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Abstract. Variable-order fractional derivatives can be

considered as a natural and analytical extension of

constant fractional-order derivatives. In variable-order

derivatives, the order can vary continuously as a

function of either dependent or independent variables of

differentiation, such as time, space, or even independent

external variables. The main contribution of this paper

is the use of fractional orders that vary in time for

a new class of chaotic systems. This paper also

studies the synchronization between a new class of

variable-order fractional hyperjerk chaotic systems. The

Grünwald-Letnikov’s definition of fractional derivative is

implemented to solve variable-order fractional problems.

In addition, considering the bifurcation diagram, a

periodic function was proposed to vary the order of

the derivative. The chaos synchronization will be

carried out via an active control approach. Regarding

the results and focusing on synchronization, it can be

observed that the error converges asymptotically to zero.

Finally, the theoretical work agrees satisfactorily with the

numerical results.

Keywords. Variable-order, fractional differential

equation, chaotic system, synchronization, chaos, active

control, nonlinear systems,

1 Introduction

Chaotic systems are dynamical systems whose

apparently random or unpredictable behavior is

governed by underlying patterns and deterministic

laws that are highly sensitive to initial conditions.

Their implementations have been studied during

the last decades [6].

The sensitivity of chaotic systems to parameters

and initial conditions is considered for many

real-world applications, ranging from data

encryption, secure communication power systems,

biology, circuit theory, and control, such as is

mentioned in [25].

Fractional calculus incorporates a degree of

freedom to dynamical systems.

This discipline’s principal and most attractive

attribute is its ability to accurately describe

and model real behavior compared to traditional

integer-order models [22, 27, 18].

In addition, it has some advantages in

characterizing systems considering memory

factors [21].

The first mention of the possibility of a

derivative of non–integer (arbitrary) order was

raised between Leibniz and L’Hôpital in 1695.

Leibniz and L’Hôpital discussed the meaning

of a half–order derivative and its consequences.

Nowadays, that branch of mathematics is more

than 300 years old.

Recently applications in different fields have

shown the importance of fractional calculus [15];

some of the most important include earthquake

and vibration engineering, automatic control,

image and signal processing, bioengineering,

arrhythmia discrimination, and chaotic

dynamics [18, 5].
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These studies typically have considered

fractional order constant operators, including

the Grünwald–Letnikov (GL), Caputo (C),

and Riemann–Liouville (RL) definitions, as

mentioned in [22].

According to [17], when initial conditions are

homogeneous, the systems described by the

definitions of GL, C, and RL coincide.

So they can be analyzed with Caputo or RL, and

their results can be simulated with GL.

Although, until now, formalism can solve some

relevant physical problems, it can not consider

important classes of physical issues where the

order itself is a function of the dependent or

independent variables.

For instance, in [4] was found that the

reaction kinetics of proteins exhibit relaxation

mechanisms, which can be appropriately

described by temperature-dependent fractional

order. Additionally, the inherent characteristics of

reaction kinetics (acquired by order of relaxation

mechanisms) vary with temperature.

Therefore, it is reasonable to consider that a

differential equation with an operator that updates

its order as a function of temperature will better

describe protein dynamics. This simple example

shows that there are categories of physical

problems where the variable-order fractional

derivatives can better explain the phenomenon.

The Variable-Order (VO) fractional operator can

be considered a natural analytical extension of

fractional-order constant operators. Variable-order

fractional derivatives can describe the properties

of memory that change with time or the spatial

location of dynamical systems.

There is interest in this subject since it allows

a more accurate description of dynamic systems.

The first definitions of these operators were given

by [16]. As reported by [11, 29], the study of

variable-order fractional calculus has become a

hotspot in recent years.

In [8] is documented the effectiveness of

using a dynamic integrodifferential operator of

variable-order for viscoelastic and elastoplastic

spherical indentation cases.

Furthermore, the dependence of the order

function on the strain and strain rate of viscoelastic

material was evaluated in [7].

Fig. 1. Bifurcation diagram for the fractional order q

Fig. 2. The 3D phase portrait of variable-order fractional

hyperjerk system into x1(t)− x2(t)− x3(t) space

Lorenzo and Hartley [10] investigated the

concept of VO integration and differentiation and

created meaningful definitions for VO integration

and differentiation. They also presented two

forms of order distributions with applications to

dynamic processes.

Coimbra and Diaz in [2, 3] investigated the

dynamics and control of a nonlinear viscoelasticity

oscillator via VO operators.

Kobelev et al. investigated statistical and

dynamical systems with fixed and variable

memories, with the fractal dimension of the system

being variable with time and spatial coordinate [9].
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Fig. 3. Variable-order function q(t) used as a

variable-order fractional

Pedro et al. studied the motion of particles

suspended in a viscous fluid with drag force

determined using the VO calculus [13].

Recently, [23] discussed the mathematics of

variable-order fractional calculus in perspective by

examining possible applications of this topic in

chaotic behaviors.

Synchronization is a phenomenon that may

occur when two or more systems have time

correspondence [28].

In contrast to the synchronization between

variable-order chaotic systems, the chaotic

synchronization (between integer-order and

fractional order systems) has received increasing

attention after the result of Pecora and Carroll.

In 1990, Pecora and Carroll synchronized two

identical chaotic oscillators with different initial

conditions for the first time [12].

Many control techniques are applied to the

synchronization problem (which can also be seen

as a trajectory tracking problem), including the

sliding mode approach, projective synchronization

method, output feedback synchronization method,

active control method, and robust control, among

others [24, 19].

The notion of synchronization of chaos

has become an important research area in

nonlinear science, not only for understanding

the complicated phenomena in various fields but

also due to its potential applications, especially in

secure communication and image encryption, as

mentioned in [14].

Then, we present a variable-order hyperjerk

chaotic system that exploits the inherited legacy

of fractional calculus to generate an abundant

complex behavior.

Grünwald-Letnikov’s definition performs the

numerical solution of the variable-order fractional

chaotic systems. The dynamic behavior is

analyzed using bifurcation diagrams and phase

portraits. Additionally, the concept of “short

memory” is employed.

The variable-order is defined using a periodic

function, which leads to abundant chaotic

dynamics. Finally, the active control technique is

explored to achieve synchronization and ensure

that the states track the desired trajectory of

chaotic systems.

The current paper is organized as follows:

In Section 2, we give a brief introduction of

Grünwald–Letnikov’s derivative definition and show

the numerical method (algorithm) of variable-order

fractional chaotic systems.

In Section 3, we introduce the variable-order

fractional hyperjerk system and illustrate the

chaotic behavior of the system showing its

bifurcation diagram and phase plane.

In Section 4, we study the synchronization of the

variable-order fractional chaotic systems via active

control. In Section 5, the results are presented.

Finally, in Section 6, conclusions are offered.

2 Grünwald–Letnikov Variable-Order
Derivative

Fractional calculus deals with the use of derivatives

and integrals with non-integer order (arbitrary),

denoted by:

aD
q
t f(t) =



































dqf(t)

dtq
, q > 0,

f(t), q = 0,

∫ t

a

f(τ)−q (dτ), q < 0,

(1)
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where a and t are the upper and lower bounds

of the operator, q is the arbitrary order, q > 0
is considered a differential, and q < 0 is an

integral. Different definitions for the fractional

differential operator can be adopted for equation

(1), ranging from singular kernel to nonsingular

kernel operators.

This paper considers Grünwald-Letnikov’s

definition. In that manner, for numerical solution,

the Grünwald-Letnikov explicit method for

variable-order fractional differential equations is

adopted. It is well known that the first integer-order

derivative of a function f(t), f : R → R is given as:

D1f(t) = lim
h→0

f(t+ h)− f(t)

h
. (2)

In general, the n− th derivative is defined as:

Dnf(t) = lim
h→0

∑n

m=0(−1)m
(

n
m

)

f(t−mh)

hn
, (3)

where
(

n

m

)

=
n!

m!(n−m)!
; with n,m ∈ N. (4)

By substituting n for q, with q ∈ R
+, and

considering the property of Gamma function

Γ(z + 1) = zΓ(z), which can be proved by

integrating by parts as follows:

Γ(z + 1) =

∫

∞

0

e−ttzdt

= [−e−ttz]t=∞

t=0 + z

∫

∞

0

e−ttz−1dt

= zΓ(z).

(5)

The Grünwald-Letnikov derivative definition for

q > 0 is given as follows:

G
a D

q
xf(t) = lim

h→0
h−q

t−a

h
∑

m=0

(−1)m
(

q

m

)

f(t−mh). (6)

Subsequently, according to [20] the

Grünwald-Letnikov variable-order fractional

derivative is defined by:

G
a D

q(t)
t f(t) = lim

h→0

1

hq(t)

t−a

h
∑

m=0

(−1)m
(q(t)

m

)

f(t−mh), (7)

where q(t) is a bounded function in (0, 1].

Fig. 4. Phase planes. In top row the phase-portraits

corresponding to drive system (20)-(23); in bottom row

the phase-portraits corresponding to response system

(24)-(27), respectively

2.1 Grünwald–Letnikov Numerical Method

Reference [17] was devoted to the numerical

treatment of fractional-order differential equations;

based on the Grünwald–Letnikov definition

of fractional derivatives, considering finite

difference schemes to approximate the solution of

fractional-order derivatives.

According to [17], the numerical formula to solve

the fractional-order differential equation can be

presented explicitly as:

yn+1 = cq1yn + cq2yn−1 + · · ·+ cqn+1y0+

rqn+1y0 + hqf(yn), (8)

where 0 < q ≤ 1. The Grünwald-Letnikov method

is performed iteratively, where the sum in the

approach becomes longer, reflecting the memory

effect. The coefficients cqv are recursively defined

and show smooth properties [17].

Then, the numerical formula to solve the

variable-order fractional differential equation in the

explicit case in the sense Grünwald-Letnikov is

defined as follows:

yn+1 = c
q(n)
1 yn + c

q(n−1)
2 yn−1 + · · ·+ c

q(0)
n+1y0+

r
q(0)
n+1y0 + hq(n)f(yn). (9)
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Fig. 5. Evolution in the time of the state trajectories x1(t),
x2(t), x3(t), x4(t), x5(t), x6(t), x7(t), and x8(t)

3 Variable-Order Fractional
Hyperjerk System

An interesting hyperjerk system was recently

proposed in [25]. That system is described

as follows:

ẋ1(t) = x2(t), (10)

ẋ2(t) = x3(t), (11)

ẋ3(t) = −α1x1(t)− α2x2(t)− x3(t) + x4(t), (12)

ẋ4(t) = f(x1(t),x2(t),x3(t))− kx4(t), (13)

where x1,x2,x3,x4 are dimensionless variables,

α1, α2, ∈ R, k > 0, where function f(·) is a linear

combinations of variables product. Now, consider

the variable-order fractional representation of

(10)-(13) which is defined by:

GDq(t)x1(t) = x2(t), (14)

GDq(t)x2(t) = x3(t), (15)

GDq(t)x3(t) = −α1x1(t)− α2x2(t)− x3(t) + x4(t), (16)

GDq(t)x4(t) = f(x1(t),x2(t),x3(t))− kx4(t). (17)

Here, GDq(t) is the Grünwald-Letnikov’s

variable-order fractional derivative given in (7)

and q(t) is the VO, it is a bounded function and

defined in 0 < q(t) ≤ 1.

To conduct the fractional-order system (10)-(13)

to generate chaotic behavior, it needs to add

a nonlinear function f(·) to stretch and fold the

trajectories of the system repeatedly.

In this work we use the following function

f(x1(t),x2(t),x3(t)) = −x2 − (x1 + x2)x3 − β, with

β ∈ R.

In order to illustrate the chaotic behavior in

the system, the following parameters are set

α1 = 1.2, α2 = 0.5, β = 0.75, and k =
0.6, respectively. The system (14)-(17) expressed

as: Dq(t)xi(t) = gi(X(t), t) with i = 1, . . . , 4,

where X = [x1,x2,x3,x4]
T , 0 < q ≤ 1 and

functions gi(·, ·) ∈ R
4 has a unique equilibrium

point by solving the equation 0 = gi(X(t), t) at

E1 = (−β/(kα1), 0, 0,−β/k). The characteristic

equation can be simplified to:

λ4 + 1.6λ3 + 0.0583λ2 + 2.50λ+ 0.72. (18)

The roots of equation (18) are λ1 = −2.0728,

λ2,3 = 0.3756 + 1.0519i, and λ4 = −0.2784.

According to [26] and evaluating the eigenvalues

of the characteristic equation in |argλ2,3| > qπ/2
the minimum fractional-order value to guarantee

complex behavior in the fractional-order system is

q > 0.7817.

Figure 1 shows the bifurcation diagram for the

fractional order q. It is obtained by considering the

local maxima of the state x denoted as x̂ and fixing

the parameters α1 = 1.2,α2 = 0.5,β = 0.75, and

k = 0.6, while the fractional-order q varies.

The Fig. 1, confirms that the system (14)-(17)

presents complex behaviors, ranging from period-1

to chaos in the interval q ∈ [0.88, 1].

In order to illustrate the behavior of the

variable-order fractional hyperjerk system

(14)-(17), Fig. 2, shows the phase-space

considering three states variables x1(t), x2(t),
x3(t) and by considering as initial conditions:

x1(0) = x2(0) = x3(0) = x4(0) = 0.1.

Whereas, Fig. 3 depicts the function used as

fractional variable-order. It is defined as in (19):

q(t) = 0.95 + 0.004 cos

(

t

10

)

. (19)

We can observe that the order q is not constant,

it is variable and also fractional (i.e., arbitrary).

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 345–355
doi: 10.13053/CyS-27-2-4068

Synchronization between a Class of Variable-Order Fractional Hyperjerk Chaotic Systems 349

ISSN 2007-9737



Fig. 6. Error synchronization curves of (20)-(23) and (24)-(27) systems both with a variable-order fractional

4 Synchronization Scheme

According to [1] the analysis of synchronization

phenomenon in the evolution of dynamical systems

has been a subject of active investigation since the

earlier days of physics.

It started in the 17th century with the finding of

Huygens that two very weakly coupled pendulum

clocks (hanging at the same beam) become

synchronized in phase.

Synchronization of chaos refers to a process

wherein two (or many) chaotic systems (either

equivalent or nonequivalent) adjust a given

property of their motion to a common behavior due

to a coupling or to a forcing.

The purpose of this section is to present a

scheme about the controller ui(t), i = 1, 2, 3, 4;
such that the response system can mimic the

dynamic behavior of the drive system under the

starting premise of non-identical initial conditions.

The active control approach is considered as an

alternative to achieve the complete synchronization

between a pair of variable-order fractional

hyperjerk systems with different dynamics and

also different initial conditions.

First, we consider x1(t), x2(t), x3(t), and x4(t)
for drive system; and x5(t), x6(t), x7(t), x8(t) for

response system, respectively.

We define the drive system as in (20)-(23) and
response system as in (24)-(27) as follows:

GDq(t)x1(t) =x2(t), (20)
GDq(t)x2(t) =x3(t), (21)
GDq(t)x3(t) =− α1x1(t)− α2x2(t)− x3(t) + x4(t), (22)
GDq(t)x4(t) =− x2(t)− (x1(t) + x2(t))x3(t)

− β − kx4(t). (23)

And:

G
D

q(t)
x5(t) =x6(t) + u1(t), (24)

G
D

q(t)
x6(t) =x7(t) + u2(t), (25)

G
D

q(t)
x7(t) =− α1x5(t)− α2x6(t)− x7(t)

+ x8(t) + u3(t), (26)
G
D

q(t)
x8(t) =− x6(t)− (x5(t) + x6(t))x7(t)

− β − kx8(t) + u4(t). (27)

According to [18], the dynamical systems

achieve synchronization if the following equation:

lim
t→∞

(∥xi(t)− xj(t)∥) = 0,

i = 1, ...,N ; j = i+ 4, ...,N + 4,
(28)
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Fig. 7. Synchronization in the phase-space x1(t)− x5(t), x2(t)− x6(t), x3(t)− x7(t), and x4(t)− x8(t)

With N = 4, holds for every pair of

fractional–order chaotic oscillators, implying that

we have reached synchrony.

where the unknown terms u1(t), u2(t), u3(t), and
u4(t); in (24)-(27) are active control functions to be
determined. Define the error functions as:

e1(t) = x5(t)− x1(t), (29)

e2(t) = x6(t)− x2(t), (30)

e3(t) = x7(t)− x3(t), (31)

e4(t) = x8(t)− x4(t). (32)

Equation (29)-(32) together with (20)-(23) and

(13) yield the dynamic of the error system:

GDq(t)e1(t) =x6(t)− x2(t) + u1(t), (33)
GDq(t)e2(t) =x7(t)− x3(t) + u2(t), (34)
GDq(t)e3(t) =− α1x5(t)− α2x6(t)− x7(t)

+ x8(t) + u3(t) + α1x1(t)

+ α2x2(t) + x3(t)− x4(t), (35)
GDq(t)e4(t) =− x6(t)− (x5(t) + x6(t))x7(t)

− β − kx8(t) + u4(t) + x2(t)

+ (x1(t) + x2(t))x3(t) + β + kx4(t). (36)

We define the active control functions, ui(t) as it
is proposed in [24]:

u1(t) =V1(t)− x6(t) + x2(t), (37)

u2(t) =V2(t)− x7(t) + x3(t), (38)

u3(t) =V3(t) + α1x5(t) + α2x6(t) + x7(t)− x8(t)

− α1x1(t)− α2x2(t)− x3(t) + x4(t), (39)

u4(t) =V4(t) + x6(t) + (x5(t) + x6(t))x7(t)

+ β + kx8(t)− x2(t)− (x1(t)

+ x2(t))x3(t)− β − kx4(t). (40)
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The terms Vi are functions of the error terms
ei(t) given by V1(t) = −e1(t), V2(t) = −e2(t),
V3(t) = −e3(t), and V4(t) = −e4(t), respectively.
With the choice of ui(t) given by (37)-(40), the error
system becomes:









GDq(t)e1(t)
GDq(t)e2(t)
GDq(t)e3(t)
GDq(t)e4(t)









=







−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1













e1(t)
e2(t)
e3(t)
e4(t)






, (41)

Hence:

GDq(t)e1(t) = −e1(t), (42)

GDq(t)e2(t) = −e2(t), (43)

GDq(t)e3(t) = −e3(t), (44)

GDq(t)e4(t) = −e4(t). (45)

According to (41) and (42)-(45), it is clear that the

system is asymptotically stable. On the other hand,

synchronization can be corroborated by means of

the phase portrait, which will produce a 45° line

when the variables involved reach synchrony.

Fig. 7 presents the phase portraits between

x1(t) − x5(t), x2(t) − x6(t), x3(t) − x7(t), and

x4(t) − x8(t); where the synchronization can

be confirmed.

5 Results

In this section, the numerical results are given to

verify the correctness of theoretical results in the

above sections.

The variable-order fractional Grünwald-Letnikov

algorithm is used to compute the solutions of

the variable-order fractional systems (20)-(23),

and (24)-(27) with a time-step h = 0.01; the

variable-order is set to q(t) = 0.95+0.004 cos (t/10).

The parameters are defined as α1 = 1.2,

α2 = 0.5, β = 0.75, k = 0.6. The initial conditions

of the systems (20)-(23) and (24)-(27) are set to

x1(0) = x2(0) = x3(0) = x4(0) = 0.1; x5(0) =
x6(0) = 1; x7(0) = 0.3;x8(0) = 0.2, respectively.

The initial error is [e1(t), e2(t), e3(t), e4(t)]
T =

[0.9, 0.9, 0.2, 0.1]T . In Fig. 4 the phase planes of

the drive and response system are displayed. Fig.

5 shows the state trajectories of the drive and the

response system.

From Fig. 5, it can be seen that the proposed

control u(t), is such that when t→∞ the dynamics

of the response system is exactly the same as the

dynamics of the drive system.

The graphical presentation of the

synchronization through error analysis is depicted

in Fig. 6, we can see that we got the required

synchronization via active control method.

In Fig. 7, we present the synchronization in the

phase space for each state-variables x1(t)− x5(t),
x2(t)− x6(t), x3(t)− x7(t), and x4(t)− x8(t).

6 Conclusion and Future Work

Variable-order fractional calculus has been

extended from the notion of constant-order

fractional calculus with the order of differentiation

or integration varying with time (t).

It has been highly neglected since it was

proposed. Nevertheless, researchers have found

a large variety of applications that can be modeled

and more clearly understood in the applied

mathematics area.

A variable-order chaotic system was realized

using the proposed fractional order derivative

with the consideration that their fractional

orders change dynamically in time (for a

hyperjerk system).

Also, the master-slave synchronization between

two variable-order fractional chaotic systems was

presented. The synchronization scheme was

achieved based on active control theory.

As we can see in our mathematical analysis, and

also in Fig. 6 and Fig. 7, we observe that the

system is asymptotically stable.

This topic is very extensive and new, so we can

mention that for possible future work it can be

considered this topic to apply it in data encryption,

even with another control technique.

Finally, we hope our work about variable-order

fractional calculus would generate interest from

related scholars in the future and also hope that

their work may result in significant contributions to

this field.
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References

1. Boccaletti, S., Kurths, J., Osipov, G.,
Valladares, D., Zhou, C. (2002). The

synchronization of chaotic systems. Physics

Reports, Vol. 366, No. 1-2, pp. 1–101. DOI:

10.1016/S0370-1573(02)00137-0.

2. Coimbra, C. F. (2003). Mechanics with

variable-order differential operators. Annalen

der Physik, Vol. 12, No. 11-12, pp. 692–703.

DOI: 10.1002/andp.200310032.

3. Diaz, G., Coimbra, C. (2009). Nonlinear

dynamics and control of a variable

order oscillator with application to

the van der Pol equation. Nonlinear

Dynamics, Vol. 56, pp. 145–157. DOI:

10.1007/s11071-008-9385-8.
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