
A Multi-Objective Task Scheduling Scheme
GMOPSO-BFO in Mobile Cloud Computing

Robin Prakash Mathur1, Manmohan Sharma2

1 School of Computer Science and Engineering,

School of Computer Applications, Lovely Professional University, Punjab,
India

2 Lovely Professional University, Punjab,
India

mathur.robin@gmail.com

Abstract. Mobile cloud computing is currently an
encouraging field in the cyber-physical world. It is
an amalgamation of mobile computing and cloud
computing. Computational offloading is one feature
in the mobile cloud application that offloads the
task to the cloud server, processes it, and gets the
results back on the mobile device. During offload,
the job needs to be queued on the cloud servers
and allocated to the virtual machines. Task
scheduling is an important step where the mobile
task is assigned to the servers and processed
somehow. In the overall offloading process, energy
conservation is a significant concern. The
scheduling problem involves mapping the
offloaded task to the cloud server while satisfying
the energy and time constraints. This paper
proposes a hybrid scheduling scheme based on
Gaussian-based multi-objective particle swarm
optimization(GMOPSO) and bacterial foraging
optimization(BFO). This scheme performs better
when compared to other variants of PSO in terms
of makespan and energy efficiency.

Keywords. Computational offloading, mobile cloud
computing, MOPSO, bacteria foraging optimization,
energy consumption, makespan.

1 Introduction

The recent studies by Ericsson (Ericsson Mobility
Report, n.d.) show that mobile users will become

25 billion by 2025. The rise of internet connectivity
and low-cost mobile devices are some of the
reasons for the increasing number of mobile users.
Still, battery constraints is existing as one of the
mobile device's limitations. Today's mobile
applications exhaust the device battery in a fast
manner and also require higher computational
requirements. The solution to these problems can
be handled by computational offloading of mobile
edge computing.

Mobile edge computing is an amalgamation of
mobile computing and edge computing. It is a
closer infrastructure to the user device as
compared to cloud computing. The properties like
small-scale data centers, location nearby LTE or
Wi-Fi, low latency, dense deployment by telecom
vendors, and lower congestion make it a better
option for mobile task offloading applications.

Computation offloading is the technique inside
mobile edge computing where an application is
partitioned upon local and remote execution based
on some criteria. Fig 1. depicts the offloading
process where an application is partitioned, and
based upon some measures, the decision has
been taken to offload the task or execute it locally.
Those tasks which are identified to be performed
on an edge server are offloaded on it.

These jobs reach the cloud server and get
scheduled by some scheduling technique. Task
scheduling on the cloud server is one of the prime
tasks in mobile cloud computing.

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 477–488
doi: 10.13053/CyS-27-2-3953

ISSN 2007-9737

The virtual machines (VM) need to be allocated
to the task's execution by the cloud service
provider. Major thirst has been given to research in
the field of mobile computing by a framework like
Chroma(RPC) (Balan et al., 2003), Cuckoo(RMI)
(Kemp et al., 2012), spectra(Flinn et al., n.d.),
MAUI (Cuervo et al., 2010), Mobicloud (Huang et
al., 2010), and Clonecloud (Chun et al., 2011).
These are popular frameworks in this cloud
computing domain that empower the concept of
offloading the task to the cloud server either by task
partitioning or considering a complete application
for offloading purposes.

Various studies have been done in the past,
trying to achieve optimization in different objective
functions like makespan, energy, quality of
service(QoS), load balancing, and cost. The
problem of task scheduling has much scope for
optimization since of its NP-hard nature.

The mobile application consists of many
computational tasks represented as nodes and
dependency among these nodes is defined as a
cloud. Resources are required in the cloud servers
for the execution of these offloaded computational
tasks. The availability of these resources needs to
be assured by the cloud service providers, and
also, the pricing of services may vary from country
to country.

The work aims to propose a hybrid scheduling
technique based on Gaussian-based multi-
objective particle swarm optimization (GMOPSO)
and Bacterial foraging optimization (BFO). The
GMOPSO provides us with the global best solution,
whereas using the BFO, the local best solution is
tried to be improvised. The contribution can be
summarized as follows.

a) Minimize the energy consumption and
makespan of the scheduling process.

b) Simulation and performance evaluations of
the proposed algorithm with
existing approaches.

In Section 2, related literature has been
reviewed. Section 3 describes the methodology of
the work. The detailed design approach of the
suggested system is presented in Section 4.
Section 5 offers the evaluation results compared
with existing works, and the conclusion and future
directions are shown in the last in section 6.

2 Literature Review

This section provides the work done so far in the
field of scheduling in mobile cloud and cloud
computing. Once the task has been offloaded to a
virtual machine, its execution plan or schedule is
another challenge.

The scheduling algorithm must be optimally
designed so that the task's timely execution can be
achieved and starvation or deadlock-like
conditions can be avoided. Eom et al. (2013)
focused on scheduling offloading and applying
machine learning-based techniques to optimize the
offloading process.

Their study focused on nineteen different
machine learning algorithms and four workloads.
Zhang et al. (2016) have proposed joint resource
scheduling and code partitioning for effectively
allocating cloudlet to multiple cloud users. They
have proposed a code partitioning algorithm based
on the call tree. Hsu Mon Kyi & Thinn Thu Naing

Fig. 1. Offloading process in the mobile computing environment

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 477–488
doi: 10.13053/CyS-27-2-3953

Robin Prakash Mathur, Manmohan Sharma478

ISSN 2007-9737

(2011) have proposed an algorithm for scheduling
and resource allocation of virtual resources and
virtual machines named the Efficient Virtual
Machines Scheduling Algorithm (EVMSA). The
stochastic Markov model is used to analyze the
performance of the scheduling algorithm.
Eucalyptus architecture is introduced as a system
model. The resource allocation decision model is
based on the continuous Markov chain model.
Jagannathan & Modiano (2013) have presented a
mathematical model of the buffer overflow in
parallel queues.

The study shows that the longest queue first
scheduling policy has a superior queue overflow
performance than queue blind policies. Several
lemmas are presented in support of the theory
presented in the paper. The researcher has
assumed the system consists of N parallel queues
served by a single server. Time is slotted, and the
server processes only one queue. Wang et al.
(2013) presented the weighted round-robin
scheduling algorithm for task scheduling in the
Hadoop framework.

Table 1 presents the various task scheduling
schemes, specifically in the mobile cloud
computing framework. In the paper Wei et al.
(2013), the authors have proposed the extended
cloudlet approach for supporting local mobile cloud.

They have presented a hybrid PSO approach
and optimized the profit and energy consumption
during scheduling. The authors in the paper Nir et
al. (2014) have presented a task scheduler model
that optimizes mobile cloud computing's energy
function. In the paper Lin et al. (2015), the authors
proposed a scheduling scheme based on dynamic
voltage and frequency scaling and optimized the
application makespan and reduce
energy consumption.

3 Task Offloading & Scheduling in
Mobile Cloud Computing

The mobile task offloading model consists of two
ways to execute the task, i.e., either to offload the
task on the cloud server or to execute the task
locally on the mobile phone. After the initial task
partitioning phase, the decision of offloading is
made by the decision engine by gathering various
device and network parameters through the

profiling process. Now, through a cellular network
or Wi-Fi network, the task reaches the cloud server.
The objective of offloading is to transfer the
computation to the resourceful server at a distant
place to improve the device's performance and
save energy. Taking the offload decision to a
remote server is not always mandatory but
depends on the various parameters affecting the
device's performance.

In some scenarios, partial offloading is also
performed. One part of the application task is
processed on a mobile device, and the other is
offloaded to the surrogate or cloud server. The
task's computation time depends on the
computation amount required and the mobile
device's processing speed. In a scenario, let's
assume the job is divided into two partitions where
the first partition executes locally and the second
partition runs on a remote server.

For local execution, let CT_LOCAL be the
computation time required on the local device,
CA_LOCAL be the computation amount, and PS_LOCAL
be the mobile device's processing speed. The
relationship among these values will be:

CT_LOCAL = CA_LOCAL / PS_LOCAL . (1)

For remote execution, the second partition is
executed on the cloud/edge server. Let BAVAILABLE
be the available bandwidth in the device and the
amount of data to be transferred be
DAMOUNT_OF_DATA. The time taken to transfer the data
to/from the server will be CT_REMOTE will be:

CT_REMOTE =DAMOUNT_OF_DATA / BAVAILABLE +
Cloud processing time .

(2)

The total time CT_TOTAL taken to execute the
application both locally and remotely will be a
summation of the above two equations, which is:

CT_TOTAL =CT_LOCAL + CT_REMOTE . (3)

3.1 Cloud Model

When the task is offloaded from the mobile device
to the cloud server, it reaches the cloud service
provider's server. The cloud service provider
manages all information about the task that is
approached for processing.

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 477–488
doi: 10.13053/CyS-27-2-3953

A Multi-Objective Task Scheduling Scheme GMOPSO-BFO in Mobile Cloud Computing 479

ISSN 2007-9737

Table 1. Various scheduling schemes in MEC / MCC environment in the recent past

Techniques and
Work Done

Year Type of Problem Objectives function Framework Environment

HACAS (Wei et al.,

2013)
2013 Application scheduling

Profit and Energy

consumption
MCC Simulation

TSPCCE (Nir et al.,

2014)
2014 Task scheduling Energy MCC

IBM's linear

programming solver

MCC task

scheduling

algorithm(X. Lin

et al., 2015)

2014
Task scheduling with

DVFS
Energy and Time MCC MATLAB

LARAC algorithm

(W. Zhang et al.,

2015)

2015
Task scheduling with

DVFS

Energy and Time

Deadline
MCC Simulation

eDors (Guo et

al., 2016)
2016

Dynamic scheduling and

energy-efficient offloading

Energy and

completion time
MCC Simulation

MCF-DF (Lin

Wang et al.,

2016)

2016
Task admission and

scheduling

Admission rate and

execution cost
MEC Python

HCOA(T. Wang

et al., 2018)
2017

Task offloading and

scheduling
Energy MCC Simulation

CMSACO (Shah-

Mansouri et al.,

2017)

2017
Multi-Task

offloading

Profit and

completion

time

MCC Simulation

TSRA(Zhao et

al., 2017)
2017

Resource allocation and

scheduling
Delay MEC Simulation

COPE (J. Zhang

et al., 2018)
2017 Task scheduling

Energy, Price of Cloud

service provider, Delay
MCC

Thinkair based

simulation

DAA (L. Lin et

al., 2018)
2018 Task scheduling Makespan MEC Simulation

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 477–488
doi: 10.13053/CyS-27-2-3953

Robin Prakash Mathur, Manmohan Sharma480

ISSN 2007-9737

The Datacenter Broker policy (Singh & Chana,
2016) helps the cloudlets (task) to assign
virtual machines.

The data center policy must be appropriate for
the minimum execution time of the cloudlet. Similar
to web applications, a mobile application consists
of different tasks.

These tasks can be represented as a directed
acyclic graph (DAG). While the application's
independent task can be executed simultaneously
in multiple virtual machines, the dependent job
needs to be synchronized as per their
precedence order.

3.2 Scheduling of Offloaded Task

When speaking about task scheduling, achieving a
minimum makespan is considered an NP-hard
problem. Most recent studies have focused on the
cloud resources to the various cloudlets to optimize
energy and execution time parameters.

In this work, the particular task's execution time
depends on the task size and the virtual machine's
property. Following are the basic definitions
regarding mobile task scheduling:

a) Consider a set of n virtual machines as V =
{V1, V2, V3…, Vn}

b) A task of the application tasks T = {T1,
T2…, Tx}

c) E is the set of connections between any two
tasks, Ti and Tj.

d) Collection of physical machines (PMs) in
the data center = (PM1, PM2, PM3..., PMn)

It is assumed in the work that the cloud service
provider has a sufficient number of computational
resources. The V number of virtual machines are
deployed on the physical machines, and different
virtual machines have a variety of processing units
(CPU), random access memory (RAM), and
networking capabilities.

The data center brokers monitor all available
resources and assign the machine to the task once
approached. All jobs requiring processing
resources need to stand in a queue, and based on
the task scheduling scheme, tasks are planned to
execute on the machine.

3.3 Framework for Task Scheduling

An approach has been proposed on a Gaussian
multi-objective hybrid scheduling scheme based
on particle swarm optimization (PSO) and bacterial
foraging optimization (BFO). Energy and

GABTS (Tang et al., 2018) 2018
Task offloading and

scheduling

Energy, response time,

deadline, and cost
MCC C++

OAOA (Jiang et al., 2019) 2019
Stochastic approach

for task scheduling
Energy and QoS MCC Simulation

Application-aware (Oo & Ko, 2019) 2019 Task Scheduling Latency MEC iFogSim

MWSM (Tian et al., 2019) 2019 Workflow scheduling Latency, Energy, and Cost MCC Simulation

RCTSPO (Chen et al., 2020) 2020 Task scheduling Makespan, Reliability, and Load MEC Cloudsim

EBCO-TS (Arun & Prabu, 2020) 2020 Task scheduling Makespan and energy MCC Cloudsim

ADO-MTS (Garg & Nath, 2020) 2020 Task scheduling
Makespan, Resource

utilization, and Energy
MCC Cloudsim

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 477–488
doi: 10.13053/CyS-27-2-3953

A Multi-Objective Task Scheduling Scheme GMOPSO-BFO in Mobile Cloud Computing 481

ISSN 2007-9737

makespan are considered objective functions for
the study. A task offloading scheme is based on
optimizing the multi-objective function, where
minimizing both functions is the approach's
actual goal.

Makespan is defined as the time required for
the processing of the task CPU and its
transmission time. The makespan of a task on the
virtual machine is calculated considering the
computing power of the VM and the size of the task.
It can be defined by the following equation:

Makespan(T) = size of the task ∕ computational
power.

(4)

Two factors calculate energy cost: virtual
machine usage charges, which are usually
different for cloud service providers, and calculated
on a second basis. The other is the execution time
of the task. It can be defined by the
following equation:

Energy Cost = execution time X virtual machine
usage charge.

(5)

3.4 Objective Functions

This section defines the objective functions
considered in the work

Objective 1: The first aim of the function is to
minimize the makespan of the mobile task.

Objective 2: The second aim of the function is
to minimize the energy cost of the mobile task.

4 Proposed Approach for Task
Scheduling

The proposed approach (GMOPSO-BFO) is based
on a hybrid approach of particle swarm
optimization (PSO) and Bacteria foraging
optimization (BFO). The PSO approach works
excellently in searching the solution globally,
whereas the BFO works optimally with local
search capabilities.

The combined approach of these two
techniques generates an optimal solution globally
and locally in search capability and higher
convergence time.

4.1 Bacteria Foraging Optimization

The bacteria foraging method is a natural selection
method in which microorganisms like bacteria tend
to search or forage food to survive in the E-coli
(intestine) of the human body (Passino 2002). The
primary strategy of bacteria to survive is by locating
the nutrients, handling them, and ingesting the
food to get the energy to live and reproduce. Those
bacteria which do not successfully forage the
nutrient typically get eliminated from the system. It
follows the concept of survival of the fittest.

This evolutionary concept made the scientist
fascinated and motivated them to use it as an
optimization process. Most of the optimization
processes can be performed with such an
evolutionary approach. The main aim of the
bacteria is to maximize the energy attained during
foraging per unit of time. It depends on certain
factors like prey density in the environment and
characteristics of the environment. It also depends
on the sensing and cognitive capabilities of
the bacteria.

The E. Coli bacteria have a cell structure having
various biological features like nucleoids,
ribosomes, cytoplasm, pilus, and plasma
membrane. As these attributes do normal cell
processes, another critical feature, i.e., flagellum,
helps bacteria propagate or move in different
directions. Chemotaxis is the process of movement
of the organism from its position in the presence of
some chemical attractants and repellants.

With the help of flagella, there are two possible
movements, i.e., either its moves clockwise or
tumble, and the other is counterclockwise or swim.
Fig.2 depicts the movement of bacteria like
tumbling and swimming in the E. Coli.

In a favorable condition of the environment
where sufficient nutrients are available and the
non-acidic and non-alkaline nature of the intestine,
it swims and the opposite of it. It tumbles typically,
which is changing the direction of the swim.

The other significant process related to bacteria
is swarming, where bacteria release some
attractants to swarm together, searching for food.
If the attractants are released high and deep, there
are chances that different bacteria explore food
together; otherwise, they go alone in the
reverse situation.

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 477–488
doi: 10.13053/CyS-27-2-3953

Robin Prakash Mathur, Manmohan Sharma482

ISSN 2007-9737

During the reproduction process, the bacteria
get split into two parts to increase their population.
Bacteria reproduce based on the nutrient available
in the bacteria or the fitness function. The bacteria
also go through the elimination and dispersal
phase in their lifetime due to their
local environment.

Sometimes, the condition to survive gets
reduced when the sudden rise in heat or nutrients
is finished. In terms of computing, to avoid trapping
in the local optima, the elimination and dispersal
process is used.

4. 2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a nature-
inspired algorithm (Coello Coello & Lechuga, n.d.)
(Krohling, n.d.) based on social behavior and a
flock of birds' dynamic movement. A group of birds
known as a swarm moves together, searching for
food in a particular direction and at different
velocities. Each bird or particle looks for food and
is usually followed by other birds.

These birds communicate with each other
during their search and typically follow each other
closer to the food. The closeness from the food is
calculated as a fitness value after a periodic
interval of time. Each bird in the swarm is
represented as a particle in multidimensional
space with a certain velocity and position.

Each particle keeps two things in its memory,
i.e., its own best position pbest, and other is the
global best position of gbest of their group. In the
standard PSO, the velocity of the particle is
updated with the equation:

 )x(yξc)x(bξcvv (k)
i

(k)(k)
i

(k)
i

(k)
i

)(k
i 

2211
1  . (6)

The updated version of PSO, which improve the
convergence rate, was a constriction factor where
the velocity vector as:

, 22111


















)x(y

ξc)x(bξcv
χv

(k)
i

(k)

(k)
i

(k)
i

(k)
i)(k

i (7)

)(k
i

(k)
i

)(k
i vxx 11   , (8)

where  is a constriction factor in the above

equation and (k)
ix is the ith particle's position at

step k,)(k
iv

1 is its velocity, (k)
ib is the best

position visited by the ith particle,
(k)y is the overall

best position ever visited. It has been observed
that after incorporating the Gaussian density
function in the above equation, the results come
better in terms of the global solution. The updated
velocity equation will be:

)x(yRandn)x(brandnv (k)
i

(k)(k)
i

(k)
i

)(k
i  |||1

(9)

where the randn and Randn are based on the
Gaussian density function's absolute value.

The Gaussian random density function is
represented by:

𝑓(𝑥) =
1

√2𝜋
𝑒ି௫మ

ଶൗ (10)

Pseudocode of GMOPSO-BFO approach for
task scheduling:

Initialize the Bacteria Foraging Optimization
(BFO) parameters and Particle swarm optimization
(GMOPSO) parameters:

Np, Nc, Sl, Nr, Ne, C, Pdispersal, dattract, wattract, hattract,
wattract, pi, f, vi

Input: a collection of all bacteria where each

bacteria is represented as  lkji ,,
Output: a collection of information on how

much these bacteria collect nutrients

begin: Let  lkji ,, be the position of the ith

bacteria in the environment where j defines the
chemotaxes step, k defines the reproduction step,
and l defines the dispersal elimination step.

for all bacteria in the list:
Loop elimination-dispersal step
 Loop reproduction step

Fig. 2. Chemotaxis process of the bacteria

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 477–488
doi: 10.13053/CyS-27-2-3953

A Multi-Objective Task Scheduling Scheme GMOPSO-BFO in Mobile Cloud Computing 483

ISSN 2007-9737

Loop Chemotaxis step
go for chemotactic steps using (a) and (b),
respectively

Initialize the value of vi and position pi of the
ith bacteria

(a) Compute tumbling step:

       
   idltidlt

idlt
iClkjlkj

T

ii  ,,,,1 
,

(b) Compute Swim step:
    lkjPlkjJlkjiJlkjiJ i

cc ,,,,,),,,(),,,(

Set Jlast =),,,(lkjiJ

If),,1,(lkjiJ  < Jlast
Update Jlast
For the reproduction phase: calculate the

fitness function using:

 





1

1

,,,
cN

j

i
health lkjiJJ

Sort in ascending order the bacteria and

chemotactic parameters If (k < Nr), perform the
reproduction step again till k= Nr

For elimination and dispersal:
for each bacteria,
if (ped < Pdispersal),

do elimination and dispersal till l= Ne.
Do Mutation of the remaining bacteria (particles)

using the PSO scheme.
Update pi, best, and gi, best upon meeting

the condition:

)()(

)()(

,,

,,

bestiiibesti

bestiiibesti

gfgfifgg

pfpfifpp





Update the velocity of each bacteria (particle)
after every iteration by the Gaussian-
based velocity:

 )x(yRandn)x(brandnv (k)
i

(k)(k)
i

(k)
i

)(k
i  |||1

Update the position of each bacteria (particle)
after every iteration by the formula:

)(k
i

(k)
i

)(k
i vxx 11  

Check pi, which should exist within the range.
Repeat step reproduction and PSO until

convergence is achieved.
After the stopping criteria are met, the value of

gbest and f(gbest) must be recorded. End.

5 Results and Discussion

The proposed approach has been developed in the
language Python in the window 10 environment on
Intel (R) Core (TM) i5, 1.80 GHz, CPU 8 GB.
Various parameters considered during the
simulation of the proposed technique have been
presented in Table 2.

In evaluating the proposed method, five virtual
machines are considered, and a collection of tasks
is assumed between 100 and 1000. The results are
compared with the existing work on MOPSO
(Alkayal et al., 2016) and BFO (Rajni & Chana,
2013) regarding the energy efficiency and
makespan of the task execution.

The proposed scheme is based Gaussian
swarm approach implemented in MOPSO along
with the BFO. The experiment has been performed
by considering the number of bacteria (Np) as 20
and No_of_chemotactics (Nc) as 10. In the same
way, the initial size of PSO is considered as 20 in
the experiment. The experiment runs iteratively
about ten times to find the average of makespan
and energy values. The experiment has been

Table 2. Parameters considered in the simulation

Parameters for BFO and
PSO

Value
Used

No_of_bacteria (Np) 20
No_of_chemotactics (Nc) 10
swim_length (S l) 4
No_of_reproductions (Nr) 4
No_of_dispersals (Ne) 2
step_size (C) 1.45
probability_dispersal (P
dispersal)

0.25

d_attractant (dattract) 0.1
w_attractant (wattract) 0.2
h_repellant (hattract) 0.1
w_repellant (wattract) 10

PSO Swarm size 20

Self-recognition coefficient 1

Social coefficient 2

Inertial weight 0.5

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 477–488
doi: 10.13053/CyS-27-2-3953

Robin Prakash Mathur, Manmohan Sharma484

ISSN 2007-9737

performed by considering m random task to n
virtual machine.

The task size and required execution time are
uniformly distributed. It has been found that the
Gaussian scheme has outperformed the standard
PSO and increased the convergence ability of PSO.

Since our problem is multi-objective, when
Gaussian is implemented with MOPSO along with
BFO, it gives better results in energy efficacy and
reduced makespan time. Both factors are required
for the offloading problem in mobile cloud
computing. Table 3 presents the various task
execution times, and it can be seen that the

GMOPSO-BFO approach has performed better
than the other algorithms.

As the number of tasks increases on the virtual
machine, the proposed scheme maintains the
lowest makespan. The proposed scheme has less
makespan for the various range of task from 100 to
1000 compared to MOPSO, BFO, and
MOPSO- BFO.

In this work, the energy consumption is
calculated for the proposed GMOPSO-BFO
technique and compared with methods like
MOPSO, BFO, and MOPSO-BFO. In this
experiment, the number of virtual machines is

Table 3. Execution time of the task in different techniques

Makespan per no. of task

 MOPSO BFO MOPSO-BFO GMOPSO-BFO

100 41.47 38.66 37.65 37.18

200 155 151.81 155.05 145.25

300 345.4 335.53 335 327.38

400 594.85 597.26 594.85 567.8

500 926.43 916.66 913.98 878.55

600 1332.22 1333.36 1324.33 1284.5

700 1813.15 1885.31 1803.56 1750.51

800 2349.87 2390.75 2310.6 2316.66

900 2934.87 3034.93 2924.65 2916.73

1000 3743.78 3692.85 3655.96 3618.93

Table 4. Energy consumption of the task in different techniques

Energy consumed per no. of task

MOPSO BFO MOPSO-BFO GMOPSO-BFO

100 1.05 1.05 1.03 1.03

200 2.15 2.15 2.15 2.14

300 3.14 3.12 3.16 3.11

400 4.15 4.13 4.15 4.12

500 5.18 5.19 5.17 5.18

600 6.33 6.33 6.3 6.18

700 7.45 7.46 7.5 7.42

800 8.49 8.47 8.46 8.45

900 9.6 9.62 9.61 9.59

1000 10.72 10.75 10.71 10.66

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 477–488
doi: 10.13053/CyS-27-2-3953

A Multi-Objective Task Scheduling Scheme GMOPSO-BFO in Mobile Cloud Computing 485

ISSN 2007-9737

considered 5, and the number of tasks ranges from
100 to 1000.

The experiment aimed to determine the energy
consumption of the various techniques on the
virtual machines.

The unit of energy consumption is considered
as joules/minute. Table 4 presents the various
tasks on the virtual machine and GMOPSO-BFO
approach, which has consumed less energy in
joules than the other algorithms. It has been
observed that when the number of tasks increases
from 100 to 1000, the machine's energy
consumption also increases.

The proposed schemes perform better as
compared to the other algorithm. The proposed
scheme can save energy consumption in the
virtual machine. It is clear from the experimental
results that the proposed scheme GMOPSO-BFO
performs better in completion time and
energy consumption.

6 Conclusions

This paper presents a hybrid scheduling approach
based on the Gaussian multi-objective particle
swarm optimization and bacteria foraging
optimization. Both makespan and energy
consumption are essential factors in the offloading
method of MCC. The proposed scheme performs
better in makespan and energy consumption.

The results are compared with the MOPSO,
BFO, and hybrid MOPSO-BFO. The scheme
leverages the global optima of GMOPSO and the
local optima by BFO. In the future, a scheduling
scheme will be developed based on other
optimization parameters like a load on the servers,
scalability, latency, and resource utilization.

References

1. Alkayal, E. S., Jennings, N. R., Abulkhair, M.
F. (2016). Efficient Task scheduling multi-
objective particle swarm optimization in cloud
computing. IEEE 41st Conference on Local
Computer Networks Workshops (LCN
Workshops), pp. 17–24. DOI: 10.1109/LCN.2
016.024.

2. Arun, C., Prabu, K. (2020). A multi-objective
EBCO-TS algorithm for efficient task
scheduling in mobile cloud computing.
International Journal of Networking and Virtual
Organisations, Vol. 22, No. 4, pp. 366–386.
DOI: 10.1504/IJNVO.2020.107570.

3. Balan, R. K., Satyanarayanan, M., Park, S.
Y., Okoshi, T. (2003). Tactics-based remote
execution for mobile computing. Proceedings
of the 1st International Conference on Mobile
Systems, Applications and Services MobiSys
'03, pp. 273–286. DOI:10.1145/1066116.1
066125.

4. Chen, L., Guo, K., Fan, G., Wang, C., Song,
S. (2020). Resource constrained profit
optimization method for task scheduling in
edge cloud. IEEE Access, Vol. 8, pp. 118638-
118652. DOI:10.1109/ACCESS.2020.300
0985.

5. Chun, B. G., Ihm, S., Maniatis, P., Naik, M.,
Patti, A. (2011). CloneCloud: Elastic execution
between mobile device and cloud.
Proceedings of the Sixth Conference on
Computer Systems, pp. 301–314, DOI:
10.1145/1966445.1966473.

6. Coello Coello, C. A., Lechuga, M. S. (2002).
MOPSO: A proposal for multiple objective
particle swarm optimization. Proceedings of
the 2002 Congress on Evolutionary
Computation, CEC'02, Vol. 2, pp. 1051–1056.
DOI: 10.1109/CEC.2002.1004388.

7. Cuervo, E., Balasubramanian, A., Cho, D.,
Wolman, A., Saroiu, S., Chandra, R., Bahl, P.
(2010). MAUI: Making smartphones last longer
with code offload. Proceedings of the 8th
International Conference on Mobile Systems,
Applications, and Services MobiSys '10, pp.
49–62. DOI: 10.1145/1814433.1814441.

8. Eom, H., Juste, P. St., Figueiredo, R.,
Tickoo, O., Illikkal, R., Iyer, R. (2013).
Machine Learning-Based Runtime Scheduler
for Mobile Offloading Framework. 2013
IEEE/ACM 6th International Conference on
Utility and Cloud Computing, pp. 17–25. DOI:
10.1109/UCC.2013.21.

9. Flinn, J., SoYoung Park, Satyanarayanan,
M. (2002). Balancing performance, energy,
and quality in pervasive computing.
Proceedings 22nd International Conference on

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 477–488
doi: 10.13053/CyS-27-2-3953

Robin Prakash Mathur, Manmohan Sharma486

ISSN 2007-9737

Distributed Computing Systems, pp. 217–226.
DOI: 10.1109/ICDCS.2002.1022259.

10. Garg, M., Nath, R. (2020). Autoregressive
dragonfly optimization for multi-objective task
scheduling (ado-mts) in mobile cloud
computing. Journal of Engineering Research
(Kuwait), Vol. 8, No. 3, pp. 71–90. DOI:
10.36909/JER.V8I3.7643.

11. Guo, S., Xiao, B., Yang, Y., Yang, Y. (2016).
Energy-efficient dynamic offloading and
resource scheduling in mobile cloud
computing. The 35th Annual IEEE
International Conference on Computer
Communications, pp. 1–9, DOI: 10.1109/INFO
COM.2016.7524497.

12. Kyi, H. M., Naing, T. T. (2011). Stochastic
markov model approach for efficient virtual
machines scheduling on private cloud.
International Journal on Cloud Computing:
Services and Architecture, Vol. 1, No. 3, pp. 1–
13. DOI: 10.5121/ijccsa.2011.1301.

13. Huang, D., Zhang, X., Kang, M., Luo, J.
(2010). MobiCloud: Building secure cloud
framework for mobile computing and
communication. Fifth IEEE International
Symposium on Service Oriented System. DOI:
10.1109/SOSE.2010.20.

14. Jagannathan, K., Modiano, E. (2013). The
impact of queue length information on buffer
overflow in parallel queues. IEEE Transactions
on Information Theory, Vol. 59, No. 10, pp.
6393–6404. DOI: 10.1109/TIT.2013.2268926.

15. Jiang, Q., Leung, V. C. M., Tang, H., Xi, H. S.
(2019). Adaptive scheduling of stochastic task
sequence for energy-efficient mobile cloud
computing. IEEE Systems Journal, Vol. 13, No.
3, pp. 3022–3025. DOI: 10.1109/JSYST.20
19.2922436.

16. Passino, K. M. (2002). Biomimicry of bacterial
foraging for distributed optimization and
control. IEEE Control Systems, Vol. 22, No. 3,
pp. 52–67. DOI: 10.1109/MCS.2002.1004010.

17. Kemp, R., Palmer, N., Kielmann, T., Bal, H.
(2012). Cuckoo: A Computation offloading
framework for smartphones. In: Gris, M., Yang,
G. (eds) Mobile Computing, Applications, and
Services, MobiCASE 2010, Lecture Notes of
the Institute for Computer Sciences, Social

Informatics and Telecommunications
Engineering, Vol 76,DOI: 10.1007/978-3-642-
29336-8_4.

18. Krohling, R. A. (2004). Gaussian swarm: A
novel particle swarm optimization algorithm.
IEEE Conference on Cybernetics and
Intelligent Systems, Vol. 1, pp. 372–376. DOI:
10.1109/ICCIS.2004.1460443.

19. Lin, L., Li, P., Xiong, J., Lin, M. (2018).
Distributed and application-aware task
scheduling in edge-clouds. 2018 14th
International Conference on Mobile Ad-Hoc
and Sensor Networks (MSN), pp. 165–170.
DOI: 10.1109/MSN.2018.000-1.

20. Lin Wang, Jiao, L., Kliazovich, D., Bouvry,
P. (2016). Reconciling task assignment and
scheduling in mobile edge clouds. IEEE 24th
International Conference on Network
Protocols (ICNP), pp. 1–6. DOI: 10.1109/ICN
P.2016.7785317.

21. Lin, X., Wang, Y., Xie, Q., Pedram, M. (2015).
Task scheduling with dynamic voltage and
frequency scaling for energy minimization in
the mobile cloud computing environment.
IEEE Transactions on Services Computing,
Vol. 8, No. 2, pp. 175–186. DOI:
10.1109/TSC.2014.2381227.

22. Nir, M., Matrawy, A., St-Hilaire, M. (2014). An
energy optimizing scheduler for mobile cloud
computing environments. IEEE Conference on
Computer Communications Workshops
(INFOCOM WKSHPS), pp. 404–409. DOI:
10.1109/INFCOMW.2014.6849266.

23. Oo, T., Ko, Y. B. (2019). Application-aware
task scheduling in heterogeneous edge cloud.
International Conference on Information and
Communication Technology Convergence
(ICTC), pp. 1316–1320. DOI: 10.1109/ICTC4
6691.2019.8939927.

24. Rajni, Chana, I. (2013). Bacterial foraging
based hyper-heuristic for resource scheduling
in grid computing. Future Generation
Computer Systems, Vol. 29, No. 3, pp. 751–
762. DOI: 10.1016/j.future.2012.09.005.

25. Shah-Mansouri, H., Wong, V. W. S.,
Schober, R. (2017). Joint optimal pricing and
task scheduling in mobile cloud computing
systems. IEEE Transactions on Wireless

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 477–488
doi: 10.13053/CyS-27-2-3953

A Multi-Objective Task Scheduling Scheme GMOPSO-BFO in Mobile Cloud Computing 487

ISSN 2007-9737

Communications, Vol. 16, No. 8, pp. 5218–
5232. DOI: 10.1109/TWC.2017.2707084.

26. Singh, S., Chana, I. (2016). A survey on
resource scheduling in cloud computing:
issues and challenges. Journal of Grid
Computing, Vol. 14, No. 2, pp. 217–264. DOI:
10.1007/s10723-015-9359-2.

27. Tang, C., Wei, X., Xiao, S., Chen, W., Fang,
W., Zhang, W., Hao, M. (2018). A mobile cloud
based scheduling strategy for industrial
internet of things. IEEE Access, Vol. 6, pp.
7262–7275. DOI:10.1109/ACCESS.2018.279
9548.

28. Tian, W., Gu, R., Feng, R., Liu, X., Fu, S.
(2019). A QoS-Aware workflow scheduling
method for cloudlet-based mobile cloud
computing. Proceedings EEE International
Congress on Cybermatics: 12th IEEE
International Conference on Internet of Things,
15th IEEE International Conference on Green
Computing and Communications, 12th IEEE
International Conference on Cyber, Physical
and So, pp. 164–169. DOI:0.1109/iThings/
GreenCom/CPSCom/SmartData.2019.00048.

29. Wang, D., Chen, J., Zhao, W. (2013). A task
scheduling algorithm for Hadoop platform.
Journal of Computers, Vol. 8, No. 4. DOI:
10.4304/jcp.8.4.929-936.

30. Wang, T., Wei, X., Tang, C., Fan, J. (2018).
Efficient multi-tasks scheduling algorithm in
mobile cloud computing with time constraints.
Peer-to-Peer Networking and Applications, Vol.
11, No. 4, pp. 793–807. DOI: 10.1007/s12083-
017-0561-9.

31. Wei, X., Fan, J., Lu, Z., Ding, K. (2013).
Application scheduling in mobile cloud
computing with load balancing. Journal of
Applied Mathematics, Vol. 2013. DOI:
10.1155/2013/409539.

32. Yuan Zhang, Jinyao Yan, Xiaoming Fu.
(2016). Reservation-based resource
scheduling and code partition in mobile cloud
computing. IEEE Conference on Computer
Communications Workshops (INFOCOM
WKSHPS), pp. 962–967. DOI: 10.1109/INFCO
MW.2016.7562219.

33. Zhang, J., Zhou, Z., Li, S., Gan, L., Zhang, X.,
Qi, L., Xu, X., Dou, W. (2018). Hybrid
computation offloading for smart home
automation in mobile cloud computing.
Personal and Ubiquitous Computing, Vol. 22,
No. 1, pp. 121–134. DOI: 10.1007/s00779-
017-1095-0.

34. Zhang, W., Wen, Y., Wu, D. O. (2015).
Collaborative task execution in mobile cloud
computing under a stochastic wireless channel.
IEEE Transactions on Wireless
Communications, Vol. 14, No. 1, pp. 81–93.
DOI: 10.1109/TWC.2014.2331051.

35. Zhao, T., Zhou, S., Guo, X., Niu, Z. (2017).
Tasks scheduling and resource allocation in
heterogeneous cloud for delay-bounded
mobile edge computing. IEEE International
Conference on Communications (ICC), pp. 1–
7. DOI: 10.1109/ICC.2017.7996858.

Article received on 28/04/2021; accepted on 17/04/2023.
Corresponding author is Robin Prakash Mathur.

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 477–488
doi: 10.13053/CyS-27-2-3953

Robin Prakash Mathur, Manmohan Sharma488

ISSN 2007-9737

