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Abstract. Mobile cloud computing is currently an 
encouraging field in the cyber-physical world. It is 
an amalgamation of mobile computing and cloud 
computing. Computational offloading is one feature 
in the mobile cloud application that offloads the 
task to the cloud server, processes it, and gets the 
results back on the mobile device. During offload, 
the job needs to be queued on the cloud servers 
and allocated to the virtual machines. Task 
scheduling is an important step where the mobile 
task is assigned to the servers and processed 
somehow. In the overall offloading process, energy 
conservation is a significant concern. The 
scheduling problem involves mapping the 
offloaded task to the cloud server while satisfying 
the energy and time constraints. This paper 
proposes a hybrid scheduling scheme based on 
Gaussian-based multi-objective particle swarm 
optimization(GMOPSO) and bacterial foraging 
optimization(BFO). This scheme performs better 
when compared to other variants of PSO in terms 
of makespan and energy efficiency. 

Keywords. Computational offloading, mobile cloud 
computing, MOPSO, bacteria foraging optimization, 
energy consumption, makespan. 

1 Introduction 

The recent studies by Ericsson (Ericsson Mobility 
Report, n.d.) show that mobile users will become 

25 billion by 2025. The rise of internet connectivity 
and low-cost mobile devices are some of the 
reasons for the increasing number of mobile users. 
Still, battery constraints is existing as one of the 
mobile device's limitations. Today's mobile 
applications exhaust the device battery in a fast 
manner and also require higher computational 
requirements. The solution to these problems can 
be handled by computational offloading of mobile 
edge computing. 

Mobile edge computing is an amalgamation of 
mobile computing and edge computing. It is a 
closer infrastructure to the user device as 
compared to cloud computing. The properties like 
small-scale data centers, location nearby LTE or 
Wi-Fi, low latency, dense deployment by telecom 
vendors, and lower congestion make it a better 
option for mobile task offloading applications. 

Computation offloading is the technique inside 
mobile edge computing where an application is 
partitioned upon local and remote execution based 
on some criteria. Fig 1. depicts the offloading 
process where an application is partitioned, and 
based upon some measures, the decision has 
been taken to offload the task or execute it locally. 
Those tasks which are identified to be performed 
on an edge server are offloaded on it. 

These jobs reach the cloud server and get 
scheduled by some scheduling technique. Task 
scheduling on the cloud server is one of the prime 
tasks in mobile cloud computing. 
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The virtual machines (VM) need to be allocated 
to the task's execution by the cloud service 
provider. Major thirst has been given to research in 
the field of mobile computing by a framework like 
Chroma(RPC) (Balan et al., 2003), Cuckoo(RMI) 
(Kemp et al., 2012), spectra(Flinn et al., n.d.), 
MAUI (Cuervo et al., 2010), Mobicloud (Huang et 
al., 2010), and Clonecloud (Chun et al., 2011). 
These are popular frameworks in this cloud 
computing domain that empower the concept of 
offloading the task to the cloud server either by task 
partitioning or considering a complete application 
for offloading purposes. 

Various studies have been done in the past, 
trying to achieve optimization in different objective 
functions like makespan, energy, quality of 
service(QoS), load balancing, and cost. The 
problem of task scheduling has much scope for 
optimization since of its NP-hard nature. 

The mobile application consists of many 
computational tasks represented as nodes and 
dependency among these nodes is defined as a 
cloud. Resources are required in the cloud servers 
for the execution of these offloaded computational 
tasks. The availability of these resources needs to 
be assured by the cloud service providers, and 
also, the pricing of services may vary from country 
to country. 

The work aims to propose a hybrid scheduling 
technique based on Gaussian-based multi-
objective particle swarm optimization (GMOPSO) 
and Bacterial foraging optimization (BFO). The 
GMOPSO provides us with the global best solution, 
whereas using the BFO, the local best solution is 
tried to be improvised. The contribution can be 
summarized as follows. 

a) Minimize the energy consumption and 
makespan of the scheduling process. 

b) Simulation and performance evaluations of 
the proposed algorithm with 
existing  approaches. 

In Section 2, related literature has been 
reviewed. Section 3 describes the methodology of 
the work. The detailed design approach of the 
suggested system is presented in Section 4. 
Section 5 offers the evaluation results compared 
with existing works, and the conclusion and future 
directions are shown in the last in section 6. 

2 Literature Review 

This section provides the work done so far in the 
field of scheduling in mobile cloud and cloud 
computing. Once the task has been offloaded to a 
virtual machine, its execution plan or schedule is 
another challenge. 

The scheduling algorithm must be optimally 
designed so that the task's timely execution can be 
achieved and starvation or deadlock-like 
conditions can be avoided. Eom et al. (2013) 
focused on scheduling offloading and applying 
machine learning-based techniques to optimize the 
offloading process. 

Their study focused on nineteen different 
machine learning algorithms and four workloads. 
Zhang et al. (2016) have proposed joint resource 
scheduling and code partitioning for effectively 
allocating cloudlet to multiple cloud users. They 
have proposed a code partitioning algorithm based 
on the call tree. Hsu Mon Kyi & Thinn Thu Naing 

 

Fig. 1. Offloading process in the mobile computing environment 
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(2011) have proposed an algorithm for scheduling 
and resource allocation of virtual resources and 
virtual machines named the Efficient Virtual 
Machines Scheduling Algorithm (EVMSA). The 
stochastic Markov model is used to analyze the 
performance of the scheduling algorithm. 
Eucalyptus architecture is introduced as a system 
model. The resource allocation decision model is 
based on the continuous Markov chain model. 
Jagannathan & Modiano (2013) have presented a 
mathematical model of the buffer overflow in 
parallel queues. 

The study shows that the longest queue first 
scheduling policy has a superior queue overflow 
performance than queue blind policies. Several 
lemmas are presented in support of the theory 
presented in the paper. The researcher has 
assumed the system consists of N parallel queues 
served by a single server. Time is slotted, and the 
server processes only one queue. Wang et al. 
(2013) presented the weighted round-robin 
scheduling algorithm for task scheduling in the 
Hadoop framework. 

Table 1 presents the various task scheduling 
schemes, specifically in the mobile cloud 
computing framework. In the paper Wei et al. 
(2013), the authors have proposed the extended 
cloudlet approach for supporting local mobile cloud. 

They have presented a hybrid PSO approach 
and optimized the profit and energy consumption 
during scheduling. The authors in the paper Nir et 
al. (2014) have presented a task scheduler model 
that optimizes mobile cloud computing's energy 
function. In the paper Lin et al. (2015), the authors 
proposed a scheduling scheme based on dynamic 
voltage and frequency scaling and optimized the 
application makespan and reduce 
energy consumption. 

3 Task Offloading & Scheduling in 
Mobile Cloud Computing 

The mobile task offloading model consists of two 
ways to execute the task, i.e., either to offload the 
task on the cloud server or to execute the task 
locally on the mobile phone. After the initial task 
partitioning phase, the decision of offloading is 
made by the decision engine by gathering various 
device and network parameters through the 

profiling process. Now, through a cellular network 
or Wi-Fi network, the task reaches the cloud server. 
The objective of offloading is to transfer the 
computation to the resourceful server at a distant 
place to improve the device's performance and 
save energy. Taking the offload decision to a 
remote server is not always mandatory but 
depends on the various parameters affecting the 
device's performance. 

In some scenarios, partial offloading is also 
performed. One part of the application task is 
processed on a mobile device, and the other is 
offloaded to the surrogate or cloud server. The 
task's computation time depends on the 
computation amount required and the mobile 
device's processing speed. In a scenario, let's 
assume the job is divided into two partitions where 
the first partition executes locally and the second 
partition runs on a remote server. 

For local execution, let CT_LOCAL be the 
computation time required on the local device, 
CA_LOCAL be the computation amount, and PS_LOCAL 
be the mobile device's processing speed. The 
relationship among these values will be: 

CT_LOCAL = CA_LOCAL /   PS_LOCAL . (1) 

For remote execution, the second partition is 
executed on the cloud/edge server. Let BAVAILABLE 
be the available bandwidth in the device and the 
amount of data to be transferred be 
DAMOUNT_OF_DATA. The time taken to transfer the data 
to/from the server will be CT_REMOTE   will be: 

CT_REMOTE =DAMOUNT_OF_DATA / BAVAILABLE +  
Cloud processing time . 

(2) 

The total time CT_TOTAL taken to execute the 
application both locally and remotely will be a 
summation of the above two equations, which is: 

CT_TOTAL =CT_LOCAL + CT_REMOTE . (3) 

3.1 Cloud Model 

When the task is offloaded from the mobile device 
to the cloud server, it reaches the cloud service 
provider's server. The cloud service provider 
manages all information about the task that is 
approached for processing. 

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 477–488
doi: 10.13053/CyS-27-2-3953

A Multi-Objective Task Scheduling Scheme GMOPSO-BFO in Mobile Cloud Computing 479

ISSN 2007-9737



 

Table 1. Various scheduling schemes in MEC / MCC environment in the recent past 

Techniques and 
Work Done 

Year Type of Problem  Objectives function Framework  Environment 

HACAS (Wei et al., 

2013) 
2013 Application scheduling 

Profit and Energy 

consumption 
MCC Simulation 

TSPCCE (Nir et al., 

2014) 
2014 Task scheduling Energy MCC 

IBM's linear 

programming solver 

MCC task 

scheduling 

algorithm(X. Lin 

et al., 2015) 

2014 
Task scheduling with 

DVFS 
Energy and Time MCC MATLAB 

LARAC algorithm 

(W. Zhang et al., 

2015) 

2015 
Task scheduling with 

DVFS 

Energy and Time 

Deadline 
MCC Simulation 

eDors (Guo et 

al., 2016) 
2016 

Dynamic scheduling and 

energy-efficient offloading 

Energy and 

completion time 
MCC Simulation 

MCF-DF   (Lin 

Wang et al., 

2016) 

2016 
Task admission and 

scheduling 

Admission rate and 

execution cost 
MEC Python 

HCOA(T. Wang 

et al., 2018) 
2017 

Task offloading and 

scheduling 
Energy MCC Simulation 

CMSACO (Shah-

Mansouri et al., 

2017) 

2017 
Multi-Task 

offloading 

Profit and 

completion 

time 

MCC Simulation 

TSRA(Zhao et 

al., 2017) 
2017 

Resource allocation and 

scheduling 
Delay MEC Simulation 

COPE (J. Zhang 

et al., 2018) 
2017 Task scheduling 

Energy, Price of Cloud 

service provider, Delay 
MCC 

Thinkair based 

simulation 

DAA (L. Lin et 

al., 2018) 
2018 Task scheduling Makespan MEC Simulation 

 

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 477–488
doi: 10.13053/CyS-27-2-3953

Robin Prakash Mathur, Manmohan Sharma480

ISSN 2007-9737



The Datacenter Broker policy (Singh & Chana, 
2016) helps the cloudlets (task) to assign 
virtual  machines. 

The data center policy must be appropriate for 
the minimum execution time of the cloudlet. Similar 
to web applications, a mobile application consists 
of different tasks. 

These tasks can be represented as a directed 
acyclic graph (DAG). While the application's 
independent task can be executed simultaneously 
in multiple virtual machines, the dependent job 
needs to be synchronized as per their 
precedence  order. 

3.2 Scheduling of Offloaded Task  

When speaking about task scheduling, achieving a 
minimum makespan is considered an NP-hard 
problem. Most recent studies have focused on the 
cloud resources to the various cloudlets to optimize 
energy and execution time parameters. 

In this work, the particular task's execution time 
depends on the task size and the virtual machine's 
property. Following are the basic definitions 
regarding mobile task scheduling: 

a) Consider a set of n virtual machines as V = 
{V1, V2, V3…, Vn} 

b) A task of the application tasks T = {T1, 
T2…, Tx} 

c) E is the set of connections between any two 
tasks, Ti and Tj. 

d) Collection of physical machines (PMs) in 
the data center = (PM1, PM2, PM3..., PMn) 

It is assumed in the work that the cloud service 
provider has a sufficient number of computational 
resources. The V number of virtual machines are 
deployed on the physical machines, and different 
virtual machines have a variety of processing units 
(CPU), random access memory (RAM), and 
networking capabilities. 

The data center brokers monitor all available 
resources and assign the machine to the task once 
approached. All jobs requiring processing 
resources need to stand in a queue, and based on 
the task scheduling scheme, tasks are planned to 
execute on the machine. 

3.3 Framework for Task Scheduling 

An approach has been proposed on a Gaussian 
multi-objective hybrid scheduling scheme based 
on particle swarm optimization (PSO) and bacterial 
foraging optimization (BFO). Energy and 

GABTS (Tang et al., 2018) 2018 
Task offloading and 

scheduling 

Energy, response time, 

deadline, and cost 
MCC C++ 

OAOA (Jiang et al., 2019) 2019 
Stochastic approach 

for task scheduling 
Energy and QoS MCC Simulation 

Application-aware (Oo & Ko, 2019) 2019 Task Scheduling Latency MEC iFogSim 

MWSM (Tian et al., 2019) 2019 Workflow scheduling Latency, Energy, and Cost MCC Simulation 

RCTSPO (Chen et al., 2020) 2020 Task scheduling Makespan, Reliability, and Load MEC Cloudsim 

EBCO-TS (Arun & Prabu, 2020) 2020 Task scheduling Makespan and energy MCC Cloudsim 

ADO-MTS (Garg & Nath, 2020) 2020 Task scheduling 
Makespan, Resource  

utilization, and Energy 
MCC Cloudsim 
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makespan are considered objective functions for 
the study. A task offloading scheme is based on 
optimizing the multi-objective function, where 
minimizing both functions is the approach's 
actual goal. 

Makespan is defined as the time required for 
the processing of the task CPU and its 
transmission time. The makespan of a task on the 
virtual machine is calculated considering the 
computing power of the VM and the size of the task. 
It can be defined by the following equation: 

Makespan(T) = size of the task ∕ computational 
power. 

(4) 

Two factors calculate energy cost: virtual 
machine usage charges, which are usually 
different for cloud service providers, and calculated 
on a second basis. The other is the execution time 
of the task. It can be defined by the 
following  equation: 

Energy Cost = execution time X virtual machine 
usage charge. 

(5) 

3.4 Objective Functions 

This section defines the objective functions 
considered in the work 

Objective 1: The first aim of the function is to 
minimize the makespan of the mobile task. 

Objective 2: The second aim of the function is 
to minimize the energy cost of the mobile task. 

4 Proposed Approach for Task 
Scheduling 

The proposed approach (GMOPSO-BFO) is based 
on a hybrid approach of particle swarm 
optimization (PSO) and Bacteria foraging 
optimization (BFO). The PSO approach works 
excellently in searching the solution globally, 
whereas the BFO works optimally with local 
search  capabilities. 

The combined approach of these two 
techniques generates an optimal solution globally 
and locally in search capability and higher 
convergence time. 

4.1 Bacteria Foraging Optimization 

The bacteria foraging method is a natural selection 
method in which microorganisms like bacteria tend 
to search or forage food to survive in the E-coli 
(intestine) of the human body (Passino 2002). The 
primary strategy of bacteria to survive is by locating 
the nutrients, handling them, and ingesting the 
food to get the energy to live and reproduce. Those 
bacteria which do not successfully forage the 
nutrient typically get eliminated from the system. It 
follows the concept of survival of the  fittest. 

This evolutionary concept made the scientist 
fascinated and motivated them to use it as an 
optimization process. Most of the optimization 
processes can be performed with such an 
evolutionary approach. The main aim of the 
bacteria is to maximize the energy attained during 
foraging per unit of time. It depends on certain 
factors like prey density in the environment and 
characteristics of the environment. It also depends 
on the sensing and cognitive capabilities of 
the bacteria. 

The E. Coli bacteria have a cell structure having 
various biological features like nucleoids, 
ribosomes, cytoplasm, pilus, and plasma 
membrane. As these attributes do normal cell 
processes, another critical feature, i.e., flagellum, 
helps bacteria propagate or move in different 
directions. Chemotaxis is the process of movement 
of the organism from its position in the presence of 
some chemical attractants and repellants. 

With the help of flagella, there are two possible 
movements, i.e., either its moves clockwise or 
tumble, and the other is counterclockwise or swim. 
Fig.2 depicts the movement of bacteria like 
tumbling and swimming in the E. Coli. 

In a favorable condition of the environment 
where sufficient nutrients are available and the 
non-acidic and non-alkaline nature of the intestine, 
it swims and the opposite of it. It tumbles typically, 
which is changing the direction of the swim. 

The other significant process related to bacteria 
is swarming, where bacteria release some 
attractants to swarm together, searching for food. 
If the attractants are released high and deep, there 
are chances that different bacteria explore food 
together; otherwise, they go alone in the 
reverse  situation. 
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During the reproduction process, the bacteria 
get split into two parts to increase their population. 
Bacteria reproduce based on the nutrient available 
in the bacteria or the fitness function. The bacteria 
also go through the elimination and dispersal 
phase in their lifetime due to their 
local  environment. 

Sometimes, the condition to survive gets 
reduced when the sudden rise in heat or nutrients 
is finished. In terms of computing, to avoid trapping 
in the local optima, the elimination and dispersal 
process is used. 

4. 2 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a nature-
inspired algorithm (Coello Coello & Lechuga, n.d.) 
(Krohling, n.d.) based on social behavior and a 
flock of birds' dynamic movement. A group of birds 
known as a swarm moves together, searching for 
food in a particular direction and at different 
velocities. Each bird or particle looks for food and 
is usually followed by other birds. 

These birds communicate with each other 
during their search and typically follow each other 
closer to the food. The closeness from the food is 
calculated as a fitness value after a periodic 
interval of time. Each bird in the swarm is 
represented as a particle in multidimensional 
space with a certain velocity and position. 

Each particle keeps two things in its memory, 
i.e., its own best position pbest, and other is the 
global best position of gbest of their group. In the 
standard PSO, the velocity of the particle is 
updated with the equation: 

 )x(yξc)x(bξcvv (k)
i

(k)(k)
i

(k)
i

(k)
i

)(k
i 

2211
1  . (6) 

The updated version of PSO, which improve the 
convergence rate, was a constriction factor where 
the velocity vector as: 

, 22111
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
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
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(k)
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)(k
i

(k)
i

)(k
i vxx 11   , (8) 

where    is a constriction factor in the above 

equation and (k)
ix  is the ith particle's position at 

step k, )(k
iv

1  is its velocity, (k)
ib   is the best 

position visited by the ith particle, 
(k)y is the overall 

best position ever visited. It has been observed 
that after incorporating the Gaussian density 
function in the above equation, the results come 
better in terms of the global solution. The updated 
velocity equation will be: 

 )x(yRandn)x(brandnv (k)
i

(k)(k)
i

(k)
i

)(k
i  |||1

(9) 

where the randn and Randn are based on the 
Gaussian density function's absolute value. 

The Gaussian random density function is 
represented by: 

𝑓(𝑥) =
1

√2𝜋
𝑒ି௫మ

ଶൗ  (10) 

Pseudocode of GMOPSO-BFO approach for 
task scheduling: 

Initialize the Bacteria Foraging Optimization 
(BFO) parameters and Particle swarm optimization 
(GMOPSO) parameters:  

Np, Nc, Sl, Nr, Ne, C, Pdispersal, dattract, wattract, hattract, 
wattract, pi, f, vi 

Input: a collection of all bacteria where each 

bacteria is represented as  lkji ,,  
Output: a collection of information on how 

much these bacteria collect nutrients 

begin: Let  lkji ,,   be the position of the ith 

bacteria in the environment where j defines the 
chemotaxes step, k defines the reproduction step, 
and l defines the dispersal elimination step. 

for all bacteria in the list: 
Loop elimination-dispersal step 
 Loop reproduction step 

                

     

Fig. 2. Chemotaxis process of the bacteria 
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Loop Chemotaxis step 
go for chemotactic steps using (a) and (b), 
respectively 

Initialize the value of vi and  position pi  of the 
ith bacteria 

(a) Compute tumbling step: 

       
   idltidlt

idlt
iClkjlkj

T

ii  ,,,,1 
, 

(b) Compute Swim step: 
    lkjPlkjJlkjiJlkjiJ i

cc ,,,,,),,,(),,,( 

Set Jlast  =  ),,,( lkjiJ  

If ),,1,( lkjiJ   <  Jlast 
Update Jlast 
For the reproduction phase: calculate the 

fitness function using: 

 





1

1

,,,
cN

j

i
health lkjiJJ

 
Sort in ascending order the bacteria and 

chemotactic parameters If (k < Nr), perform the 
reproduction step again till k= Nr  

For elimination and dispersal: 
for each bacteria, 
if (ped < Pdispersal), 

do elimination and dispersal till l= Ne. 
Do Mutation of the remaining bacteria (particles) 

using the PSO scheme. 
Update pi, best, and gi, best upon meeting 

the  condition: 

)()(

)()(

,,

,,

bestiiibesti

bestiiibesti

gfgfifgg

pfpfifpp




 

Update the velocity of each bacteria (particle) 
after every iteration by the Gaussian-
based  velocity: 

 )x(yRandn)x(brandnv (k)
i

(k)(k)
i

(k)
i

)(k
i  |||1

 

Update the position of each bacteria (particle) 
after every iteration by the formula: 

)(k
i

(k)
i

)(k
i vxx 11    

Check pi, which should exist within the range.  
Repeat step reproduction and PSO until 

convergence is achieved. 
After the stopping criteria are met, the value of 

gbest and f(gbest) must be recorded. End. 

5 Results and Discussion 

The proposed approach has been developed in the 
language Python in the window 10 environment on 
Intel (R) Core (TM) i5, 1.80 GHz, CPU 8 GB. 
Various parameters considered during the 
simulation of the proposed technique have been 
presented in Table 2. 

In evaluating the proposed method, five virtual 
machines are considered, and a collection of tasks 
is assumed between 100 and 1000. The results are 
compared with the existing work on MOPSO 
(Alkayal et al., 2016) and BFO (Rajni & Chana, 
2013) regarding the energy efficiency and 
makespan of the task execution. 

The proposed scheme is based Gaussian 
swarm approach implemented in MOPSO along 
with the BFO. The experiment has been performed 
by considering the number of bacteria (Np) as 20 
and No_of_chemotactics (Nc) as 10. In the same 
way, the initial size of PSO is considered as 20 in 
the experiment. The experiment runs iteratively 
about ten times to find the average of makespan 
and energy values. The experiment has been 

Table 2. Parameters considered in the simulation 

Parameters for BFO and 
PSO 

Value 
Used 

No_of_bacteria (Np) 20 
No_of_chemotactics (Nc) 10 
swim_length (S l) 4 
No_of_reproductions (Nr) 4 
No_of_dispersals (Ne) 2 
step_size ( C ) 1.45 
probability_dispersal (P 
dispersal) 

0.25 

d_attractant (dattract) 0.1 
w_attractant (wattract) 0.2 
h_repellant (hattract) 0.1 
w_repellant  (wattract) 10 

PSO Swarm size 20 

Self-recognition coefficient 1 

Social coefficient 2 

Inertial weight 0.5 
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performed by considering m random task to n 
virtual machine. 

The task size and required execution time are 
uniformly distributed. It has been found that the 
Gaussian scheme has outperformed the standard 
PSO and increased the convergence ability of PSO. 

Since our problem is multi-objective, when 
Gaussian is implemented with MOPSO along with 
BFO, it gives better results in energy efficacy and 
reduced makespan time. Both factors are required 
for the offloading problem in mobile cloud 
computing. Table 3 presents the various task 
execution times, and it can be seen that the 

GMOPSO-BFO approach has performed better 
than the other algorithms. 

As the number of tasks increases on the virtual 
machine, the proposed scheme maintains the 
lowest makespan. The proposed scheme has less 
makespan for the various range of task from 100 to 
1000 compared to MOPSO, BFO, and 
MOPSO- BFO. 

In this work, the energy consumption is 
calculated for the proposed GMOPSO-BFO 
technique and compared with methods like 
MOPSO, BFO, and MOPSO-BFO. In this 
experiment, the number of virtual machines is 

Table 3. Execution time of the task in different techniques 

Makespan per no. of task 

  MOPSO BFO MOPSO-BFO GMOPSO-BFO 

100 41.47 38.66 37.65 37.18 

200 155 151.81 155.05 145.25 

300 345.4 335.53 335 327.38 

400 594.85 597.26 594.85 567.8 

500 926.43 916.66 913.98 878.55 

600 1332.22 1333.36 1324.33 1284.5 

700 1813.15 1885.31 1803.56 1750.51 

800 2349.87 2390.75 2310.6 2316.66 

900 2934.87 3034.93 2924.65 2916.73 

1000 3743.78 3692.85 3655.96 3618.93 

Table 4. Energy consumption of the task in different techniques 

Energy consumed per no. of task 

 
MOPSO BFO MOPSO-BFO GMOPSO-BFO 

100 1.05 1.05 1.03 1.03 

200 2.15 2.15 2.15 2.14 

300 3.14 3.12 3.16 3.11 

400 4.15 4.13 4.15 4.12 

500 5.18 5.19 5.17 5.18 

600 6.33 6.33 6.3 6.18 

700 7.45 7.46 7.5 7.42 

800 8.49 8.47 8.46 8.45 

900 9.6 9.62 9.61 9.59 

1000 10.72 10.75 10.71 10.66 
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considered 5, and the number of tasks ranges from 
100 to 1000. 

The experiment aimed to determine the energy 
consumption of the various techniques on the 
virtual machines. 

The unit of energy consumption is considered 
as joules/minute. Table 4 presents the various 
tasks on the virtual machine and GMOPSO-BFO 
approach, which has consumed less energy in 
joules than the other algorithms. It has been 
observed that when the number of tasks increases 
from 100 to 1000, the machine's energy 
consumption also increases. 

The proposed schemes perform better as 
compared to the other algorithm. The proposed 
scheme can save energy consumption in the 
virtual machine. It is clear from the experimental 
results that the proposed scheme GMOPSO-BFO 
performs better in completion time and 
energy consumption. 

6 Conclusions 

This paper presents a hybrid scheduling approach 
based on the Gaussian multi-objective particle 
swarm optimization and bacteria foraging 
optimization. Both makespan and energy 
consumption are essential factors in the offloading 
method of MCC. The proposed scheme performs 
better in makespan and energy consumption. 

The results are compared with the MOPSO, 
BFO, and hybrid MOPSO-BFO. The scheme 
leverages the global optima of GMOPSO and the 
local optima by BFO. In the future, a scheduling 
scheme will be developed based on other 
optimization parameters like a load on the servers, 
scalability, latency, and resource utilization. 
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