
Actions Selection during a Mobile Robot Navigation

for the Autonomous Recharging Problem

Elizabeth López-Lozada, Elsa Rubio Espino, Juan Humberto Sossa-Azuela,
Víctor Hugo Ponce-Ponce

Instituto Politécnico Nacional,
Centro de Investigación en Computación,

Mexico

{elopez2020, erubio, vponce}@cic.ipn.mx, humbertosossa@gmail.com

Abstract.The use of mobile robots has increased for its

application in various areas such as supply chains,

factories, cleaning, disinfection, medical assistance,

search, and exploration. It is a fact that most of these

robots, if not all, use batteries to power themselves.

During a mobile robot task execution, the battery's

electric charge tends to deplete as a function of the

energy load demands, which would cause the robot to

shut down if the discharge is critical, leaving its task

inconclusive. Therefore, it is of utmost importance that

the robot learns when to charge its batteries, avoiding

turning off. This work shows a reactive navigation

scheme for a mobile robot that integrates a module for

battery-level monitoring. A robot moves from a starting

point to a destination according to the battery level.

During the navigation, the robot decides when to change

the course toward a battery charging station. This paper

presents a rules-based reinforcement learning

architecture with three entries; these entries correspond

to the robot's battery level, the distance to the

destination, and the distance to the battery charging

station. According to the simulations, the robot learns to

select an appropriate action to accomplish its task.

Keywords. Mobile robot, navigation, path-planning,

fuzzy Q-learning, artificial potential fields, reinforcement

learning, autonomous recharging problem.

1 Introduction

Mobile robot navigation includes all the actions that
lead a robot to move from its current position to its
destination [2, 5]. Path planning is an essential
navigation task that generates a collision-free
trajectory that a robot follows during its movement

[5]. The fuzzy inference systems (FIS) [7, 15], the
artificial potential fields (APF) [9], reinforcement
learning (RL) [6, 11, 18], and the neuronal
networks (NN) [10, 19] are some of the considered
approaches for robot navigation demonstrating
advantages and disadvantages.

An attractive path planning method is the APF,
thanks to its simplicity and low computational cost
demands [9].

Researchers rely on and use these methods [1]
to complete the navigation tasks for path planning
and obstacle avoidance. However, to prevent a
sudden robot's shutdown, it is also essential to
propose a solution considering that the battery
charge level tends to run out during regular
execution tasks. This issue is known as the
autonomous recharging problem (ARP) [4].

The ARP arises due to the importance of mobile
robots to have autonomy and self-sufficiency when
using batteries. Hence, suitable strategies must be
chosen to allow these robots to function for as long
as possible.

The more straightforward approach consists of
placing a threshold allowing the robot's task
execution while the battery level is above the
threshold. If the battery level is below the
threshold, the robot leaves its programmed task to
recharge the batteries.

However, this strategy induces inflexible and
inefficient robot behavior [17]. With this in mind, the
following question arises, how could a robot learn
to select actions to complete its task autonomously
and at the same time to cope with the ARP? One
of several solutions consists of making the robot
learn based on tests and errors.

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 683–693
doi: 10.13053/CyS-25-4-4050

ISSN 2007-9737

To this end, this paper presents a learning
technique for the robot's action selection combined
with a reinforcement learning paradigm.

The proposed navigation technique consists of
a module for path planning using APF and a
second module for decision-making, including an
architecture based on Fuzzy Q-Learning (FQL) to
select when to go to a charging station.

The rest of the paper is organized as follows.
Section 2 describes the related works, while
section 3 is focused on presenting the theoretical
concepts related to the proposed methods. Section
4 is oriented to define the problem statement, while
section 5 is focused on explaining the proposal.
Section 6 shows the simulation results, while
section 7 is dedicated to present the discussions.
Finally, in section 8, the conclusions
are enumerated.

2 Related Work

Among the sub-tasks that are part of any mobile

robot navigation system are obstacle avoidance,

path planning, and decision-making. In this work,

we focus on decision-making. Therefore, the

related work shows below talks about the ARP. If

the robot does not recharge its batteries, it could

shut down before completing its tasks.

A simple strategy to solve this problem is to
place a threshold that makes the robot a little
flexible. As in Rappaport's work, some approaches
use this philosophy [13] that selects an adaptative
threshold to choose a charging station to go to
when the battery level is below that threshold. On
the other hand, Cheng [3] proposes a strategy
based on an algorithm to program the minimum
time of meetings between mobile robots and
mobile chargers.

This strategy consists of having a series of
mobile battery recharging stations, which the
robots look for every so often to recharge their
batteries. Similarly, Ma [12] proposes to work with
time windows and focuses on the recharging of
autonomous vehicles. The proposal considers the
charging station's capacity and the delays in the
queue for recharging vehicles. Meanwhile, Tomy
[17] also manages a recharge program, and he
uses Markov models, which provides his proposal
with a dynamic behavior based on the environment

and a reward system. Another strategy used to
solve the problem is a rule-based strategy thanks
to a FIS, which allows the robot to have flexibility
according to the inputs, as can be seen in Lucca's
[4] work.

A point noted in previous work is the lack of
learning algorithms that allow robotic systems to
learn when to recharge their batteries. For that
reason, this work faces that problem with the use
of reinforcement learning.

3 Preliminaries

This section summarizes the methods analyzed
and used in this work for path planning; first, the
APF method is described and ends with the FQL
method description used in the decision-
making module.

3.1 The Artificial Potential Field Method

This method is based on attractive and repulsive
forces that are used to reach a goal and avoid
obstacles. Equation (1) computes the attractive
force, where 𝜉 is the attractive factor, 𝜌(𝑞, 𝑔) is the
euclidean distance between the robot and the goal,
𝑞 is the robot position, and 𝑔 its goal position:

𝐹𝑎𝑡𝑡𝑟(𝑞, 𝑔) = −𝜉𝜌(𝑞, 𝑔). (1)

The expressions shown in equation (2) are
used to compute the repulsive force, where η is the
repulsive factor,𝑝𝑜𝑗 is the obstacle radius threshold,

and 𝑑 is the distance between the robot and

obstacle 𝑗:

𝐹𝑟𝑒𝑝(𝑞) =

{

 η(

1

d
−
1

ρ𝑜𝑗
)d, 𝑖𝑓 𝑑 < ρ𝑜𝑗

η(−
1

ρ𝑜𝑗
) , 𝑖𝑓 𝑑 = ρ𝑜𝑗

 0 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒.

 (2)

Finally, the resultant force (3) is the sum of
attractive and repulsive forces:

𝐹𝑟𝑒𝑠 = 𝐹𝑎𝑡𝑡𝑟(𝑞, 𝑔) + 𝐹𝑟𝑒𝑝(𝑞) . (3)

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 683–693
doi: 10.13053/CyS-25-4-4050

Elizabeth López-Lozada, Elsa Rubio Espino, Juan Humberto Sossa-Azuela, Víctor Hugo Ponce-Ponce684

ISSN 2007-9737

3.2 Fuzzy Q-Learning Method

FQL method [8] is an extension of the FIS. The
method starts with the fuzzification of the inputs to
obtain the fuzzy values identifying the system's
current fuzzy rule 𝒮𝑖 , which corresponds to the
agent state. Each rule has a numerical value 𝛼𝑖
associated, that is called the rule's strength, where
𝒾 is the number of the rule. This 𝛼𝑖 defines the
degree to which the agent is in a particular state
allowing the agent to choose an action from the set
of actions 𝒜 , the 𝒿-th possible action in the 𝒾-th

rule is called 𝑎(𝒾, 𝒿) and its corresponding q-value

is 𝑞(𝒾, 𝒿). The formed FIS is in the following way:

If 𝑥 is 𝒮𝑖 then 𝑎(𝒾, 𝒿) with 𝑞(𝒾, 𝒿) or ... or 𝑎(𝒾, 𝒿)

with 𝑞(𝒾, 𝒿).

The learning agent's goal is to find the action
with the best q-value, which is stored on a table

containing 𝒾 × 𝒿 q-values. The actions are selected
with a learning policy based on the quality of a
state-action pair, which is computed via
equation (4):

𝑉(𝑥, 𝑎) =
∑ 𝛼𝑖(𝑥) × 𝑞(𝑖, 𝑖

∗)𝑁
𝑖=1

∑ 𝛼𝑖(𝑥)
𝑁
𝑖=1

, (4)

where 𝓍 is the input value in state 𝑖 , 𝑎 is the

inferred action, and 𝒾∗ corresponds to the optimal

action index, which is the action index with the

highest q-value. Furthermore, the equation 𝜖 =
10

10+Τ
 is the exploration-exploitation probability

assumed in this work, where 𝛵 corresponds to the

step number.

The inferred action 𝑎(𝑥) and the q-value

𝑄(𝑥, 𝑎) are computed given the equation in (5) and

(6), respectively:

𝑎(𝑥) =
∑ 𝛼𝑖 × 𝑎(𝑖, 𝑖

𝑜)𝑁
𝑖=1

∑ 𝛼𝑖(𝑥)
𝑁
𝑖=1

 , (5)

𝑄(𝑥, 𝑎) =
∑ 𝛼𝑖 × 𝑞(𝑖, 𝑖

𝑜)𝑁
𝑖=1

∑ 𝛼𝑖(𝑥)
𝑁
𝑖=1

 ,
(6)

where 𝑖𝑜 is the inferred action index, and 𝑁 is a

positive number 𝑁 ∈ 𝑁+, that corresponds to the

total number of the rules.
On the other hand, to update the q-value, in the

table, is used an eligibility value 𝑒(𝑖, 𝑗).

That is rendered from an array of 𝑖 × 𝑗 values;
usually, this array is initialized with zeros. The
𝑒(𝑖, 𝑗) value is updated employing equation (7),

where 𝑗 is the selected action, γ is the discount

factor 0 ≤ γ ≤ 1, and 𝜆 is the decay parameter 𝜆 ∈
[0,1):

𝑒(𝑖, 𝑗) = {
𝜆𝛾𝑒(𝑖, 𝑗) +

𝛼𝑖(𝑥)

∑ 𝛼𝑖(𝑥)
𝑁
𝑖=1

, 𝑖𝑓 𝑗 = 𝑖𝑜

 𝜆𝛾𝑒(𝑖, 𝑗) , 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒,

 (7)

Δ𝑞(𝑖, 𝑗) = 𝜖 × Δ𝑄𝑟 × 𝑒(𝑖, 𝑗) . (8)

Finally, equation (8) allows updating the q-

value, where 𝜖 is a small number , and Δ𝑄

is computed by means of equation (9):

Δ𝑄 = 𝑟 + 𝛾𝑉(𝑥, 𝑎) − 𝑄(𝑥, 𝑎), (9)

where 𝑟 corresponds to the reward.

4 Problem Statement

The problem addressed in this paper is focused on

learning to select between moving on to the

destination or going to recharge the batteries. For

this purpose, a robot is considered in a static

environment with twenty scattered obstacles in a

10 × 10 grid. The robot must move without collision

from a starting point to a destination. According to

its battery level, the robot must decide whether to

continue to the destination or detour to recharge it.

The robot can move forward, backward, left or

right.

Four main elements are considered in this
research: (1) A robot denoted as 𝑅, (2) 𝑁
obstacles denoted as 𝑂 = [𝑂1, 𝑂2, . . . , 𝑂𝑁], and 𝑁

∈ [1,20], (3) The destination denoted as 𝐷, and

(4) A battery charging station denoted as 𝐵𝐶𝑆.

The robot can execute two actions denoted as
𝐴 = [𝑎1, 𝑎2], where 𝑎1 corresponds to the action

go to 𝐷, and 𝑎2 is going to the 𝐵𝐶𝑆.

Elements 2, 3, and 4 are static, where the 𝑂,𝐷,
and 𝐵𝐶𝑆 do not change their position concerning

time. The robot uses a coordinate map of 10 × 10
dimensions. At the beginning, the robot knows the
position of 𝐷 and 𝐵𝐶𝑆 and uses a path planning

module to generate a route to 𝐷 and other to 𝐵𝐶𝑆.

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 683–693
doi: 10.13053/CyS-25-4-4050

Actions Selection during a Mobile Robot Navigation for the Autonomous Recharging Problem 685

ISSN 2007-9737

Figure 1 shows the discharge curve with the
voltage levels and percentage of charge of a Li-Po
11.1v battery for the robot battery simulation [15].

The equation 𝐵𝐿(𝑡) = −1.8245𝑡 + 100 ,

where 𝐵𝐿 corresponds to the battery level, serves
to approximate this discharge curve, and Figure 1
shows this approximation with a dash and dot line.

At each step, the robot calculates the Euclidean
distance of its position to 𝐷 and BCS. The distances

calculated at the beginning are IDC, the initial
distance between the R and BCS, and 𝐼𝐷𝐷 the

initial distance to 𝐷.

Simultaneously, the distances calculated in
each step are CDD, the current distance to D, and
𝐶𝐷𝐶 the current distance to the 𝐵𝐶𝑆:

𝐷𝑅𝐷 = 𝑚𝑖𝑛 {100 ×
𝐶𝐷𝐷

𝐼𝐷𝐷
, 100}. (10)

The function 𝐷𝑅𝐷 in (10) is used to normalize

the current distance to the 𝐷 , while the function

𝐷𝑅𝐶 in (11) is used to normalize the distance to
the 𝐵𝐶𝑆:

𝐷𝑅𝐶 = 𝑚𝑖𝑛 {100 ×
𝐶𝐷𝐶

𝐼𝐷𝐶
, 100}. (11)

5 Navigation Approach

Algorithm 1 is proposed to handle the course of a
robot so that it can navigate in a scenario with static
obstacles, integrating a path planning module and
a rule-based RL approach with FQL to select the
action to be executed by the robot.

5.1 Path planning

The path planning module conducted with the APF

uses the equations shown in section 3. The

selection of the attractive and repulsive factors

(𝜉 = 2.3 , and 𝜂 = 61.5) was implemented,

employing a differential evolution algorithm [14]

with interval values in [0,100].

Algorithm 1. Navigation

 r_pos ← initial position;

d_pos, bcs_pos ← insert 𝐷 and 𝐵𝐶𝑆 position;

Initialize obs_pos_list;
destiny ← d_pos;

Generate the MF’s and rules;

d_path, bcs_path←generate the paths;
while r_pos != destiny do

action ← get from action selection;

next destiny ← update the destiny;

if next_destiny != destiny then

Update the path to next_destiny;

destiny ← next_destiny

Update next_r_pos;

 if there is an obstacle in next r pos then

Set obstacle in obs_pos_list ;
Update the d_path, and bcs_path;

 else
Move to new position;
Update r_pos;

Algorithm 2. Path planning

robot_pos ← insert 𝑅 position;

dest_pos ← insert 𝐷 or 𝐵𝐶𝑆 position;

path_pos_list ← initialize an empty list;

res_force list←get the resultant force;

 i ← 0;

while robot pos != dest pos

do

path_pos_list[i] ← from the neighborhood

obtain the position corresponding to the

value of the highest resultant force;

robot_pos ← update with path_pos_list[i];
i++;

return path_pos_list;

Fig. 1. Battery discharge curve

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 683–693
doi: 10.13053/CyS-25-4-4050

Elizabeth López-Lozada, Elsa Rubio Espino, Juan Humberto Sossa-Azuela, Víctor Hugo Ponce-Ponce686

ISSN 2007-9737

Algorithm 2 shows the procedure followed to

generate a path, where the entries are the R
position and the D's position. This algorithm runs
twice at starting to generate a path for going to the
D and going to the 𝐵𝐶𝑆.

5.2 Action Selection

The proposal for action selection consists of three
inputs and two possible outputs. These inputs are
BL, CDD, and CDC. The outputs are associated
with a numerical value used to define which action
to select, the action with the highest numerical
value is chosen.

In the same way that FIS uses membership
functions (MF), this architecture occupies the MFs
shown in Figure 2. The MF of the BL input has
three fuzzy sets that correspond to the level of the
battery full (FB), low (LB), and very low (VLB); the
MFs of the CDD and CDC inputs have fuzzy sets
far (F), near (N), and very near (C).

Algorithm 3. Action Selection

r_pos ← insert 𝑅 position;

d_pos ← insert 𝐷 position;

bcs_pos ← insert 𝐵𝐶𝑆 position;

obs_pos_list ← initialize an empty list;

state ← get current rule;

action ← select an action;

output ← compute with eq. (5);

q ← compute the q value with eq. (6);

new_state ← get the current rule;

reward ← get the reward from (12);

states value ← compute with the eq. (4);

∆𝑄 ← compute with eq. (9);

eligibility ← get value from eq. (7);

new q ← compute the new q with eq. (9);

Update the Q value in the q-table;

return the action;

Using the three proposed entries with their
corresponding MFs, this system has the twenty-
seven fuzzy rules shown in Table1, where the
output can be 𝑎1 or 𝑎2 depending on the computed
q-values.

To calculate the numerical value for actions 𝑎1

and 𝑎2, we can use the equations given in section
3 as it is shown in Algorithm 3. On the other hand,
𝛼 is equal to 0.01, and 𝛾 is equal to 0.9. these

values were selected after obtaining a faster
learning rate than other tested values.

The method starts with a table of q values equal

to zero. The update of the q-values occupies the

reward function defined in equation (12):

Table 1. Fuzzy rules

Rule BL CDD CDC Output

1 VLB C C action=𝑎1|𝑎2

2 VLB C N action=𝑎1|𝑎2

3 VLB C F action=𝑎1|𝑎2

4 VLB N C action=𝑎1|𝑎2

5 VLB N N action=𝑎1|𝑎2

6 VLB N F action=𝑎1|𝑎2

7 VLB F C action=𝑎1|𝑎2

8 VLB F N action=𝑎1|𝑎2

9 VLB F F action=𝑎1|𝑎2

10 LB C C action=𝑎1|𝑎2

11 LB C N action=𝑎1|𝑎2

12 LB C F action=𝑎1|𝑎2

13 LB N C action=𝑎1|𝑎2

14 LB N N action=𝑎1|𝑎2

15 LB N F action=𝑎1|𝑎2

16 LB F C action=𝑎1|𝑎2

17 LB F N action=𝑎1|𝑎2

18 LB F F action=𝑎1|𝑎2

19 FB C C action=𝑎1|𝑎2

20 FB C N action=𝑎1|𝑎2

21 FB C F action=𝑎1|𝑎2

22 FB N C action=𝑎1|𝑎2

23 FB N N action=𝑎1|𝑎2

24 FB N F action=𝑎1|𝑎2

25 FB F C action=𝑎1|𝑎2

26 FB F N action=𝑎1|𝑎2

27 FB F F action=𝑎1|𝑎2

Fig. 2. Input variables and fuzzy sets

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 683–693
doi: 10.13053/CyS-25-4-4050

Actions Selection during a Mobile Robot Navigation for the Autonomous Recharging Problem 687

ISSN 2007-9737

𝑟(𝑡) = {

+1 if 𝑅 is C of 𝐷
+0.1 if 𝑅 is C of 𝐵𝐶𝑆
 −1 if 𝑅 is F, and 𝐵𝐿 is VLB
 0 other case.

(12)

6 Simulation Results

Simulations constrain the R's movement on a
10 × 10 grid, where the R can move forward, right,

left, and backward. The initial position of the R
starts at the coordinates (0,0) of the grid, 𝐷 is at (5,

9), and 𝐵𝐶𝑆 is at (9,5). Given the MFs shown in
Figure 2, this section shows the simulations in
fifteen scenarios tested. For experimentation, the
battery behavior is simulated using the expression
BL(t), described in section 4, where t corresponds
to a time step, and so, every step execution, the
battery level decrease accordingly to expression

BL(t). Alternatively, increase every time the R
reaches BCS. The current BL can replace this
arrangement during implementation in a real robot.
The navigation proposal trained until completing
five successful trajectories to the 𝐷.

The following tables show a comparison
between the QL method and a FIS, while the
figures illustrate the behavior of the proposal
presented in this paper. QL method uses the same
learning rate, discount factor, and reward function
used for our proposal. Like the proposed FQL
method, QL and FIS methods use the three inputs
corresponding to the BL, CDC, and CDD.

Figure 3 shows the total epochs taken in each
scenario. In two scenarios, the number of epochs
to complete the trajectory was higher than in the

others. It means that for these two scenarios, the R
spent more time deciding which actions to execute
to complete the path to the D. However, in Table 2,
it is observed that the number of epochs our
proposal takes is smaller in comparison with the
QL method, which is advantageous because the
time it took the R to select and execute the actions
was reduced. Note that since the FIS method does
not have learning, this variable does not apply, so
it is denoted as NA in the table.

Figure 4 shows the BL and the number of steps
obtained in one of the epochs where the R
completed its trajectory in each scenario using the
FQL method.

According to the observed results, the BL with
which the R completed the trajectory was above

Fig. 3. Number of epochs it took the simulation to

complete the trajectory successfully five times in fifteen

scenarios

Fig. 4 Battery level and the number of steps with which

the robot completed each of the proposed scenarios

Table 2. Number of epochs it took for the simulation to

complete the trajectory successfully five times with the

FQL proposal and QL method

Scenarios FIS QL FQL

1 NA 17 5

2 NA 23 6

3 NA 22 5

4 NA 13 5

5 NA 166 5

6 NA 22 67

7 NA 59 5

8 NA 25 10

9 NA 13 5

10 NA 110 5

11 NA 33 71

12 NA 80 10

13 NA 39 5

14 NA 17 8

15 NA 24 5

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 683–693
doi: 10.13053/CyS-25-4-4050

Elizabeth López-Lozada, Elsa Rubio Espino, Juan Humberto Sossa-Azuela, Víctor Hugo Ponce-Ponce688

ISSN 2007-9737

70% in most scenarios. Likewise, the number of
steps executed remained below 20. Table 3 shows
that the BL value at the end of each scenario is very

close to the BL at the end of the FIS; contrarily to

the QL method, there were five cases where the BL
was inferior to 50%, showing that our proposal
performs better compared to QL method.
Nevertheless, Table 3 also shows that the FIS

ended the simulation with the highest BL in almost
all cases. This behavior is because, with the FIS,

there were no deviations towards the BCS, and the
simulated R went straight to D, contrary to the case
of the FQL and QL methods. However, the results
show that the FQL method learns to select the

actions that help it finish with a BL similar to the
FIS method.

Additionally, in the graph presented in Figure 5,
the R sometimes selected action 𝑎2 which caused

a route change towards the BCS. Under whose test
conditions, in most cases, the R selected the action
of going to the 𝐷, meaning that the number of steps

to D could have been less, however during the
action selection, the R decides that it has to charge
the battery and deviates from the original route.
The executed steps varied between two and six
compared to those that the FIS method executed,
as shown in Table 4, whose the executed steps
were between 14 and 18 according to the scenario.

The FIS, being a rule-based method and
lacking any learning stage, completes the task with
the fewest number of steps executed. Whereas
methods that have to learn to select actions that
help to complete the task execute more steps.
According to Table 4 results, the proposed FQL
method completes the task in a minor sequence of
steps than QL method.

The breakdown of the actions selected in each
scenario is depicted in Table 5. The results show
that the simulated R always selects to go towards

D using the FIS method. Unlike QL and FQL
methods, which in some cases selected action 𝑎2
causing the simulated R to divert towards the BCS
instead of going towards D, and therefore, it caused

that they took longer to get to D than the
FIS method.

Furthermore, Figure 6 shows the accumulated

reward. When the training lasted longer, the

accumulated reward rises because the R was

moving towards the 𝐵𝐶𝑆 . While the number of

Table 3. The battery level at which the simulation ended

using FIS, QL, and FQL methods in each scenario

during the fifth completed trajectory

Scenarios FIS QL FQL

1 78.0 51.0 74.4

2 78.0 65.0 67.1

3 74.4 65.0 74.4

4 78.0 76.0 78.0

5 78.0 40.0 78.0

6 78.0 14.0 78.0

7 74.4 80.0 70.7

8 78.0 69.0 78.0

9 78.0 73.0 78.0

10 78.0 32.0 67.1

11 70.1 80.0 70.7

12 78.0 47.0 78.0

13 78.0 40.0 74.4

14 78.0 73.0 74.4

15 78.0 58.0 78.0

Fig. 5. Number of times that the actions 𝑎1 and 𝑎2 were

selected during the displacement to the destination

Fig. 6. Reward accumulated in each scenario

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 683–693
doi: 10.13053/CyS-25-4-4050

Actions Selection during a Mobile Robot Navigation for the Autonomous Recharging Problem 689

ISSN 2007-9737

steps to complete the trajectory was minor in the

scenarios, the reward remained below 50.

Finally, Figure 7 shows a sample of three of the

fifteen scenarios in which the tests were carried

out. The graphs in this figure are composed of

five elements:

1. The squares represent the obstacles,

2. The cross corresponds to the position of

the BCS,

3. The star positions the D

4. The circle represents the starting point of

the R

5. The line with circles is the trajectory

followed by R.

7 Discussion

During simulations, the obstacles used in
scenarios were placed in different positions. The
variations of the path generated with the path
planning method affected the task performance
reflected in the number of steps invested by the
system to complete the path to 𝐷. During training,

when the robot was close to the 𝐵𝐶𝑆, and the BL

was different from BF, the robot followed the 𝐵𝐶𝑆

path instead of 𝐷, and it remained there.
So, the robot failed to complete its task to go to

𝐷. With this approach, an expert can define the
number of states that the agent takes, as in a
traditional FIS. With the addition that the system
can learn based on trial and error using QL
method. Comparing our proposal with the
traditional QL method, the number of states that
the agent can take is reduced to the number of
rules that the expert defines. To visualize this, take
the example of the battery level input.

In QL method, the number of states that the
agent can take ranges from 0 to 100, while with this
proposal, there are 27 states, which helps to
reduce computational complexity. By adding the
distances to D and 𝐵𝐶𝑆 as inputs, the number of
states would grow even more until 1,030,301.
Among the disadvantages, the system might not
necessarily choose the shortest path at all times,
since in some steps, the learning agent may select
to remain in standby mode. However, with the
acquired learning, the system manages to select
the actions that allow it to complete its task.

Table 4. The number of steps at which the simulation

ended using FIS, QL, and FQL methods in each scenario

during the fifth completed trajectory

Scenarios FIS QL FQL

1 14 30 16

2 14 22 20

3 16 22 16

4 14 16 14

5 14 36 14

6 14 50 14

7 16 14 18

8 14 20 14

9 14 18 14

10 14 40 20

11 18 14 18

12 14 32 14

13 14 36 16

14 14 18 16

15 14 26 14

Fig. 7. Visualization of three of the fifteen scenarios used

and the respective route that was taken.

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 683–693
doi: 10.13053/CyS-25-4-4050

Elizabeth López-Lozada, Elsa Rubio Espino, Juan Humberto Sossa-Azuela, Víctor Hugo Ponce-Ponce690

ISSN 2007-9737

8 Conclusions

The proposed navigation technique demonstrates
the robot's capability of duly selecting any of the
actions 𝑎1 and 𝑎2, which allows it to fulfill its goal to
reach a predetermined destination maintaining the

battery charge level in appropriate condition,
based on a decision-making methodology.

Using the FQL method, the number of defined
rules assigns the system's complexity, unlike the
classical QL method, where the states would
correspond to possible battery level
measurements. The proposed methodology limits
the number of states to the ranges assigned with
the MFs and helps a robot learns to select tasks
autonomously and complete its task.

In this paper's case, the assigned tasks were

the displacement to some destination D or BCS.

The simulated robot reached the D successfully,
although sometimes, the robot took a deviation to

the BCS to maintain its battery in conditions to finish
the started task.

However, whether other functions are added to
the list of tasks, like taking a bottle, it will be
necessary to consider the task time execution and
the discharge battery curve to guarantee that the
robot will select the best action to maintain itself
working and finish the started job successfully.

For future work, we propose to study how to
integrate this functionality in the proposed
algorithms to guarantee success with any assigned
task and test the proposal in realistic scenarios.

This approach, compared to a traditional QL
method or a FIS, has certain advantages. Unlike
the FIS method, in an FQL, an expert does not
need to assign the output to be executed since the
proposal made with the FQL allows a robot to learn
autonomously to select actions. According to the
results presented, the proposal can match the
results of a FIS during the decision-making
process since the battery levels and the number of
steps with which the simulations ended were
similar in most of the scenarios tested. While it
dramatically improves the results obtained with the
QL method. Besides, it significantly reduces the
number of states. Consequently, it reduces the
among of memory occupied for learning, which will
allow the implementation of the proposal in a robot
with low computing capabilities.

Acknowledgments

We appreciate the support to develop this project
provided by the Instituto Politécnico Nacional (IPN)
and Secretaría de Investigación y Posgrado (SIP-

Table 5. The number of times actions 𝑎1 and 𝑎2 were

selected during the simulation

Scenario Action
Method

FIS QL FQL

1
𝑎1 14 20 9

𝑎2 0 10 7

2
𝑎1 14 12 16

𝑎2 0 10 4

3
𝑎1 16 12 13

𝑎2 0 10 3

4
𝑎1 14 9 13

𝑎2 0 7 1

5
𝑎1 14 23 10

𝑎2 0 13 4

6
𝑎1 14 27 10

𝑎2 0 23 4

7
𝑎1 16 10 12

𝑎2 0 4 6

8
𝑎1 14 12 11

𝑎2 0 8 3

9
𝑎1 14 12 12

𝑎2 0 6 2

10
𝑎1 14 21 15

𝑎2 0 19 5

11
𝑎1 18 10 16

𝑎2 0 4 2

12
𝑎1 14 20 7

𝑎2 0 12 7

13
𝑎1 14 20 12

𝑎2 0 16 4

14
𝑎1 14 10 12

𝑎2 0 8 4

15
𝑎1 14 12 10

𝑎2 0 14 4

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 683–693
doi: 10.13053/CyS-25-4-4050

Actions Selection during a Mobile Robot Navigation for the Autonomous Recharging Problem 691

ISSN 2007-9737

IPN) under projects: SIP20200630, SIP20201397,
SIP20200885, SIP20200569, SIP20210788, and
the Comisión de Operación y Fomento de
Actividades Academicas (COFAA-IPN), as well as
the Consejo Nacional de Ciencia y Tecnología
(CONACYT-Mexico) under projects 65 within the´
framework of call: Frontiers of Science 2015, and
FORDECYT-PRONACES 6005.

References

1. Abhishek, T.S., Schilberg, D., Doss, A.S.A.

(2021). Obstacle avoidance algorithms: A review.

IOP Conference Series: Materials Science and

Engineering, Vol. 1012, pp. 1– 23. DOI:

10.1088/1757-899X/1012/1/0 12052.

2. Agarwal, D., Bharti, P. (2020). Nature inspired

evolutionary approaches for robot navigation:

Survey. Journal of Information and Optimization

Sciences, Vol. 41, pp. 421–436. DOI:

10.1080/02522667.2020.1723938.

3. Cheng, Z., Fu, X., Wang, J., Xu, X. (2019).

Research on robot charging strategy based on the

scheduling algorithm of minimum encounter time.

Journal of the Operational Research Society, pp. 1–

9. DOI: 10.1080/01 605682.2019.1654941.

4. de Lucca Siqueira, F., Della Mea Plentz, P., De

Pieri, E. R. (2016). A fuzzy approach to the

autonomous recharging problem for mobile robots.

12th International Conference on Natural

Computation, Fuzzy Systems and Knowledge

Discovery (ICNC-FSKD), pp. 1065–1070.

5. Gul, F., Rahiman, W. (2019). A comprehensive

study for robot navigation techniques. Cogent

Engineering, Vol. 6, pp. 1–25. DOI:

10.1080/23311916.2019.1632 046.

6. Francis, A., Faust, A., Chiang, H.T.L., Hsu, J.,

Kew, J.C., Fiser, M., Lee, T.W.E. (2020). Long-

range indoor navigation with prm-rl. IEEE

Transactions on Robotics, Vol. 36, No. 4, pp. 1115–

1134. arXiv:1902.09458 (cs).

7. Gamal, O., Cai, X., Roth, H. (2020). Learning from

fuzzy system demonstration: Autonomous

navigation of mobile robot in static indoor

environment using multimodal deep learning. 24th

International Conference on System Theory,

Control, and Computing (ICSTCC), pp. 218–225.

DOI: 10.1109/ICS TCC50638.2020.9259786.

8. Glorennec, P.Y. Jouffe, L. (1997). Fuzzy q-

learning. Proceedings of 6th International Fuzzy

Systems Conference, Vol. 2, pp. 659– 662.

9. Hosseini-Rostami, S.M., Kumar, A., Wang, J.,

Liu, X. (2019). Obstacle avoidance of mobile robots

using modified artificial potential field algorithm.

(EURASIP) Journal on Wireless Communications

and Networking, Vol. 2019. DOI: 10.1186/s13638-

019-1396-2.

10. Imrane, M.L., Melingui, A., Ahanda, J.J.B. M.,

Motto, F.B., Merzouki, R. (2020). Artificial potential

field neuro-fuzzy controller for autonomous

navigation of mobile robots. Proceedings of the

Institution of Mechanical Engineers, Part I: Journal

of Systems and Control Engineering, Vol. 235, No.

5. DOI: 10.1177/0959651820974831.

11. Jiang, L., Huang, H., Ding, Z. (2020). Path

planning for intelligent robots based on deep q-

learning with experience replay and heuristic

knowledge. IEEE/CAA Journal of Automatica

Sinica, Vol. 7, No. 4, pp. 1179–1189. DOI:

10.1109/JAS.2019.1911732.

12. Ma, T.-y. Xie, S. (2021). Optimal fast charging

station locations for electric ridesharing service with

online vehicle-charging station assignment.

Transportation Research Part D: Transport and

Environment, Vol. 90, pp. 102682. DOI:

10.1016/j.trd.2020.102682.

13. Rappaport, M., Bettstetter, C. (2017).

Coordinated recharging of mobile robots during

exploration. IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 6809–

6816. DOI: 10.1109/IROS.2017.8206600.

14. Storn, R., Price, K. (1997). Differential evolution –

a simple and efficient heuristic for global

optimization over continuous spaces. Journal of

Global Optimization, Vol. 11, pp. 341–359.

15. Tiwari A.K., P.A., Guha A. (2019). Dynamic motion

planning for autonomous wheeled robot using

minimum fuzzy rule-based controller with

avoidance of moving obstacles. International

Journal of Innovative Technology and Exploring

Engineering (IJITEE), Vol. 9, pp. 4192–4198.

16. Tom (2019). Lipo voltage chart: Show the

relationship of voltage and capacity.

17. Tomy, M., Lacerda, B, Hawes, N., Watt, J.L.

(2019). Battery charge scheduling in long-life

autonomous mobile robots. European Conference

on Mobile Robots (ECMR), pp 1- 6.

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 683–693
doi: 10.13053/CyS-25-4-4050

Elizabeth López-Lozada, Elsa Rubio Espino, Juan Humberto Sossa-Azuela, Víctor Hugo Ponce-Ponce692

ISSN 2007-9737

18. Wang, J., Elfwing, S., Uchibe, E. (2021). Modular

deep reinforcement learning from reward and

punishment for robot navigation. Neural Networks,

Vol. 135, pp. 115-126

19. Wei, P.-A, Tsai, C., Tai, F. (2019). Autonomous

navigation of an indoor mecanum-wheeled

omnidirectional robot using segnet. iRobotics,

volume 2.

Article received on 20/08/2020; accepted on 16/01/2021.
Corresponding author is Juan Humberto Sossa-Azuela.

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 683–693
doi: 10.13053/CyS-25-4-4050

Actions Selection during a Mobile Robot Navigation for the Autonomous Recharging Problem 693

ISSN 2007-9737

