
Design of a Soft Gripper Using Genetic Algorithms 

Hiram Ponce, Lourdes Martínez-Villaseñor, Carlos Mayorga-Acosta 

Universidad Panamericana, Facultad de Ingeniería, Ciudad de México, 
Mexico 

hponce@up.edu.mx, lmartine@up.edu.mx, 0188400@up.edu.mx 

Abstract. In this paper, we present an artificial 

intelligence-assisted design of a soft robotic gripper. 
First, we formulate the design of the soft gripper as an 
optimization problem. Then, we design and configure a 
genetic algorithm (GA) method to solve the problem 
under design constraints. Lastly, we implement the 
whole system in co-simulation between the GA and a 
computer-aided design software that evaluates the 
candidate solutions using finite element analysis. A 
network-attached storage server connecting multiple 
nodes runs the GA method in parallel, to accelerate the 
process. After experimentation, we present simulation 
results to validate our approach. 

Keywords. Soft robotics, grippers, artificial intelligence, 

mechanical engineering, CAD model. 

1 Introduction 

Mobile robots have been widely studied for 
decades. Many applications are related to robotic 
tasks such as navigation, distribution, object and 
person localization, map construction, space 
coverage, among others [8, 14]. Due to the 
environment, mobile robots can be classified as 
aerial, terrestrial, and underwater [5]. Mobile robots 
can also be wheeled, legged, or tracked, 
depending on the means of locomotion. Therefore, 
the design of a robot – from its mechanical 
configuration to electronic devices and 
computational resources – depends directly on its 
application and complexity of the tasks [3, 8]. 
Interestingly, four-legged robots can move on 
uneven terrains, as opposed to wheeled or tracked 
robots. Other advantages are the improvement in 
their mobility, the ability to avoid obstacles, the 
active suspension, the energy efficiency, and their 
ability to handle speed [8]. But, the analysis, 
mechanical design, optimization processes, 

control systems, and dynamic simulations, are of 
great interest nowadays [8]. 

The use of gripping tools, or simply grippers, in 
robots is an active area that has the advantage of 
manipulating and grasping objects. But those carry 
out some limitations for the robotic systems, such 
as [9]: increase the degrees of freedom, robot 
dimensions also increase, movements are turned 
more complex, cost increase, transmission of 
forces to the rest of the robotic body, and many 
others. Due to these limitations, some roboticists 
have moving onto the use of soft materials for the 
design of gripping tools, known as soft grippers [9]. 
This type of tool makes use of materials with 
modulus of elasticity of the order of 104-109 
considered soft, which allows adaptability of the 
surfaces and a reduction in the number of 
actuators required. However, it increases the 
complexity of its design and mathematical 
modeling. Regarding the above, gripping design 
methods, known as synthesis processes, have 
been proposed the heuristics techniques to 
optimize the topology and dimensions of soft 
robotic tools.  

Artificial intelligence (AI) has gained visibility in 
mechanical design and mechanical engineering [2, 
4]. The first efforts of AI-assisted design comprised 
of rule-based and knowledge reasoning. Those 
provide a system able to define a product using a 
description of parameter settings and constraints 
[10]. The geometry of products and tools, as well 
as the use of computer-aided design (CAD) 
software, are important for the AI reasoning 
systems [10]. Computational intelligence, i.e., 
intelligent optimization, is the most used AI tool in 
mechanical design [1, 6, 7, 13]. For example, Datta 
et al. [6] proposed the use of a multi-objective 
evolutionary optimization algorithm to design a 
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robotic gripper for micro-machining. The authors 
modeled mathematically a generic gripper, and 
then, they imposed design constraints as multi-
objectives to solve their problem. Bhoskar et al. [1] 
reviewed different applications of genetic 
algorithms (GA) for mechanical engineering 
design. The work showed AI-assisted design is 
specific for the product to be designed, and the AI 
method employed must be shaped accordingly to 
the type of the end-product. AI has been also 
implemented for soft gripper design. For example, 
Runge et al. [12] proposed a design framework 
using GA for soft actuators. This framework 
consists of design (with parameters) a part of the 
soft actuator, then optimize it using GA, then 
evaluate the design with finite element analysis 
(FEA), and lastly perform a kinematics analysis.   

In a previous work [11], the authors designed 
and implemented a prototype of a four-legged 
robot inspired in the biomechanics of chameleons, 
as the one depicted in Figure 1. This robot aims to 
walk on narrowed surfaces, like beams or pipes, 
for future applications as rescue and maintenance. 
So far, the mechanical part and the balance 
controller have already been implemented. 
However, the legs slip into the contact surface, and 
its locomotion performance diminishes 
considerably. Therefore, a robotic gripper is 
required (like a prehensile hand) avoiding relative 
sliding between the legs and the surface.  

Thus, this paper presents an AI-assisted design 
using GA of a soft gripper for the chameleon-like 
robot. The methodology comprises the problem 
formulation, the setting up of the genetic algorithm 
(e.g., individual encoding, fitness function, 
evolutionary operators), and the implementation in 
co-simulation between a CAD software and the GA 
solution. In this work, we use a network-attached 
storage (NAS) server connecting multiple nodes 
running the GA solution in parallel, to accelerate 
the process. We present simulation results to 
validate our approach. 

The rest of the paper is organized as follows. 
Section 2 presents the methodology followed in 
this work, including the problem formulation and 
the GA solution. Section 3 describes the 
implementation of the GA solution and the co-
simulation with the CAD software. In Section 4, we 
present the results. Lastly, Section 5 concludes 
the work. 

2 Methodology 

Mobile robots have been widely studied for 
decades. We propose a methodology based on GA 
for designing the soft gripper required for the 
chameleon-like robot. This methodology 
comprises the following steps: (i) formalize the 
design problem, (ii) design the GA method for 
solving the design problem, and (iii) implement the 
GA system in co-simulation with a CAD software. 
Figure 2 summarizes the methodology, and the 
details of the first two steps are given below. The 
description of the last step is presented in 
Section  3. 

2.1 Problem Formulation  

We require to add a soft gripper at all legs in the 
robot since they slip into the contact surface. In this 
work, we restrict the design of a single soft robotic 
gripper. In general, the final design can be 
replicated in the four legs. 

From the above, the goal of the GA system is to 
shape a soft gripper with the best grasp as possible 
when it is actuated. The soft gripper has two main 
states, as shown in Figure 3. The first state 
represents the initial position in a release position, 
while the second state is the final position got after 
the gripper is actuated (i.e., injecting compressed 
air). As depicted in Figure 3, the final position is 
obtained from the deformation of the soft material; 
but this deformation depends on the initial shape 

 

Fig. 1. Prototype of the chameleon-like robot 
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of the gripper and its structure. In that sense, the 
output of the GA system should be a suitable 
shape in the initial state that is able to change the 
shape reaching the final state with the strongest 
force possible to make the grasp.  

In this work, we restricted the texture of the 
material unchanged. No modifications to the 
texture by adding roughness to the material are 
allowed. 

In that sense, the design problem is formulated 
as follows. Consider a base form 𝐵 of the gripper. 

Then, 𝐵 is parameterized by 𝑛 nodes defined in 

three-dimensional (3D) space 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) ∈ ℝ3 

for all 𝑖 = 1, … , 𝑛 and assuming a set of constraints 
𝒞. These constraints impose the minimum and 
maximum displacements of nodes, the dimensions 
of the piece, and no cross-points resulting in 
forbidden bodies.  

The nodes shape the initial state of the gripper 

𝐵(1) = {𝑝1
(1)

, … , 𝑝𝑛
(1)

} comprising both the perimeter 

and the structure. Also, suppose there is an 
external object 𝑂 near the gripper. Then, an 

external force 𝐹𝐴 is applied to the soft gripper, such 

that, it reaches the final state 𝐵(2) = {𝑝1
(2)

, … , 𝑝𝑛
(2)

} 

and grasps 𝑂 with contact forces 𝐹(2) between the 

𝐵(2) and 𝑂. Thus, the design problem is to find a 

set of nodes forming 𝐵(1) that allows reshaping of 

nodes forming 𝐵(2), by applying 𝐹𝐴, and maximizes 

the forces 𝐹(2). 

2.2 Genetic Algorithms for Designing the Soft 
Gripper 

We present a GA system to solve the design 
problem given previously. In general, GA is a 
popular method in stochastic optimization that can 
find a near-global solution [12]. GA has been found 
to be a good choice in (multiple) global 
optimization  [15].  

GA works using a population that is a set of 
individuals representing candidate solutions to an 
optimization problem. These individuals encode 
the parameter values in a form of small 
components called chromosomes. Each individual 
is evaluated to determine its effectiveness, and the 
GA uses a fitness function. The latter is a 
quantitative measure that is used as ranker of 
individuals in the inner process. GA employs 
different operators to enrich the exploration and 
exploitation of candidate solutions in the search 
space. For instance, it combines individuals using 
a crossover function to express new individuals. It 
also provokes small changes in individuals using a 
mutation function. These operators create a new 
population that is assuming to be better than the 
current population. After several number of 
iterations, called epochs, individuals in a 
population evolves until a suitable solution to the 
global optimization problem is reached by the best 
individual evaluated in the fitness function [12]. 

To solve the design problem, we encode the set 

of points 𝑝𝑖
(1)

 in individuals. We set an initial 

population of 𝑁 individuals representing different 

base forms 𝐵(1). The population is, then, evaluated 

in a fitness function 𝑓 that promotes individuals 

with large values of contact forces 𝐹(2) and no 

violations to constraints 𝒞. In each epoch, a 
crossover operation is performed between 

 

Fig. 3. Main states of the soft robotic gripper: (left) the 

initial state 𝐵(1) before applying compressed air, and 

(right) the final state 𝐵(2) after actuated 

 

Fig. 2. Methodology implemented for designing the soft robotic gripper using GA 
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individuals, and a mutation operator is also applied 
to all individuals. After a certain number of epochs, 
the GA returned the best individual evaluated in the 
fitness function. Algorithm 1 summarizes the GA 
using for designing the soft robotic gripper. Details 
are given following. 

Algorithm 1. GA for designing the soft robotic gripper 

Input: the base form 𝐵(1) of the soft robotic gripper. 

Output: the best position nodes encoded in the 

individual 𝑖𝑛𝑑𝑏𝑒𝑠𝑡. 

 

1: Initialize a population with 𝑁 individuals fulfilling 

constraints 𝒞. 

2: Initialize 𝑒𝑝𝑜𝑐ℎ =  1. 

3: while 𝑒𝑝𝑜𝑐ℎ ≤ 𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ𝑠 

4:     Evaluate the individuals in the fitness function 𝑓. 

5:     Select the individuals using the evaluations from 
𝑓. 

6:   Replace the population using crossover (use 

probability 𝑝𝑐𝑜). 

7:     Mutate individuals with probability 𝑝𝑚𝑢𝑡. 

8:     Update the best individual found so far 𝑖𝑛𝑑𝑏𝑒𝑠𝑡. 

9:     Update 𝑒𝑝𝑜𝑐ℎ =  𝑒𝑝𝑜𝑐ℎ +  1. 

10: end while  

11: return best individual 𝑖𝑛𝑑𝑏𝑒𝑠𝑡. 

2.2.1. Individual Encoding 

First, we encode the individual as a set of nodes 
defined in 3D coordinates that parameterizes the 

base form in the initial state 𝐵(1).  

In this case, an individual 𝑖𝑛𝑑𝑘, for all 𝑘 =
1, … , 𝑁, is the joint positions 𝑝𝑖 of the set of nodes 
in their three coordinates, as shown in (1). For 

simplicity, 𝑝𝑖
(1)

= 𝑝𝑖. 

𝑖𝑛𝑑𝑘 = {𝑝1
(1)

, … , 𝑝𝑛
(1)

} = {𝑥1, 𝑦1, 𝑧1, … , 𝑥𝑛, 𝑦𝑛, 𝑧𝑛}. (1) 

We use a binary encoding for the individual. 
Since the positions are in millimeters and 
assuming that the maximum position value is not 
greater than 256 mm, then an 8-bit representation 
of integer values is enough. Thus, each individual 
𝑖𝑛𝑑𝑘 has length equals to 8(bits) ×
3(dimensions) × 𝑛(nodes). 

2.2.2. Fitness Function 

We define a fitness function as an evaluation 
measure of the individuals. The fitness function 𝑓 
evaluates the position of nodes in the initial state 
such that they can move, by an external force 𝐹𝐴, 
to the positions in the final state and apply large 

contact forces 𝐹(2) between the gripper and a given 

object. The fitness function 𝑓 is expressed in (2), 

where 𝐹𝐹𝐸𝐴
(2)

 is the resultant contact force calculated 

using FEA in the final state 𝐵(2) produced by 𝐹𝐴 
with initial position of nodes as encoded in an 
individual 𝑖𝑛𝑑, and 𝑃𝒞 is a positive penalty assigned 
when a constraint 𝑐𝑗 ∈ 𝒞 is violated.  

𝑓(𝑖𝑛𝑑) = 𝐹𝐹𝐸𝐴
(2) (𝑖𝑛𝑑) − 𝑃𝒞. (2) 

In this work, each violated constraint produced 
a penalty value 𝑃𝐶. Three constraints were 

imposed: a point 𝑝𝑖 is within the maximum 

dimensions of the gripper (𝑐1), the whole position 
of nodes give a well-defined body with no cross-
points (𝑐2), and the displacements of all nodes from 
the initial state to the final state let the gripper well-
defined (𝑐3). For convenience, the FEA and the 
calculation of constraints are done in a CAD 
software, as described in Section 3. 

2.2.3. Crossover and Mutation 

Then, two operators over individuals are defined: 
crossover and mutation. We implement one-point 
crossover that chooses two individuals and split 
them into two parts in a random position of the 
chromosome. The first part of one individual is then 
concatenated with the last part of the other 
individual. A crossover operator is performed with 
probability 𝑝𝑐𝑜. We use roulette selection to pick 
individuals for crossover. Furthermore, we 
implement mutation of individuals that consists of 
changing a chromosome value by its complement. 
A chromosome is mutated with probability 𝑝𝑚𝑢𝑡. 

3 Implementation 

As noticed, the GA system for designing the soft 
robotic gripper requires a co-simulation with CAD 
software. In this regard, we propose to use 
SolidWorks for calculating the FEA of an individual 
created by the GA system. Since the procedure is 
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quite time consuming, we decided to implement 
the whole system in a NAS server to evaluate the 
fitness function in parallel using a cluster of 
heterogeneous agents. Figure 4 shows the 
implementation of the system. 

The GA system was implemented in Python 
with the pyeasyga library. Each time the fitness 
function 𝑓 is evaluated, the individual is decoded 
and the position of nodes in the initial state are sent 
to SolidWorks. Then, the CAD software receives 
the positions and renders a 3D model of the base 

form 𝐵(1). To compute the final state, we design the 
profile of the beam (i.e., object) that the gripper 
needs to grasp (see Figure 3). Then, a simulation 
of motion was programmed in SolidWorks. After 
the gripper gets in contact with the beam, the FEA 
is computed. Finally, the FEA returns the total 

contact force 𝐹𝐹𝐸𝐴
(2)

 (measured in kg-f/cm2 units) and 

the constraint violations to the GA system.  

The NAS system comprises of five 
heterogeneous agents: three cloud-based services 
and one NVIDIA Jetson Nano computer. The 
whole system sees a unique co-simulation 
between Python and SolidWorks. Thus, there is 
transparent on how the co-simulation is 
implemented. Specifically, the evaluation of 𝑓 is 
done in parallel to accelerate the whole process. 

4 Results and Discussion 

We use the NAS-based co-simulation system to 
design the soft robotic gripper. For the GA system, 
we manually set up the following parameters: the 
population size 𝑁 = 115, the maximum number of 

epochs 𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ𝑠 =  25, the crossover 
probability 𝑝𝑐𝑜 = 0.5, the mutation probability 

𝑝𝑚𝑢𝑡 = 0.1, and the penalty value 𝑃𝐶 =  0.1. We 
run the experiment six times to see the variability 
of the output grippers designed by the GA system. 
Figure 5 summarizes the final grippers found 
during the six simulations. 

As shown in Figure 5, the output grippers have 
similarities. For example, from results 1–4, the left 
profile is thicker than the right side (the contact 
surface with an object); this gives more room for 
the compressed air and the gripper can bend it 
more. In contrast, results 5 and 6 are weaker in the 
left side showing more stress (cyan color), but it is 
not crucial for the design. Another similar 

characteristic is the cavity formed up the contact 
area. This cavity jams the profile of the beam, 
arising more contact force (green color). 
Furthermore, result 2 is the biggest gripper 
generated among the others.  

About the cameras that give structure to the 
gripper, there is a relationship of shapes between 
the middle and the last cameras. If the middle 
camera has a large surface in the contact area, 
then the last camera is tiny and oval (results 1–3). 
However, if the middle camera has almost no 
surface in the contact area, then the last camera is 
large and forms a triangle-like shape (results 4–6).  

The latter results come with a larger contact 
surface. These observations give us insights about 
that results 4–6 are better for our application. To 
this end, the fitness function evaluation among 
these results ranks result 5 as the best design. The 
results sorted are: 5, 6, 4, 3, 1, and 2, from best 
to  worst. 

Figure 6 shows the sequence from the initial 

state 𝐵(1) to the final state 𝐵(2) of the result 5, as 
an example of the deformation of the soft robotic 
gripper designed by the GA system.  

This sequence shows that the initial position of 
nodes provides the right motion of the soft gripper. 
It means that the deformation makes to the side 
where the object must be grasped. The sequence 
also reveals that the shape of the middle camera 
allows a proper bending of the gripper, while the 
last camera almost remains in the same shape 
during the whole trajectory. The latter is important 
because this camera provides a strong structure to 
the tip of the gripper. 

 

Fig. 4. Implementation of the GA system in co-

simulation with SolidWorks in a NAS server 
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To this end, we prepared a silicone mold in 
negative to the gripper obtained as result 5. This 
mold will be used in the next steps to prototype the 
soft gripper into the robot. Until now, the simulation 
of the silicone mold can be observed in Figure 7. 
This gripper will be replicated to the four legs of 
the  robot. 

As shown, the GA system was able to design a 
soft robotic gripper with the requirements and 
constraints imposed. In terms of the GA, the 
implementation required to use a NAS-based 
system to co-simulate the candidate solution, given 
by the GA, into a CAD software. This simulation 
required the performance of a FEA each time the 
fitness function is evaluated, so the simulation is 
time-consuming. In addition, we run the 
experiment six times, and we observed that the 
results are similar among them, but differences 
were also found.  

The main strength of our methodology is that 
we designed a suitable soft gripper. But it also has 
some limitations. In this methodology, we tuned the 
hyper-parameters of the GA manually; the 
crossover and mutation operators create 
individuals that violate the constraints, increasing 
the time for selecting proper individuals; and the 
fitness function did not consider intermediate 

states of the gripper deformation that might have 
more information to get better designs. Thus, 
improvements to the methodology will be 
considered for further experimentation. 

5 Conclusions 

This paper proposed an AI-assisted design, using 
GA, of a soft gripper for a bioinspired robot. The 
methodology comprised the problem formulation, 
the settings of the GA, and the implementation in a 
NAS-based system for co-simulation between the 
GA module and the CAD software.  

As shown in the results, the GA system properly 
designed a soft robotic gripper. For 
experimentation, we run the GA six times, getting 
similar results in all of them. From the best soft 
gripper design, we analyzed the sequence of 
deformation to determine some characteristics in 
the structure and the contact forces applied. Lastly, 
we used this design to build a silicone mold for 
future manufacturing of the soft grippers to all the 
legs of the robot. 

For future work, we will implement the grippers 
into the robot prototype. In addition, we will 
improve our methodology to obtain better designs 

 

Fig. 5. Final soft robotic grippers designed by the GA system, from results of six times of runs 
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of the soft gripper. In these improvements, we will 
consider other ways to find proper values to the 
hyper-parameters of the GA, study other crossover 
and mutation operators to generate valid 

individuals and add more information of the 
sequence of deformation into the fitness function. 
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