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Abstract. In game theory, a cooperative game (or
coalitional game) is a game with competition between
groups of players (coalitions) due to the possibility
of external enforcement of cooperative behavior (e.g.
through contract law). Those are opposed to
non-cooperative games in which there is either no
possibility to forge alliances or all agreements need
to be self-enforcing (e.g. through credible threats).
Cooperative games are often analyzed through the
framework of cooperative game theory, which focuses
on predicting which coalitions will form, the joint actions
that groups take and the resulting collective payoffs.
It is opposed to the traditional non-cooperative game
theory which focuses on predicting individual players’
actions and payoffs and analyzing Nash equilibriums.
In this work, the cooperative and non-cooperative game
problem is modeled by means of a modal logic formula.
Then, using the concept of logic implication, and
transforming this logical implication relation into a set
of clauses, a modal resolution qualitative method for
verification (satisfiability) as well as performance issues,
for some queries is applied.
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1 Introduction

In game theory, a cooperative game (or coalitional
game) is a game with competition between groups
of players (coalitions) due to the possibility of
external enforcement of cooperative behavior (e.g.
through contract law). Those are opposed to
non-cooperative games in which there is either no

possibility to forge alliances or all agreements need
to be self-enforcing (e.g. through credible threats).

In this study, cooperative games are often
analyzed through the framework of cooperative
game theory, which focuses on predicting which
coalitions will form, the joint actions that groups
take and the resulting collective payoff, while
non-cooperative games have been studied using
traditional non-cooperative game theory which
focuses on predicting individual players’ actions
and payoffs and analyzing Nash equilibriums.

This paper proposes a well defined syntax
modeling and verification analysis methodology
which consists in representing the biological
competition system as a modal logic formula.

This approach allows to represent both cases,
the cooperative and non cooperative ones, in one
formula and not as two separate formulas and,
it also models other behavioral possibilities not
always easy to represent using other techniques.
The modal logic approach introduces two new
operators that enable abstract relations like
necessarily true and possibly true to be expressed
directly, called alethic modalities, what is not
possible using first order logic.

For example, the statement: 7 is a prime num-
ber, is necessarily true always and everywhere,
in contrast, the statement the head of state of
this country is a king is possibly true, because its
truth changes from place to place and from time to
time. Other modalities that have been formalized
in modal logic include temporal modalities, or
modalities of time, deontic modalities, epistemic
modalities, and doxastic modalities.
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The main idea consists in modeling the
biological competition system by means of a
modal logic formula. Then, using the concept
of logic implication, and transforming this logical
implication relation into a set of clauses, a
modal resolution qualitative method for verification
(satisfiability) as well as performance issues, for
some queries is applied. The paper is organized
as follows. In section 2, a modal logic background
summary is given. In section 3, the modal
resolution principle for unsatisfiability, is recalled.
In section 4, the biological competition problem is
addressed. The cooperative and non cooperative
cases are considered. Finally, the paper ends with
some conclusions.

2 Modal Logic Background

This section presents a summary of modal logic
theory. The reader interested in more details is
encouraged to see [1, 2].

Definition 1 A modal language L is an infinite
collection of distinct symbols, no one of which is
properly contained in another, separated into the
following categories: parentheses, connectives,
possibility modality, necessity modality, proposition
variables Φ0 = {p1, p2, · · · } (called atoms),
contradiction( falsity), true(tautology).

Definition 2 Well-formed formulas, or formulas for
short, in modal logic are defined recursively as
follows:(i). An atom is a formula, ⊥ (false is a
formula), T (true is a formula) (ii). If F and G
are formulas then, ∼ (F ), (F ∨ G), (F ∧ G),
(F ↔ G), �F , �F , are formulas. �A ≡∼ � ∼ A.
Formulas are generated only by a finite number
of applications of (i) and (ii), therefore the set of
welled formed formulas is enumerable infinite.

Remark 3 It is important to underline the unique
readability of the formulas which is secured by the
assumption that the operators are one to one.

Definition 4 A Kripke frame (frame) F is a pair
(W ,R) in which W is a set of worlds (time, states,
etc), and R ⊆ W ×W is a binary relation over W .

Definition 5 A Kripke model (model) M over
frame F is a triple (F ,π) = (W,R,π) where π :
Φ0 → 2W the set of worlds where each element of
Φ0 is true is an assignment or interpretation.

Definition 6 Given any model M, a world wεW ,
the notion of true at w is defined as follows:

— M,w |= pn ⇔ wεπ(pn),n = 1, 2, · · · ,

— M,w |=∼ F ⇔ w 2 F ,

— M,w |= F ∧G⇔ w |= F and w |= G,

— M,w |= F ∨G⇔ w |= F or w |= G,

— M,w |= F → G⇔ if w |= F then w |= G,

— M,w |= F ≡ G⇔ w |= F iff w |= G,

— M,w |= �F ⇔ there exists uεW such that
(w,u)εR,M,u |= F ,

— M,w |= �F ⇔ for all uεW such that
(w,u)εR,M,u |= F .

Definition 7 A formula F is consistent (satisfiable,
true at w) in a modelM in a world wεW iffM,w |=
F , then we say that M is a. model for F . If this
happens for all worlds wεW then we say it is true.

Definition 8 A formula F is inconsistent (unsatis-
fiable) in a model M iff M,w 2 F for every world
wεW , then we say thatM is a countermodel for F .

Definition 9 A formula F is valid in a class of
models CM if and only if it is true for all models
in the class. This will be denoted by |=CM F .

Definition 10 A formula F is valid iff it is valid for
every class of models CM. This will be denoted by
|= F .
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Definition 11 A formula G is a logical implication
of formulas F1,F2, . . . ,Fn if and only if for every
modelM, that makes F1,F2, . . . ,Fn true, G is also
true inM.

The following characterization of logical implication
plays a very important role as will be shown in the
rest of the paper.

Theorem 12 Given formulas F1,F2, . . . ,Fn,G, G
is a logical implication of F1,F2, . . . ,Fn if and only
if the formula ((F1 ∧ F2 ∧ . . . ,∧Fn) → G) is valid
in a class of models if and only if the formula
(F1 ∧ F2 ∧ . . . ∧ Fn∧ ∼ (G)) is unsatisfiable.

Proof. Setting the class of models equal to all the
models that make F1 ∧ F2 ∧ . . . ,∧Fn true. The first
iff follows directly by the definition of validity in a
class of models, and logical implication.

For the second one, since F1 ∧ F2 ∧ . . . ,∧Fn →
G is valid in a class of models, every model that
makes F1 ∧ F2 ∧ . . . ,∧Fn true does not satisfy ∼
(G), therefore (F1∧F2∧. . .∧Fn∧ ∼ (G)) can not be
satisfied. Reversing this last argument we obtain
the last implication.

Next, given a class of models CM, we define
the syntactic mechanisms capable of generating
the formulas valid on CM.

Axioms:

(1). All instances of propositional logic tautologies,
(2). �(F → G)→ �F → �G.

Rules of inference:

(1). Modus ponens:

F ,F → G

G
,

(2). Necessitation
F

�G
.

We write ` F if F can be deduced from the axioms
and the inference rules.

Theorem 13 (Completeness [1]) A formula F is
valid iff it is provable i.e., |= F ⇔` F ’.

Definition 14 A formula F in modal logic is said
to be in disjunctive normal form normal (DNF)
if and only if is a disjunction (perhaps with zero
disjunct) of the form F == L1 ∨ L2 ∨ · · ·Ln ∨
�D1 ∨ �D2 ∨ · · ·�Dm ∨ �H1 ∨ �H2 ∨ · · · � Hj ,
where each Li is an atom or its negation, each Di

is a DNF, and each Hi is a CNF (next defined).
A formula G is said to be in conjunctive normal
form (CNF) if it is a conjunction of Fi DNF i.e.,
G = F1 ∧ F2 ∧ · · · ∧ Fn which will be denoted by
the set G = {F1,F2, . . . ,Fn}

Definition 15 A formula in DNF is called a clause.
A clause with only one element is called a unit
clause. A clause with zero disjunct is empty and
it will be denoted by the ⊥ symbol. Since the
empty clause has no literal that can be satisfied by
a model, the empty clause is always false.

Definition 16 The modal degree of a formula F
denoted by d(F ) is recursively defined as follows:

— if F is a literal then its degree is zero,

— d(F 4G) = max(d(F ), d(G)), where4 is ∧ or
∨,

— d(∼ F )) = d(F ),

— d(∇F ) = d(F ) + 1, where ∇ stands for � or �.

Given a formula F , the following inductive
procedure transforms F into a CNF in such a way
that the original formula is equal to its CNF form
therefore satisfying validity:

1. Using axioms 1 and 2, the definition ∼ �F ≡
� ∼ F and the inference rules, eliminate
all propositional other than ∧,∨,∼ and move
negations inside so that they are immediately
before propositional variables,

2. If d(F ) = 0 then apply the propositional
procedure [3],
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3. If F = �F1 with F1 in CNF, apply the theorem
�(F ∧ G) ≡ �F ∧ �G to distribute the �
operator (this is proved with the aid of axiom
2).

4. If F = �F1 with F1 in CNF, then do not do
anything.

5. Otherwise, we have a combination of different
formulas which can be handled using the
preceding rules.

Therefore, we have proved the following result.

Theorem 17 Let S be a set of clauses that
represents a formula F in its CNF. Then F is
unsatisfiable if and only if S is unsatisfiable.

3 The Modal Logic Resolution Principle

We shall next present the resolution principle
inspired by the propositional logic resolution
principle introduced by Robinson (see [3], the
references quoted therein, and [4]). It can be
applied directly to any set S of clauses to test the
unsatisfiability of S.

Resolution is a decidable, sound and complete
proof system i.e., a formula in clausal form is
unsatisfiable if and only if there exists an algorithm
reporting that it is unsatisfiable. Therefore
it provides a consistent methodology free of
contradictions. It is composed of rules for
computing resolvents, simplification rules and rules
of inference. The first ones compute resolvents,
simplified by the simplification rules, and then
inferred by the rules of inference.

Definition 18 [4] Let Σ(A,B)→ C, and Γ(A)→ C
be two relations on clauses defined by the following
formal system:

Axioms:

(1). Σ(p,∼ p)→⊥,
(2). Σ(⊥,A)→⊥.

Σ rules:

∨ − rule :
Σ(A,B)→ C

Σ(A ∨D1,B ∨D2)→ C ∨D1 ∨D2
,

� � −rule :
Σ(A,B)→ C

Σ(�A, �(B,E))→ �(B,C,E)
,

��− rule :
Σ(A,B)→ C

Σ(�A,�B)→ �C
.

Γ rules:

� − rule 1 :
Σ(A,B)→ C

Γ(�(A,B,F ))→ �(A,B,C,F )
,

� − rule 2 :
Γ(A)→ B

Γ(�(A,F ))→ �(B,A,F )
,

∨ − rule :
Γ(A)→ B

Γ(A ∨ C)→ B ∨ C
,

�− rule :
Γ(A)→ B

Γ(�A)→ �B
,

where A,B,C,D,D1,D2, denote general clauses,
E,F denote sets (conjunctions) of clauses, and
(A < E) denotes the result of appending the
clauses A to the set E.

Simplification rules:

The relation ’A can be simplified in B’ denoted
A ' B is the least congruence relation containing:
(S1) � ⊥'⊥, (S2) ⊥ ∨D ' D, (S3) ⊥,E '⊥,
(S4) A ∨ A ∨ D ' A ∨ D. The simplified formula
obtained is called the normal form of the original
formula and is the one to be considered when
computing resolvents.

Inference rules:

(R1).
C

D
if Γ(C)→ D,

(R2).
C1 C2

D
if Σ(C1,C2)→ D.

where C,C1,C2,D are general clauses.
A deduction of a clauseD from a set S of clauses

can be seen as a tree whose root is D, whose
leaves are clauses of S, and every internal node
C has sons A and B (respectively A) iff the rule R2
(respectively Rl) can be applied with premises A
and B (respectively A) and conclusion C. The size
of a deduction is the number of nodes of this tree.
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We say that D is a-consequence of S iff there is a
deduction of D from S denoted by S ` D. These
definitions and notations are extended to sets of
consequences: if S′ is a set of clauses, S ` S′

iff
S ` D for every DεS

′
. A deduction of ⊥ from S is

a refutation of S.

Theorem 19 [4] The resolution proof system is
decidable.

The main two results of this subsection: the
completeness theorem for the resolution proof
system, and that proofs in the resolution proof
system are actually proofs in our modal logic
axiomatic system are next presented.

Theorem 20 [4] A set S of clauses is unsatisfiable
if and only if there is a deduction of the empty
clause ⊥ from S.

Theorem 21 [4] If there exists a deduction D from
S in the resolution proof system then there is a
deduction D from S in our modal logic axiomatic
system.

4 The Cooperative and
Non-Cooperative Game Problem

The biological competition system behavior is
described as follows:

1. Propositional variables: S: resources are
safe, D: the resources are in danger, B:
the resources are being eaten, I1, I2: the
organisms are inactive, L1,L2: the organisms
are in search for a resource, CL1,CL2: the
organisms continue searching for a resource,
A1,A2: the organisms attack the resource,
F1,F2: the organisms have finished eating
the resource, P1,P2: the organisms die, S1:
organism one is stronger than organism two,
S2: organism two is stronger than organism
one ; E1: organism one eliminates organism
two, E2: organism two eliminates organism
one;

2. Rules of Inference: (a) if S and L1 or L2 then
CL1 or CL2, (b) if S and CL1 or CL2 then �P1

or �P2, (c) if S and CL1 or CL2 and �P1 or
�P2 then P1 or P2 , (d) if D and ((L1 or CL1)
and not(L2 or CL2)) then A1 and not(A2), (e) if
D and (not(L1 or CL1) and (L2 or CL2)) then
not(A1) and A2, (f) if A1 and not(A2) then B1

and not(B2),(g) if not(A1) and A2 then not(B1)
and B2, (h) if B1 and not(B2) then F1 and
not(F2), (i) if not(B1) and B2 then not(F1) and
F2, (j) if F1 and not(F2) then I1 and not(I2),
(k) if not(F1) and F2 then not(I1) and I2,(l) if I1
and not(I2) then L1 and not(L2), (m) if not(I1)
and I2 then not(L1) and L2, (n) if D and ((L1 or
CL1) and (L2 or CL2)) and �S1 then A1 and
E1, (o) if D and ((L1 or CL1) and (L2 or CL2))
and �S2 then A2 and E2, (p) if E1 then not(L2

or CL2) and not A2 and not B2 and not F2 and
not I2, (q) if E2 then not(L1 or CL1) and not A1

and not B1 and not F1 and not I1,(r) if D then
�A1 and �A2, (s) if �A1 and �A2 then �A1 and
�A2, (t) if �A1 and �S1 then A1 and E1, (u) if
�A2 and �S2 then A2 and E2, (v) if �A1 and
�S2 then A2 and E2, (w) if �A2 and �S1 then
A1 and E1.

Remark 22 It important to underline that the
inference rules express the cooperative and non
cooperative behavior of the players. In the
cooperative case one organism takes control over
the resource while the other one stays apart. This
cooperative competitive behavior differs from the
strictly competitive where there exists just one of
the organisms (the winner) who takes completely
control of the resource.

Remark 23 The main idea consists of: the biolog-
ical competition system behavior is expressed by
a modal logic formula, some query is expressed
as an additional formula. The query is assumed to
be a logical implication of the biological competition
formula (see theorem 12). Then, transforming this
logical implication relation into a set of clauses by
using the techniques given in section 3, its validity
can be checked. It is important to point out that
other type of behaviors can be incorporated in to
the model by the modeler, making it as close to
reality as needed.
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The formula that models the biological compe-
tition system behavior turns out to be Equation 1:
S ∧ L1 ∧ L2 → CL1 ∧ CL2 ∧ [S ∧ CL1 ∧ CL2 →
�P1 ∧ �P2] ∧ [D ∧ (L1 ∨ CL1)∧ ∼ (L2 ∨ CL2) →
A1∧ ∼ A2] ∧ [D∧ ∼ (L1 ∨ CL1) ∧ (L2 ∨ CL2) →∼
A1∧A2]∧[A1∧ ∼ A2 →B1∧ ∼ B2]∧[∼ A1∧A2 →∼
B1 ∧ B2] ∧ [(B1∧ ∼ B2 → F1∧ ∼ F2)] ∧ [∼
B1∧B2 →∼ F1∧F2]∧ [F1∧ ∼ F2 → I1∧ ∼ I2)]∧ [∼
F1 ∧ F2 →∼ I1 ∧ I2] ∧ [I1∧ ∼ I2 → L1∧ ∼ L2] ∧ [∼
I1∧I2 →∼ L1∧L2]∧ [D∧(L1∨CL1)∧(L2∨CL2)∧
�S1 → A1 ∧E1] ∧ [D ∧ (L1 ∨ CL1) ∧ (L2 ∨ CL2) ∧
�S2 → A2 ∧ E2] [E1 →∼ (L2 ∨ CL2)∧ ∼ A2∧ ∼
B2∧ ∼ F2∧ ∼ I2], [E2 →∼ (L1 ∨ CL1)∧ ∼ A1∧ ∼
B1∧ ∼ F1∧ ∼ I1], [D → �A1 ∧ �A2], [�A1 ∧ �A2 →
�A1∧�A2], [�A1∧�S1 → A1∧E1], [�A2∧�S2 →
A2 ∧ E2], [�A1 ∧ �S2 → A2 ∧ E2], [�A2 ∧ �S1 →
A1 ∧ E1].

We are interested in verifying, the following
statements:
(S1) Claim: In the cooperative case, we want to
verify that in the case when one of the organisms
takes control over the resource the other one stays
apart i.e., ifD and ((L1 or CL1) and not(L2 or CL2))
then B1 and not(B2). Specifically, we want to know
if the following formula is a logical implication of
equation 1: D ∧ (L1 ∨ CL1)∧ ∼ (L2 ∨ CL2) →
B1∧ ∼ B2.

The set of clauses for this case is given by:
S = {(∼ S∨ ∼ L1∨ ∼ L2 ∨ CL1), (∼ S∨ ∼ L1∨ ∼
L2 ∨ CL2), (∼ S∨ ∼ CL1∨ ∼ CL2 ∨ �P1), (∼ S∨ ∼
CL1∨ ∼ CL2 ∨ �P2), (∼ D∨ ∼ L1 ∨ L2 ∨ CL2 ∨
A1), (∼ D∨ ∼ L1 ∨ L2 ∨ CL2∨ ∼ A2), (∼ D∨ ∼
CL1∨L2∨CL2∨A1), (∼ D∨ ∼ CL1∨L2∨CL2∨ ∼
A2), (∼ D∨ ∼ L2∨L1∨CL1∨ ∼ A1), (∼ D∨L1∨ ∼
L2 ∨ CL1 ∨ A2), (∼ D ∨ CL1 ∨ L1∨ ∼ CL2∨ ∼
A1), (∼ D ∨CL1 ∨L1∨ ∼ CL2 ∨A2), (∼ A1 ∨A2 ∨
B1), (∼ A1 ∨ A2∨ ∼ B2), (∼ A2 ∨ A1∨ ∼ B1), (∼
A2 ∨ A1 ∨ B2), (∼ B1 ∨ B2 ∨ F1), (∼ B1 ∨ B2∨ ∼
F2), (∼ B2 ∨ B1∨ ∼ F1), (∼ B2 ∨ B1 ∨ F2), (∼
F1 ∨ F2 ∨ I1), (∼ F1 ∨ F2∨ ∼ I2), (∼ F2 ∨ F1∨ ∼
I1), (∼ F2 ∨F1 ∨ I2), (∼ I1 ∨ I2 ∨L1), (∼ I1 ∨ I2∨ ∼
L2), (∼ I2 ∨ I1 ∨ L1), (∼ I2 ∨ I1 ∨ L2), (∼ D∨ ∼
L1 ∨ L2 ∨ CL2 ∨ � ∼ S1 ∨ A1), (∼ D∨ ∼ L1 ∨ L2 ∨
CL2∨� ∼ S1∨E1), (∼ D∨ ∼ CL1∨L2∨CL2∨� ∼
S1∨A1), (∼ D∨ ∼ CL1∨L2∨CL2∨� ∼ S1∨E1), (∼
D∨ ∼ L1 ∨ L2 ∨ CL2 ∨ � ∼ S2 ∨ A2), (∼ D∨ ∼
L1 ∨L2 ∨CL2 ∨� ∼ S2 ∨E2), (∼ D∨ ∼ CL1 ∨L2 ∨
CL2∨� ∼ S2∨A2), (∼ D∨ ∼ CL1∨L2∨CL2∨� ∼

S2∨E2), (∼ E1∨ ∼ L2), (∼ E1∨ ∼ CL2), (∼ E1∨ ∼
A2), (∼ E1∨ ∼ B2), (∼ E1∨ ∼ F2), (∼ E1∨ ∼
I2), (∼ E2∨ ∼ L1), (∼ E2∨ ∼ CL1), (∼ E2∨ ∼
A1), (∼ E2∨ ∼ B1), (∼ E2∨ ∼ F1), (∼ E2∨ ∼
I1), (∼ D ∨ �A1), (∼ D ∨ �A2), (� ∼ A1 ∨ � ∼
A2∨�A1), (� ∼ A1∨� ∼ A2∨�A2), (� ∼ A1∨� ∼
S1 ∨ A1), (� ∼ A1 ∨ � ∼ S1 ∨ E1), (� ∼ A2 ∨ � ∼
S2 ∨ A2), (� ∼ A2 ∨ � ∼ S2 ∨ E2), (� ∼ A1 ∨ � ∼
S2 ∨ A2), (� ∼ A1 ∨ � ∼ S2 ∨ E2), (� ∼ A2 ∨ � ∼
S1∨A1), (� ∼ A2∨� ∼ S1∨E1), (D), (L1∨CL1), (∼
L2), (∼ CL2), (∼ B1 ∨B2)}.

Then applying the Σ ∨ rule, a resolution
refutation proof for S, is as follows:
(a) (∼ A1∨A2∨B1)(∼ B1∨B2)→ (∼ A1∨A2∨B2).
(b) (∼ A1 ∨ A2 ∨ B2)(∼ A1 ∨ A2∨ ∼ B2) → (∼
A1 ∨A2).
(c) (∼ D∨ ∼ CL1 ∨ L2 ∨ CL2∨ ∼ A2)(D)(∼ L2)(∼
CL2)→ (∼ CL1∨ ∼ A2).
(d) (∼ D∨ ∼ L1 ∨ L2 ∨ CL2∨ ∼ A2)(D)(∼ L2)(∼
CL2)→ (∼ L1∨ ∼ A2).
(e) (∼ L1∨ ∼ A2)(L1 ∨ CL1)→ (CL1∨ ∼ A2).
(f) (∼ CL1∨ ∼ A2)(CL1∨ ∼ A2)→ (∼ A2).
(g) (∼ D∨ ∼ CL1 ∨ L2 ∨ CL2 ∨ A1)(D)(∼ L2)(∼
CL2)→ (∼ CL1 ∨A1).
(h) (∼ D∨ ∼ L1 ∨ L2 ∨ CL2 ∨ A1)(D)(∼ L2)(∼
CL2)→ (∼ L1 ∨A1).
(i) (∼ L1 ∨A1)(L1 ∨ CL1)→ (CL1 ∨A1).
(j) (∼ CL1 ∨A1)(CL1 ∨A1)→ A1.
Now, from (b) and (j) we get:
(k) (∼ A1 ∨A2)(A1)→ A2.
Therefore, from the conclusion of (f) and (k), we
get a proof of S i.e., ⊥.

(S2) Claim: For the non cooperative case, we want
to verify that when the resource is in danger and
there is a possibility of attack by both organisms,
the stronger organism is the one who takes control
over the resource, and not being this enough, he
decides to eliminate his opponent. Specifically, we
want to know if the following formula is a logical
implication of equation 1: D ∧ �A1 ∧ �A2 ∧ �S1 →
A1 ∧ E1.

The set of clauses for this case is given
by: S = {(∼ S∨ ∼ L1∨ ∼ L2 ∨ CL1), (∼
S∨ ∼ L1∨ ∼ L2 ∨ CL2), (∼ S∨ ∼ CL1∨ ∼
CL2∨�P1), (∼ S∨ ∼ CL1∨ ∼ CL2∨�P2), (∼ D∨ ∼
L1 ∨ L2 ∨ CL2 ∨ A1), (∼ D∨ ∼ L1 ∨ L2 ∨ CL2∨ ∼
A2), (∼ D∨ ∼ CL1 ∨ L2 ∨ CL2 ∨ A1), (∼ D∨ ∼
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CL1∨L2∨CL2∨ ∼ A2), (∼ D∨ ∼ L2∨L1∨CL1∨ ∼
A1), (∼ D ∨ L1∨ ∼ L2 ∨ CL1 ∨ A2), (∼
D∨CL1∨L1∨ ∼ CL2∨ ∼ A1), (∼ D∨CL1∨L1∨ ∼
CL2 ∨ A2), (∼ A1 ∨ A2 ∨ B1), (∼ A1 ∨ A2∨ ∼
B2), (∼ A2 ∨ A1∨ ∼ B1), (∼ A2 ∨ A1 ∨ B2), (∼
B1 ∨ B2 ∨ F1), (∼ B1 ∨ B2∨ ∼ F2), (∼ B2 ∨ B1∨ ∼
F1), (∼ B2∨B1∨F2), (∼ F1∨F2∨I1), (∼ F1∨F2∨ ∼
I2), (∼ F2 ∨ F1∨ ∼ I1), (∼ F2 ∨ F1 ∨ I2), (∼
I1 ∨ I2 ∨L1), (∼ I1 ∨ I2∨ ∼ L2), (∼ I2 ∨ I1 ∨L1), (∼
I2 ∨ I1 ∨ L2), (∼ D∨ ∼ L1 ∨ L2 ∨ CL2 ∨ � ∼
S1∨A1), (∼ D∨ ∼ L1∨L2∨CL2∨� ∼ S1∨E1), (∼
D∨ ∼ CL1 ∨ L2 ∨ CL2 ∨ � ∼ S1 ∨ A1), (∼ D∨ ∼
CL1 ∨L2 ∨CL2 ∨� ∼ S1 ∨E1), (∼ D∨ ∼ L1 ∨L2 ∨
CL2 ∨ � ∼ S2 ∨A2), (∼ D∨ ∼ L1 ∨ L2 ∨CL2 ∨ � ∼
S2∨E2), (∼ D∨ ∼ CL1∨L2∨CL2∨� ∼ S2∨A2), (∼
D∨ ∼ CL1 ∨ L2 ∨ CL2 ∨ � ∼ S2 ∨ E2), (∼ E1∨ ∼
L2), (∼ E1∨ ∼ CL2), (∼ E1∨ ∼ A2), (∼ E1∨ ∼
B2), (∼ E1∨ ∼ F2), (∼ E1∨ ∼ I2), (∼ E2∨ ∼
L1), (∼ E2∨ ∼ CL1), (∼ E2∨ ∼ A1), (∼ E2∨ ∼
B1), (∼ E2∨ ∼ F1), (∼ E2∨ ∼ I1), (∼ D ∨ �A1), (∼
D∨�A2), (� ∼ A1∨� ∼ A2∨�A1), (� ∼ A1∨� ∼
A2 ∨ �A2), (� ∼ A1 ∨ � ∼ S1 ∨ A1), (� ∼ A1 ∨ � ∼
S1 ∨ E1), (� ∼ A2 ∨ � ∼ S2 ∨ A2), (� ∼ A2 ∨ � ∼
S2 ∨ E2), (� ∼ A1 ∨ � ∼ S2 ∨ A2), (� ∼ A1 ∨ � ∼
S2 ∨ E2), (� ∼ A2 ∨ � ∼ S1 ∨ A1), (� ∼ A2 ∨ � ∼
S1 ∨ E1), (D), (�A1), (�A2), (�S1), (∼ A1∨ ∼ E1)}.

Then applying the Σ ∨ rule, the Σ � � rule
and the simplifications rules, a resolution refutation
proof for S, is as follows:
(a) (� ∼ A1∨� ∼ A2∨�A1)(�A1)(�A2)→ (�A1).
(b) (� ∼ A1 ∨ � ∼ S1 ∨A1)(�S1)→ (� ∼ A1 ∨A1).
(c) (� ∼ A1 ∨A1)(�A1)→ (A1).
(d) (∼ A1∨ ∼ E1)(A1)→ (∼ E1).
(e) (� ∼ A1 ∨ � ∼ S1 ∨ E1)(�S1)→ (� ∼ A1 ∨ E1).

(f) (� ∼ A1 ∨ E1)(�A1)→ (E1).

Therefore, from the conclusion of (d) and (f),
we get a proof of S, i.e., ⊥.

5 Conclusions

The main contribution of the paper consists in the
study of cooperative and non- games by means of
a formal reasoning deductive methodology based
on modal logic theory. The cooperative and non
cooperative cases were addressed. Verification
(validity) as well as performance issues, for some
queries were addressed.
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