.

5 Method Description

Our approach consists of two principal steps.
Extraction of the MFCC features, as shown in
Figure 5 from the constant length examples
and feeding them into an ANN model to
make predictions.

5.1 Mel-Frequency Cepstral Coefficients

For our approach, we are most interested for our
model to be able to distinguish the timbres of
tones belonging to different instruments efficiently.
Timbre, or tone colour, is a characteristic
of sound that can distinguish between two
sounds possessing the same intensity, frequency,
and duration.

Since many examples belonging to different
classes play the same note with similar intensity,
the timbre becomes a crucial factor to differentiate
amongst them.
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Fig. 5. Steps to extract Cepstral Coefficients from an audio signal

The information of the rate of change in spectral
bands of a signal is given by its cepstrum. It
conveys the different values that construct the
formants and timbre of a sound. The cepstral
coefficients can be extracted using Equation 1:

C(x(t)) = F−1(log(F [x(t)])). (1)

Peaks are observed at periodic elements of
the original signal while computing the log of
the magnitude of the Fourier transform of the
audio signal followed by taking its spectrum by a
cosine transformation. The resulting spectrum lies
in the quefrency domain [9]. Humans perceive
amplitude logarithmically, hence conversion to the
Log-Amplitude Spectrum is perceptually relevant,
as shown in Figure 5. Mel scaling is performed
on it by using Equation 2 on frequencies measured
in Hz:

Mel(f) = 2595 ∗ log(1 + f/700). (2)

Human beings can distinguish small changes
in speech at lower frequencies. The Mel Scale
captures these tiny differences to draw relations
with the hearing process of humans. The discrete
cosine transformation is mostly applied instead
of an inverse fourier transform as shown by
Equation 1. Since the former provides real-valued
coefficients and also decorrelates energy in
different mel bands.

For our model, the traditional 13 MFCC
coefficients were chosen per frame of each
example since the lower end of the quefrency
axis of the cepstrum contains the most relevant
information to our particular task viz. formants,
spectral envelope and timbre. Towards the higher

end of the same, information related to the glottal
pulse can be obtained, which is not very defining
for the same.

5.2 The Artificial Neural Network

A deep ANN comprises numerous layers con-
taining a varying number of neurons terminating
into the output layer having an equal number of
neurons as the number of classes with regards
to a classification task; in our case 20. The
feature values are multiplied with weights and
added with bias terms. These weights are
then updated after each epoch consisting of a
forward and backward propagation with respect to
a chosen loss function, as input feature values
traverse through the neurons of subsequent layers.
The neurons also apply an activation function on
the computed values to introduce non-linearity
and selectivity in the network. These activation
functions distinguish a neural network from a
regular linear regression model.

In our model, we use the Rectified Linear Unit
(ReLU) activation function for all the hidden layers.
It simply activates the neurons containing a positive
value after the aforementioned computations. It is
given by Equation 3:

y = max(0,x). (3)

The current problem being a multi-class clas-
sification, the Softmax function is used in the
output layer.

It provides the confidence scores of each class
using the Equation 4. The scores add up to 1.
The class having the highest confidence score is
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the model’s predicted class for a particular set of
input features:

σ(z)i =
ezi∑K
j=1 e

zj
. (4)

6 Experimental Setup

Our approach uses an ANN whose architecture
is described in Figure 6. The initial flattening
layer flattens a 13x130 MFCC matrix into
a single-dimensional layer having 1690 input
neurons, which are connected to the first dense
hidden layer having 512 neurons followed by ReLU
activation function.

The second and third hidden layers contain 1024
and 512 neurons respectively both followed by the
ReLU activation function. A dropout layer with a
rate of 0.3 is then added to induce regularization
and avoid overfitting. After the dropout layer,
the values pass through two more hidden layers
containing 128 and 64 neurons respectively along
with the ReLU activation function again, and
another dropout layer with a 0.2 rate.

The final output layer having 20 neurons, equal
to the total number of classes, terminates the
neural network. Due to the problem being a
multi-class classification, the output layer makes
use of a Softmax function which formulates the
final output probabilities of each class.

6.1 Dataset Split

The dataset was divided into training and validation
or testing sets in the ratio 8:2 using stratified
splitting, such that the number of examples from
each of the 20 classes split proportionally into
two sets. Stratifying was necessary due to the
imbalanced classes, to avoid a disproportionate
division of examples of classes with a relatively
little or huge number of examples. The training and
test sets contained 10,943 training examples and
2,736 test examples respectively after the split.

6.2 Model Training

The total number of trainable parameters that re-
sulted from the proposed architecture is 1,991,124.

The Adam optimizer was used with an initial
learning rate of 0.0001 while training on the exam-
ples, which were further divided into mini-batches
of size 32, to implement mini-batch gradient
descent with respect to the sparse categorical
cross-entropy loss function. The training took place
over 100 epochs.

7 Results and Analysis

During model training, the training accuracy
peaked 0.9913 and validation accuracy 0.9726.

Albeit a high and stable validation accuracy
was obtained as shown in Figure 7, it could
not be concluded as the best metrics for the
model evaluation since the dataset had highly
imbalanced classes, as described in Section
3. This often brings in the accuracy paradox
[14], i.e., misclassifying minority class examples
yet achieving a high accuracy due to correct
classification of a relatively bigger number of
majority class examples.

Therefore, a confusion matrix was plotted and
the F1 score of each class prediction were
calculated. This would reveal the true evaluation
of our model.

From the Confusion matrix shown in Figure
8, and F1 scores displayed in Table 1, it is
evident that the test minority class examples
have been predicted with minimal error as well.
Class ‘percussion’ has a relatively lower F1 score,
which is quite expected because, unlike the other
classes, it consists of a very small number of
examples from 39 different percussion instruments,
as explained in Section 3.

To further support the high accuracy of 97%,
the AUC-ROC and Precision-Recall curves were
also plotted, as shown in Figure 9. An AUC score
of 0.996 was achieved, which further supports
the results, and permits to make the claim of the
commendable results without being influenced by
the accuracy paradox, which is commonly the case
of high accuracy on imbalanced class problems.
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Fig. 6. Proposed model architecture

Fig. 7. Accuracy and Loss on the Train and Test sets

It can also be observed that ‘percussion’
has comparatively worse Precision-Recall and
AUC-ROC curves.

8 Conclusion and Future Work

In this paper, we formulated a baseline model
to work on musical instrument recognition. The
model surprisingly achieved a new state-of-the-art
accuracy of 97% on the full dataset containing
all 20 classes of different musical instruments,
despite the heavy class imbalance and the fact that
most instruments belonged to a particular family
viz. Strings, Woodwinds, Brass and Percussion.
The experimental setup, Section 6, was finalized

after a commendable number of iterations of
hyperparameter tuning.

Although a different set of number of layers and
neurons had resulted in a slightly better validation
accuracy, this particular model resulted in a better
and more uniform F1 score over the classes in
addition to a more stable fluctuation of the accuracy
curves, as shown in Figure 7. Additionally, the
h5 file of the model consumes only 22.8 MB
of memory. Thus, the proposed model can be
incorporated with web and mobile applications with
cheaper memory requirements.

Nevertheless, there are tremendous scopes for
future work that may result in an even better
performance on this particular dataset. Data
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Fig. 8. Confusion Matrix

Fig. 9. Precision-Recall and AUC-ROC curves

augmentation measures may be adopted to deal
with the imbalance problem.

Different activation functions and optimizers with
varying learning rates may be tried. MFCCs

and mel-sprectograms provide excellent visual
perceptions of sound, thus CNNs may prove to be
quite efficient. There are a lot of variables that
can be tweaked during the pre-processing stages
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Table 1. Precision, Recall and F1 Scores of each class

Precision Recall F1-Score Support
banjo 1 0.93 0.97 15
bass clarinet 0.99 0.98 0.98 189
bassoon 0.97 1 0.99 144
cello 0.99 0.94 0.97 178
clarinet 0.98 0.95 0.96 169
contrabassoon 0.99 0.96 0.98 142
cor anglais 0.99 0.99 0.99 138
double bass 0.96 0.99 0.97 170
flute 0.95 0.99 0.97 176
french horn 0.98 0.97 0.98 130
guitar 1 1 1 21
mandolin 0.89 1 0.94 16
oboe 0.96 0.96 0.96 119
percussion 0.86 0.66 0.75 29
saxophone 0.88 0.97 0.92 146
trombone 0.99 0.98 0.99 166
trumpet 0.96 0.92 0.94 97
tuba 0.99 0.99 0.99 195
viola 0.96 0.93 0.95 195
violin 0.97 0.99 0.98 301
accuracy 0.97 2736
macro avg 0.96 0.96 0.96 2736
weighted avg 0.97 0.97 0.97 2736

as well, such as choosing a longer duration of the
examples, a different frame size, hop length, or
more number of MFCC coefficients. Expanding
our target space by supporting the recognition
of even more instruments including the piano,
or the ukulele, for instance, would be a notable
improvement on our current model.
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