

Comparing Pre-Trained Language Model
for Arabic Hate Speech Detection

Kheir Eddine Daouadi1,*, Yaakoub Boualleg1, Oussama Guehairia2

1 Echahid Cheikh Larbi Tebessi University,

Laboratory of Vision and Artificial Intelligence,
Algeria

2 Mohamed Khider University of Biskra,
Faculty of Sciences and Technology,

Algeria

{kheireddine.daouadi, yaakoub.boualleg}@univ-tebessa.dz, oussama.guehairia@univ-biskra.dz

Abstract. Today, the classification of hate speech in
Arabic tweets has garnered significant attention from
scholars worldwide. Although numerous classification
approaches proposed in response to this interest, two
primary challenges persist are reliance on handcrafted
features and limited performance rates. This paper
addresses the task of identifying Arabic hate speech on
Twitter, aiming to deepen insights into the efficacy of
novel machine-learning techniques. Specifically, we
compare the performance of traditional machine
learning-based approaches with state-of-the-art pre-
trained language models based on Transfer Learning, as
well as deep learning models. Our experiments,
conducted on a benchmark dataset using a standard
evaluation scenario, reveal several key findings. Firstly,
multidialectal pre-trained language models demonstrate
superior performance compared to monolingual and
multilingual variants. Secondly, fine-tuning the pre-
trained large language models significantly enhances
the accuracy of hate speech classification in Arabic
tweets. Our primary contribution lies in achieving
promising results for the corresponding task through the
application of multidialectal pre-trained language models
trained on Twitter data.

Keywords. Arabic hate speech detection, fine-tuning,
transfer learning, AraBERT.

1. Introduction

Nowadays, hate speech has garnered significant
attention from scholars worldwide. Originally, this
form of content was shared via conventional
media outlets.

However, the global availability of the Internet,
facilitated by social media like Twitter, YouTube,
and Facebook, has led to an exponential increase
in users expressing their opinions and sharing
posts. Regrettably, these posts can occasionally
exert adverse psychological impacts on social
media users, with extreme cases even resulting in
instances of suicide [2]. The proliferation of
unregulated text on social media represents a
concerning phenomenon, particularly when such
content contains hate speech. The European
Union has adopted a legislative approach to
address this issue.

Specifically, the Commission of the European
Union has exerted pressure on numerous social
media platforms to adopt a hate speech code. As
part of this code, platforms have committed to
reviewing the 'notifications for elimination of hate
speech' within a 24-hour and facilitating direct
notification to law enforcement agencies.

However, fulfilling this pledge proves
challenging owing to the missed of clarity regarding
the precise scope of hate speech, stemming from
inadequate data collection and systematic
reporting mechanisms.

Consequently, platforms often rely on their user
communities to identify and report instances of
hateful speech.

This task poses significant complexity for social
media platforms. Given the vast volume of data
shared daily, coupled with the absence of efficient
automated systems, the community of natural

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 681–693
doi: 10.13053/CyS-28-2-4130

ISSN 2007-9737

language processing is motivated to undertake
research into hate speech detection.

Additionally, there are a significant demand for
study focused on language than English [3].
Today, researchers are leveraging Twitter data to
propose various approaches for Arabic hate
speech classification.

However, two primary challenges persist
reliance on handcrafted features and limited
performance rates. Automatic classification of
Arabic hate speech using conventional learning
algorithms like Support Vector Machine (SVM),
and Naïve Bayes (NB) has demonstrated
acceptable results.

Nevertheless, they rely on handcrafted features
derived using pre-defined methods like Term
Frequency-Inverse Document Frequency (TF-
IDF), Bag of Word (BoW), and Term Frequency
(TF). Recently, Gated Recurrent Unit (GRU), Long
Short-Term Memory (LSTM), and Convolution
Neural Network (CNN) have already shown
promising results. However, they depend on some
pre-defined word embedding models like
AraBERT, Mazajk, and AraVec.

This paper offers a comparative examination of
various machine-learning methodologies for the
classification of Arabic hate speech on Twitter. We
evaluate the classification models using a
benchmark dataset that contains tweets annotated
for hate speech classification.

The major contributions of this work are briefly
noted as follows:

− We evaluate three suggested DL-based
approaches (Bi-LSTM, LSTM, and CNN) along
with traditional machine learning models (SVM
and NB).

− We compare the accuracy results of the recent
pre-trained language model utilizing
transformer mechanisms. Including multi-
lingual ones (XLM and BERT), a mono-lingual
model (AraBERT), and a multi-dialectal model
(AraBERT-Twitter).

− We compare the performance of the
transformers-based model with our baseline.

The rest of this manuscript is structured as
follows. Section 2 presents the related works. In
Section 3, we discuss the data and methodology.
In Section 4, we focus on the experiments and

evaluation results. In Section 5, we discuss our
main contribution. In Section 6, we conclude
the paper.

2. Related Works

The emergence of the Twitter platform has
encouraged a multitude of research avenues
including topic detection [4], organization detection
[5, 6], and bot detection [6, 7]. Thanks to their
importance, Arabic hate speech classification has
garnered significant attention from
scholars worldwide.

Numerous methods and systems have been
suggested to tackle this challenging classification
task. They follow two major approaches: a
traditional based approach and a deep learning-
based approach.

2.1 Traditional Approaches

In this scenario, conventional classification
methods depend on feature engineering, wherein
texts are transformed into feature vectors before
classification using standard algorithms like SVM
and NB. Examples of conventional approaches are
outlined briefly. The authors in [8] underscore the
significance of utilizing datasets from multiple
platforms to enhance the generalizability of the
classifier in detecting offensive language.

They experimented with SVM and TF-IDF, and
achieved F1 score of 84%. Besides, authors in [9]
explore the influence of preprocessing steps on
offensive language and hate speech classification.
They demonstrate that thorough preprocessing
techniques have notable effects on detection rates.

The best experimental outcomes were achieved
using SVM and BoW, attaining F1 scores of 95%

Table 1. Overview of our interested dataset

Parameters Value

Tweet counts 11634

Words Counts 138.3 K

Unique words 37.9 K

Average words per tweet 11.9

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 681–693
doi: 10.13053/CyS-28-2-4130

Kheir Eddine Daouadi, Yaakoub Boualleg, Oussama Guehairia682

ISSN 2007-9737

and 89% for hate speech and offensive
language, respectively.

Likewise, authors in [10] use the Arabert
embedding with Deep Forest, the best
experimental results showed acceptable macro-
averaged and weighted-average F1-score results
of 63% and 80%, respectively.

Furthermore, authors in [11] employ BoW and
TF-IDF to categorize tweets as offensive or
normal. Their findings indicate that ensemble
classifier (Bagging) outperforms single classifier,
achieving F1 score of 0.88. In similar work, the
authors in [12] categorize tweets into those of
normal, hate, and abusive.

They utilize NB and SVM classifiers with
trigrams, bigrams, and unigrams. The best
experimental outcomes are achieved with NB,
resulting F1 score of 0.896 and 0.744% for
(abusive and hate vs. normal) and (normal vs. hate
vs. abusive) tasks, respectively.

In a distinct approach, researchers in [13] use
Social Graph, tweet-based and profile features to
differentiate non-abusive Twitter accounts from
abusive ones. The best-achieved F1 score was
85% using the NB classifier.

2.2 Deep Learning Approaches

In this context, these methodologies utilize a neural
network capable of automatically learning
representations of input tweet texts by varying the
level of the abstraction. These learned
representations are then leveraged to execute the
classification task. Commonly employed
embedding models include Mazajk and AraVec.

The prevailing DL architectures utilized for
Arabic hate speech classification encompass

BERT, LSTM, and GRU. Below, we briefly outline
some examples of DL approaches. Authors in [14]
categorize tweets into religious, general-hate,
racial, sexism, or normal.

They employ an embedding layer randomly
initialized to learn the word embedding from the
training data. The best experimental outcomes are
achieved using the Hybrid CNN-LSTM model,
resulting in an F1 score of 73%. In a similar study,
the authors in [15] evaluate two AraVec models to
categorize tweets into normal and hateful. The
experiment with Hybrid CNN-LSTM achieved F1
score results of 71.68%.

Likewise, authors in [16] explore the influence
of word embedding and neural networks on the
performance rates across various classification
tasks. They train multiple embedding models and
subsequently employ these models to train several
neural networks for different classification task.

The best experimental outcomes are observed
with Skip-gram and CNN, resulting in F1 scores of
70.80%, 75.16%, and 87.22% for the 6-class, 3-
class, and 2-class classifications, respectively.
Besides, the authors in [18] use ensemble CNN
and Bidirectional LSTM (BiLSTM) classifiers based
on the AraBERT. The best outcome is obtained
using the average-based ensemble approach,
yielded F1 score of 80.23%(BiLSTMs), 84.01%
(CNNs), and 91.12% (CNNs) for 6 class, 3 class,
and binary classification tasks, respectively.

In a similar, authors in [17] use AraVec and
AraBERT to categorize tweets as being normal,
abusive, or hateful. The best performance was
achieved using CNN, yielding F1 score of 0.721. In
a similar, the authors in [19] use CNN with
Multilingual BERT embedding model, yielding F1
score of 75.51%, 78.9%, and 87.03% for 6 class, 3
class, and binary classification tasks, respectively.

Furthermore, authors in [20] utilize a
bidirectional GRU enhanced by an attention layer
alongside the AraVec to identify offensive
language and hate speech. Moreover, they
examine the effect of different oversampling
techniques and pre-processing techniques on the
performance results.

The best outcomes consist of F1 score results
of 0.859% and 0.75 for offensive and hate
speech, respectively.

In a distinct strategy, researchers in [21] fine-
tune the pre-trained AraBERT [47] for classifying

Table 2. Optimized values of hyperparameters explored
in DL models

Parameters CNN LSTM BiLSTM

Size 100 75 75

Dropout 0.25 0.25 0.5

Activation tanh relu relu

Optimizer Adam Adam Adam

Batch size 8 32 64

Learning rate 0.01 0.002 0.002

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 681–693
doi: 10.13053/CyS-28-2-4130

Comparing Pre-Trained Language Model for Arabic Hate Speech Detection 683

ISSN 2007-9737

tweets being offensive, vulgar, hate speech, or
clean. They achieved an F1 score result of 83.2%.

2.3 Gaps and Contributions

After reviewing the current studies, we can realize
that some current pre-trained language models
have not yet been evaluated for hate speech
classification from Arabic tweets. Moreover, there
is no existing study where Monolingual,
Multilanguage, and Multidialectal pre-trained
language models based on transformers are
compared to demonstrate their validity for
classifying Arabic hate speech. In this work, we
rely on transfer learning models due to their
major advantages:

They can capture long-term dependency in
language, while it does not need a large dataset.
Additionally, we conduct a comparative analysis
between deep learning approaches and
conventional approaches as our baselines.

3. Data and Methodology

2.4 Dataset Description

The dataset used in this paper was published in
[14]. The basic characteristics of the corresponding
dataset are presented in Table. 1. The tweets were
collected using a curated list of hashtags known to
elicit hateful content on Twitter. Subsequently, the
retrieved tweets were manually annotated. The
racial hate speech class constitutes a minor subset
of the tweets, whereas the majority belong to the
non-hate class.

2.5 Features Representation

The efficacy of a classification system depends on
how it represents the text. Specifically, for tasks
such as tweet classification, it is essential to
convert the tweet's textual content into an
appropriate representation for learning a classifier.

Hence, in this work, we adopt three distinct
representations, which are outlined briefly below.
The Bag of Words (BoW) [22] method stands as
one of the foremost techniques employed for

information retrieval. BoW centers on counting the
occurrences of words within a given text corpus.

This approach generates a vocabulary
comprising unique words found across all tweets
and utilizes these as feature vectors to indicate the
absence or presence of such words within the
vocabulary. Term Frequency Inverse Document
Frequency (TF–IDF) weighting scheme that
combines Inverse Document Frequency (IDF) with
Term Frequency (TF).

This technique is commonly used for Text
Mining and Information Retrieval, which converts
the tweet to a matrix of integer producing sparse
matrices of the counts [23]. Word Embedding (WE)
[24, 25] stands as an effective technique that has
seen considerable success in recent years. A
feature vectors space consists of unsupervised
word embedding vectors.

These vectors represent the semantic spaces
of each word in a real-valued space. Word
embedding vectors offer a dense representation of
word meaning, where the word is characterized as
a real-valued features vector. Word embedding
models can be produced using static pre-trained
models like word2vec [25], GloVe [26], and
fastText [27], or by employing contextual pre-
trained embedding models like BERT [28].

Table 3. Optimized hyperparameter for the pre-trained
language models (E=Epochs, BS=Batch Size,
LR=Learning Rate)

Model E BS LR

xlm-roberta-base 10 16 3e-5

xlm-roberta-large 5 64 1e-5

bert-base-arabic 3 8 4e-5

bert-large-arabic 2 16 1e-5

bert-base-arabert 4 8 2e-5

bert-large-arabert 5 8 1e-5

base-multilingual-cased 5 8 1e-5

multi-dialect-bert-base-
arabic

4 8 3e-5

albert-base-arabic 3 8 2e-5

albert-large-arabic 3 8 1e-5

base-arabertv02-twitter 4 16 1e-5

large-arabertv02-twitter 2 16 1e-5

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 681–693
doi: 10.13053/CyS-28-2-4130

Kheir Eddine Daouadi, Yaakoub Boualleg, Oussama Guehairia684

ISSN 2007-9737

2.6 Model Description

This subsection presents the classification models.
We outline the conventional learning systems, the
deep learning architectures, and the transfer
learning models we have used.

Traditional machine learning. We evaluate two
models most commonly used the Multinomial
Naïve Bayes and Support Vector Machine, which
predict classes based on a combination
of features.

Support Vector Machine (SVM) [29] most well-
known classifiers since it is highly accurate and
effective in text classification. This classifier offers
the advantage of typically performing well even
when trained with a limited amount of data [30]. For
the hyperparameter optimization, we experiment
with various values: 'C' = [1, 0.01, 10, 0.1],
'class_weight' = [balanced, None], 'penalty' = [l2,
l1]. Following the optimization, we utilize the linear
SVM classifier with its default configuration.

Multinomial Naïve Bayes (MNB) [31] is one of
the most well-known classifiers since it is highly
accurate and effective in text classification.

It operates by considering the frequency of
such word to generate in a multinomial fashion the
data distribution. For the hyper-parameter
optimization, we evaluate the values of: 'Alpha' =
[0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
and 'fit_prior' = [True, False]. After optimization,
the default parameters of the classifier were used.
To derive feature vectors for inclusion for such
classifiers, we utilize the three types of tweet

representation previously discussed (i.e. Word
Embedding, TF-IDF, and BoW).

Deep Learning. The deep learning methods
explored in this study are briefly described in the
following. Convolution Neural Network (CNN)
stands as the most effective neural network model,
offering an alternative approach to traditional
feedforward neural networks. In CNN architecture,
different layers are sparsely connected, linking a
local region of an input layer with neurons in the
subsequent layer.

The work by [32] was the first that applied CNN
to text classification, wherein words are
transformed into numerical values via word
embedding. A 2-dimensional matrix is formed from
the tweet text, where each row is a word vector in
that tweet. The typical CNN architecture
encompasses several stages, including a fully
connected layer, a pooling layer, and a
convolutional layer.

Recurrent Neural Network (RNN) [33] is
another class of neural network to address the
challenge of sequential learning faced by the
conventional neural network. The connections
among nodes construct the directed graph over the
temporal sequences, enabling the model to
highlight the dynamic temporal behaviors.

Long Short-Term Memory (LSTM) represents
the most widely recognized variant, as introduced
by [34], and trained via backpropagation through
time. LSTM networks are equipped with memory
blocks, enabling them to learn the temporal
sequence and their long-terms dependency
effectively. On the other hand, Bi-directional Long
Short-Terms Memory (BiLSTMs) facilitate the two-
way information flow. This architecture involves
training two LSTM network simultaneously, one for
the forward and one for the reverse direction [35].

In this scenario, we use word embedding as a
feature representation. We particularly use Aravec
[36], which consists of 300-dimensional vectors for
each word.

Transfer Learning. In this scenario, the process is
to adjust a pre-trained language model to a new
dataset through the transfer of the
learned features. In other words, a technique to
improve learning of a new task by transferring
knowledge from the learned task [37].

Table 4. F1 score results of both traditional and
DL classifiers

Model Macro Weighted

NB-BoW 43.47 70.98

SVM-BoW 48.77 73.07

NB-TF_IDF 28.68 65.02

SVM-TF_IDF 48.29 72.88

NB-AraVec 22.97 61.52

SVM- AraVec 38.78 63.29

CNN-AraVec 50.49 73.57

LSTM-AraVec 49.72 73.26

BiLSTM-AraVec 51.54 74.13

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 681–693
doi: 10.13053/CyS-28-2-4130

Comparing Pre-Trained Language Model for Arabic Hate Speech Detection 685

ISSN 2007-9737

The transformer operates as an attention
mechanism, enabling the learning of contextual
relationships between words within a text. It
includes two primary components: the encoder,
which processes the textual input; and the decoder
generates estimates for the corresponding
task [38].

Unlike directional models that sequentially
process textual input (e.g., right-to-left or left-to-
right), the encoder of the transformer
simultaneously processes the entire sequence.

This approach enables model to capture the
word context based on their surrounding context as
a whole. The authors in [38] achieved an
enhancement in the translation task with the use of
the attention mechanism avoiding relying on
RNN, paving the way for additional
transformer architectures.

Bidirectional Encoder Representations from
Transformers (BERT) is the first transformer-based
language model introduced by Google. The model
is pre-trained on large unsupervised text data
based on two self-supervision tasks:

Masked Language Modeling and Next
Sentence Prediction. In the first task,
approximately 0.15 of the words in such sentences
were masked at random, and the model forecast
the masked words.

The second task involves the classification of
two sentences, wherein the model was tasked with
discerning the original orders between the two
sentences, thereby enhancing document-
levels understanding.

Alternatively, the authors in [39] proposed a
cross-lingual language model refer as XLM,
improving BERT while attaining remarkable
achievements across different machine translation
and cross-lingual classification tasks.

Unlike BERT, which is not adjusted for multi-
lingual tasks due to limited shared vocabulary
across languages, XLM tackles this challenge by
processing all languages using a shared
vocabulary generated based on a preprocessing
method called Byte Pair Encoding [40, 41].
Additionally, XLM uses the dual-language training
mechanism alongside BERT so as to learn inter-
language word relationship effectively.

3 Experiment and Evaluation

This section outlines the experimental procedures
and the evaluation conducted to assess the
efficacy of the pre-trained language model. By
conducting experiments on a recently established
benchmark Twitter dataset, aiming to address
these research questions:

− RQ1: Can a multi-dialectal pre-trained
language model, based on Twitter data,
improve hate speech detection accuracy in
Arabic tweets?

− RQ2: Does fine-tuning a pre-trained language
model enhance hate speech detection
accuracy in Arabic tweets?

First, we present the pre-processing step we
have applied to the chosen datasets as well as the
hyperparameters used for DL architectures and
transfer learning models. Then, we discuss the
evaluation metrics and finally present the achieved
performance results.

3.1 Tweet Preprocessing

The preprocessing stage plays a pivotal role in
natural language processing systems, particularly

Table 5. F1 score results of pre-trained language
models before fine-tuning

Model Macro Weighted

xlm-roberta-base 31.64 67.13

xlm-roberta-large 29.03 65.99

bert-base-arabic 51.90 74.96

bert-large-arabic 52.54 74.82

bert-base-arabert 54.06 75.74

bert-large-arabert 53.98 75.22
base-multilingual-
cased

47.12 72.57

multi-dialect-bert-
base-arabic

63.38 80.85

albert-base-arabic 57.75 78.10

albert-large-arabic 59.27 78.59
base-arabertv02-
twitter

57.23 77.84

large-arabertv02-
twitter

64.07 80.82

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 681–693
doi: 10.13053/CyS-28-2-4130

Kheir Eddine Daouadi, Yaakoub Boualleg, Oussama Guehairia686

ISSN 2007-9737

in text classification [42]. They contain elongated
words, hashtags, user mentions, and expressions
that make tokenization difficult. To mitigate these
challenges, we implement the following steps:

− Removing tweet features: This involves
eliminating user URLs, mentions '@', hashtag
symbols '#', punctuation, the word "RT",
special characters (emoticons), and
numerical characters.

− Removing non-Arabic letters, Arabic stop
words, diacritics and new lines.

− Eliminating repeated characters: like (مرحباااااا)
which means "Helloooooo", to be (مرحبا),
which is "Hello".

− Arabic letters standardization:

− The letter (Taa Marbouta) (ة), which can be
mistaken and written as (ه), we standardize
it to (ه).

− The Letter (Alef) (أ), which has the
following forms (أ-إ-آ-ا), all the four letters
were standardized into (ا).

− The Arabic dash that is used for expanding
words like in (مرحبـــــا) to be (مرحبا).

− The Letter (Alef Maqsora) (ى) has been
standardized to (ي).

3.2 Hyperparameter Optimization for DL
Models

The DL architectures evaluated in this work contain
numerous hyperparameter, which necessitate
estimation to achieve optimal results. To achieve
this, we used the performance of a validation
dataset to select the most suitable hyperparameter
for the test dataset. For the hyperparameter
optimization, we conduct 10-folds cross-validation
using the corresponding dataset.

We employ the test data to make predictions
while evaluating the predictions based on the
optimized hyperparameters.

Table 2 illustrates the optimal hyperparameter
for the corresponding model (LSTM, CNN, and
BiLSTM). To avoid over-fitting during the
supervised training of a neural network, we utilize
early stopping by ending the training procedure
before the converging of the weights.

3.3 Transfer Learning Fine-Tuning

The transformers-based models used in this work
are pre-trained trained based on formal general
corpora (Arabert, XLM-RoBERTa, and
Multilanguage-BERT) and based on informal
corpora (i.e. AraBERT-Twitter).

Thus, it is important to study the contextual
information derived from the pre-trained layers
while fine-tuning it for our interested downstream
task. The fine-tuning consists of updating weights
using the annotated dataset. BERT takes a
sequence of 512 tokens as input and outputs 12
self-attention heads and a 768-dimensional vector.

For the optimization, we use the Adam
optimizer [44,45] which performs well for natural
language processing and the BERT model
specifically. Additionaly, we evaluate other
multilingual model, we chose the xlm-roberta-base
and xlm-roberta-large checkpoints which include
100 languages.

For the purposes of fine-tuning, authors in [46]
have recommended choosing from the values of
the following parameters: number of epochs, batch
size, learning rate, and maximum sequence. We
fine-tuned the corresponding models by evaluating
different parameters as presented in Table 3. We

Table 6. F1 score results of pre-trained language
models after fine-tuning

Model Macro Weighted

xlm-roberta-base 52.57 74.57

xlm-roberta-large 48.98 72.74

bert-base-arabic 56.43 76.71

bert-large-arabic 55.30 75.68

bert-base-arabert 56.59 76.89

bert-large-arabert 57.05 76.65

base-multilingual-
cased

48.91 73.26

multi-dialect-bert-base-
arabic

65.95 81.86

albert-base-arabic 61.26 79.20

albert-large-arabic 62.21 79.74

base-arabertv02-twitter 70.76 84.69

large-arabertv02-twitter 69.71 84.45

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 681–693
doi: 10.13053/CyS-28-2-4130

Comparing Pre-Trained Language Model for Arabic Hate Speech Detection 687

ISSN 2007-9737

set the maximum sequence length as 64 for all
the experiments.

3.4 Evaluation Metrics

To assess the effectiveness of the corresponding
approaches, we will use various evaluation
measures capable of accurately assessing the
model's performance. Given that hate speech
classification poses the imbalanced learning
challenge, we will particularly emphasize the
Macro-average and Weighted-average metrics to
compute comprehensive performance metrics.

These metrics are presented as follow:
Precision (P), referred to as positive predictive
value, indicates the proportion of correctly
classified positive instances out of all instances
classified as positive. For example, the Precision
of the Normal class is estimated as follows:

PNormal = CCNormal / TCNormal, (1)

where CCNormal is the Correctly Classified as
Normal and TCNormal is the Total Classified as
Normal. Recall (R) (also known as sensitivity), is
the division of correctly predicted positive
instances to the total positive instances. For

example, the Recall of the Normal class is
calculated as follows:

RNormal = CCNormal / TNNormal, (2)

where CCNormal is the number of Correctly
Classified as Normal, and TNNormal is the Total
number of Normal instances. F1 measure (F1) is
the harmonic mean between the Precision and
Recall. For example, the F1 of the Normal class is
estimated as follows:

3.5 Results Analysis

In this subsection, we explore the achieved results
of the approaches we evaluated. We employed the
tenfold cross-validation method to evaluate
performance metrics. This method involved
splitting the dataset into 10 equally sized parts
while maintaining a balanced representation of
each class from the original dataset. One part was
designated for testing, while the remaining parts
were utilized for training.

This process was repeated 10 times, and the
performance metric scores were averaged across
the 10 iterations of cross-validation. Table 4
presents the prediction performances attained for
both conventional machines leaning and DL
classifiers. We utilized word embedding as an input
feature vector in all models.

In the case of traditional machine learning
approaches, also we tested also the statistical-
features BoW and TF–IDF including SVM-BoW,
SVM-TF-IDF, MNB-BoW, and MNB-TF–IDF. In
most traditional classifiers, BoW achieves better
performance results than the TF-IDF and word
embedding features.

The baseline experiments (DL and traditional
learning approaches) did not perform satisfactorily
due to an insufficient number of training
instances. The DL-based approaches achieve
better performance results than conventional
machine learning approaches.

These findings are in line with the majority of
related works, where DL based approaches found
to have comparable accuracy results to traditional
learning algorithms on the corresponding task.

Table 7. Comparison of F1 score results with the latest
state-of-the-art classification approaches (N=Non-hate
speech, S=Sexism, Re=Religious, Ra=Racial,
M=Macro-averaged)

 N S Re G Ra M

A 0.85 0.21 0.10 0.12 0.09 0.27

B 0.86 0.42 0.50 0.25 0.24 0.45

C 0.87 0.41 0.54 0.30 0.29 0.48

D 0.86 0.43 0.59 0.31 0.25 0.49

E 0.85 0.42 0.56 0.45 0.20 0.50

F 0.87 0.50 0.64 0.49 0.27 0.55

G 0.86 0.44 0.59 0.47 0.22 0.52

H 0.87 0.37 0.47 0.28 0.26 0.45

I 0.87 0.49 0.56 0.47 0.24 0.53

J 0.88 0.49 0.67 0.41 0.37 0.57

K 0.89 0.50 0.73 0.42 0.32 0.57

O 0.92 0.70 0.80 0.61 0.50 0.71

F1Normal= 2(PNormal × RNormal) / (PNormal+ RNormal). (3)

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 681–693
doi: 10.13053/CyS-28-2-4130

Kheir Eddine Daouadi, Yaakoub Boualleg, Oussama Guehairia688

ISSN 2007-9737

As highlighted in Table 5, the pre-trained
language model before fine-tuning substantially
outperforms the baseline systems. It is important to
note that multidialectal-based transformer models
achieve better results than monolingual and
multilingual-based models, yielding F1 score
results of 63.38% and 80.85% for Macro averaged
and Weighted averaged, respectively.

Table 6 shows the accuracy results of the pre-
trained language model after fine-tuning. It is
important to note that the fine-tuning of the pre-
trained language model improves the
accuracy results. Additionally, the multidialectal-
based models outperform monolingual and
multilingual ones, yielded F1 score results of
70.76% and 84.69% for Macro averaged and
Weighted averaged, respectively.

Subsequently, we compare the performance of
fine-tuned multidialectal-based model base-
arabertv02-twitter (O) with three existing
conventional machine learning approaches:

a. [12], which leveraged N-grams with NB.

b. [11], which combine TF–IDF and BoW
with Bagging.

c. [8], which use TF-IDF with SVM, and seven
existing DL-based approaches, namely.

d. [14], that learned word Embedding using the
training data and use the hybrid CNN-LSTM
for classification.

e. [19], Multilingual BERT embedding model
with CNN.

f. [20], which use AraVec and bidirectional GRU
augmented with attention layer.

g. [17], Which used AraBERT and AraVec
embedding with CNN.

h. [15], which used AraVec and hybrid
CNN-LSTM.

i. [18], which used AraBERT embedding and
ensemble CNNs.

j. [21], which fine-tuned the pre-trained
AraBERT language model.

k. [47], which use base-arabertv02-twitter without
fine tuning. When comparing our approach
with other state-of-the-art classifiers presented
in Table 7, our model exhibits the
highest Accuracy.

Unlike CNN and LSTM, our method does not
necessitate a substantial quantity of labeled
dataset to achieve promising performance result;
this is a common requirement in many DL
approaches. Moreover, in contrast to NB and SVM,
our model eliminates the need to extract and
design handcrafted features.

Given the nature of social media data,
characterized by frequent usage of slang,
abbreviations, and informal language, our method
effectively processes the input words while
considering their contextual surroundings.

Experimental results demonstrated that our
proposition outperforms existing approaches by a
difference between [8% and 21%] and [14% and
44 %] in weighted averaged and macro averaged
F1 scores respectively. Comparing these results,
we highlight the significance of multidialectal-
based models trained on Twitter data since those
models achieve the best results.

Furthermore, we highlight the significance of
parameter tuning to discover the optimal
hyperparameter values. Subsequently, we conduct
an error analysis on the best pre-trained language
models. For each model, we scrutinize tweets that
were misclassified.

Furthermore, we examine tweets that were
misclassified by all four models. Table 8 showed
the number of tweets misclassified by such pre-
trained language model.

The four best accurate models (bert-base-
arabertv02-twitter (X), bert-large-arabertv02-twitter
(Y), bert-large-arabic (W), and bert-base-arabert
(Z)) predicted the same wrong labels 726 times out
of 5217.Regarding the best system bert-base-

Table 8. The number of misclassified tweets by best
pre-trained language model. (TE = Total Error,
Q = All in Common)

 N S Re G Ra TE

X 604 201 162 571 247 1785

Y 631 240 185 535 203 1794

W 890 183 166 536 176 1951

Z 713 240 160 545 243 1865

Q 334 45 30 160 57 726

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 681–693
doi: 10.13053/CyS-28-2-4130

Comparing Pre-Trained Language Model for Arabic Hate Speech Detection 689

ISSN 2007-9737

arabertv02-twitter, the Non-HS instances
mislabeled are biased towards General-HS; the
Sexism-HS, Religious-HS, Racial-HS, and
General-HS instances mislabeled are biased
towards Non-HS. Fig. 1 shows the confusion
matrix of the optimized system.

4 Discussion

Although quite effective, current Arabic hate
speech classification approaches are costly, as
they need a huge number of labeled tweets to
attain promising accuracy results. The tweets
labeling process is very expensive and labor-
intensive while hindering the deployment of
artificial intelligence systems in the industry.

In contrast, our proposition does not require a
huge number of labeled datasets. Furthermore, the
machine-learning approaches use hand-crafted
features, which have confronted data sparseness
and the curse of dimensionality. Conversely, ours
automatically learn features from the textual data.

As can be shown in Table 4, the minor
performance results are obtained using the
traditional learning classifiers followed by the deep
learning classifiers, while the major accuracy
results go for transfer learning-based classifiers. In
Tables 5 and 6, we can notice that the fine-tuning

of pre-trained language models improves the
accuracy of results.

Furthermore, the multidialectal pre-trained
language models based on Twitter data outperform
monolingual and multilingual ones. In Table 7, we
can notice that our proposition outperformed the
latest state-of-the-art. The lower performance
results are observed for the racial class, and the
higher performance are obtained for the normal
class. This disparity can be attributed to the
significant class label imbalance present in
the dataset.

6 Conclusion

Today, the detection of hate speech from Arabic
tweets has garnered significant attention from
scholars worldwide.

In this paper, we evaluate Arabic hate speech
classification by utilizing transfer learning based on
a pre-trained language model. We conducted
extensive experiments following three approaches:
two conventional machine-learning approaches,
three DL approaches, and twelve transfer-
learning approaches.

The results achieved by the transfer learning
approaches outperform traditional and deep
learning models utilized in this work. The major

Fig. 1. Confusion matrix of our proposition

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 681–693
doi: 10.13053/CyS-28-2-4130

Kheir Eddine Daouadi, Yaakoub Boualleg, Oussama Guehairia690

ISSN 2007-9737

contribution of this work is the evaluation of the
recent pre-trained language models for Arabic hate
speech classification. Specifically, we differentiate
the performance of multilingual models with
monolingual and multidialectal ones.

Experimental results show that the
multidialectal models trained on Twitter data
outperformed monolingual and multilingual models
trained on general data. In our future work, we
intend to pursue various avenues. Primarily, we
aim to refine the contextual embedding model, with
a focus on adapting its vocabulary for the hate
speech classification task. A costlier technique
could be to consider training a novel AraBERT
model that is customized for Arabic hate
speech classification.

Additionally, we intend to evaluate various data
augmentation approaches to overcome the
challenges of imbalanced data. From a research
standpoint, we will utilize our proposed systems to
examine Arabic Twitter discussions on various
subjects to determine the extent of hate speech
conversations with public discourse and to
understand how their capabilities and
sophistication evolve.

References

1. Council of Europe (2016). ECRI general
policy recommendation on combating hate
speech. European Commission against
Racism and Intolerance General Policy
Recommendation, No. 15. hudoc.ecri.coe.
int/eng?i=REC-15-2016-015-ENG.

2. Hinduja, S., Patchin, J. W. (2010). Bullying,
cyberbullying, and suicide. Archives of Suicide
Research, Vol. 14, No. 3, pp. 206–221. DOI:
10.1080/13811118.2010.494133.

3. Fortuna, P., Nunes, S. (2018). A survey on
automatic detection of hate speech in text.
ACM Computing Surveys, Vol. 51, No. 4, pp.
1–30. DOI: 10.1145/3232676.

4. Daouadi, K. E., Rebaï, R. Z., Amous, I.
(2021). Optimizing semantic deep forest for
tweet topic classification. Information Systems,
Vol. 101, pp. 101801. DOI: 10.1016/j.is.
2021.101801.

5. Daouadi, K. E., Rebai, R. Z., Amous, I.
(2018). Organization vs. individual: Twitter
user classification. Conference on Language
Processing and Knowledge Management,
pp. 1–8.

6. Daouadi, K. E., Rebaï, R. Z., Amous, I.
(2019). Organization, bot, or human: towards
an efficient twitter user classification.
Computación y Sistemas, Vol. 23, No. 2,
pp. 273–279. DOI: 10.13053/cys-23-2-3192.

7. Daouadi, K. E., Rebaï, R. Z., Amous, I.
(2019). Bot detection on online social networks
using deep forest. Artificial Intelligence
Methods in Intelligent Algorithms, Vol. 985,
pp. 307–315. DOI: 10.1007/978-3-030-19810-
7_30.

8. Chowdhury, S. A., Mubarak, H., Abdelali, A.,
Jung, S., Jansen, B. J., Salminen, J. (2020).
A multi-platform arabic news comment dataset
for offensive language detection. Proceedings
of the 12th Language Resources and
Evaluation Conference, pp. 6203–6212.

9. Husain, F. (2020). OSACT4 shared task on
offensive language detection: Intensive
preprocessing-based approach. Proceedings
of the 4th Workshop on Open-Source Arabic
Corpora and Processing Tools, with a Shared
Task on Offensive Language Detection, pp.
53–60.

10. Daouadi, K. E., Boualleg, Y., Guehairia, O.
(2023). Deep random forest and araBert for
hate speech detection from Arabic tweets.
JUCS - Journal of Universal Computer
Science, Vol. 29, No. 11, pp. 1319–1335. DOI:
10.3897/jucs.112604.

11. Husain, F. (2020). Arabic offensive language
detection using machine learning and
ensemble machine learning approaches. DOI:
10.48550/ARXIV.2005.08946.

12. Mulki, H., Haddad, H., Ali, C. B., Alshabani,
H. (2019). L-HSAB: A Levantine twitter dataset
for hate speech and abusive language.
Proceedings of the Third Workshop on abusive
Language Online. DOI: 10.18653/v1/w19-
3512.

13. Abozinadah, E. A., Jones, J. H. (2017). A
statistical learning approach to detect abusive
twitter accounts. Proceedings of the

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 681–693
doi: 10.13053/CyS-28-2-4130

Comparing Pre-Trained Language Model for Arabic Hate Speech Detection 691

ISSN 2007-9737

International Conference on Compute and
Data Analysis, pp. 6–13. DOI: 10.1145/309324
1.3093281.

14. Al-Hassan, A., Al-Dossari, H. (2021).
Detection of hate speech in Arabic tweets
using deep learning. Multimedia Systems, Vol.
28, No. 6, pp. 1963–1974. DOI: 10.1007/s005
30-020-00742-w.

15. Faris, H., Aljarah, I., Habib, M., Castillo, P.
(2020). Hate speech detection using word
embedding and deep learning in the Arabic
language context. Proceedings of the 9th
International Conference on Pattern
Recognition Applications and Methods,
pp. 453–460. DOI: 10.5220/000895400453
0460.

16. Alsafari, S., Sadaoui, S., Mouhoub, M.
(2020). Effect of word embedding models on
hate and offensive speech detection. arXiv.
DOI: 10.48550/ARXIV.2012.07534.

17. Alghanmi, I., Anke, L. E., Schockaert, S.
(2020). Combining BERT with static word
embeddings for categorizing social media.
Proceedings of the 6th Workshop on Noisy
User-generated Text. DOI: 10.18653/v1/2020.
wnut-1.5.

18. Alsafari, S., Sadaoui, S., Mouhoub, M.
(2020). Deep learning ensembles for hate
speech detection. IEEE 32nd International
Conference on Tools with Artificial Intelligence,
pp. 526–531. DOI: 10.1109/ictai50040.2020.
00087.

19. Alsafari, S., Sadaoui, S., Mouhoub, M.
(2020). Hate and offensive speech detection
on Arabic social media. Online Social
Networks and Media, Vol. 19, pp. 100096.
DOI: 10.1016 /j.osnem.2020.100096.

20. Haddad, B., Orabe, Z., Al-Abood, A.,
Ghneim, N. (2020). Arabic offensive language
detection with attention-based deep neural
networks. Proceedings of the 4th Workshop on
Open-Source Arabic Corpora and Processing
Tools, with a Shared Task on Offensive
Language Detection, pp. 76–81.

21. Mubarak, H., Rashed, A., Darwish, K.,
Samih, Y., Abdelali, A. (2021). Arabic
offensive language on twitter: analysis and
experiments. Proceedings of the 6th Arabic

Natural Language Processing Workshop,
pp. 126–135.

22. De-Sousa-Pereira, A. B., Firmino-Alves, A.
L., De-Oliveira, M. G., Baptista, C. D. (2018).
Using supervised classification to detect
political tweets with political content.
Proceedings of the 24th Brazilian Symposium
on Multimedia and the Web, pp. 245–252.
DOI: 10.1145/3243082.3243113.

23. Garreta, R., Moncecchi, G. (2013). Learning
scikit-learn: Machine learning in python. Packt
Publishing Ltd.

24. Yang, X., Macdonald, C., Ounis, I. (2017).
Using word embeddings in twitter election
classification. Information Retrieval Journal,
Vol. 21, No. 2-3, pp. 183–207. DOI: 10.1007/s
10791-017-9319-5.

25. Mikolov, T., Sutskever, I., Chen, K.,
Corrado, G., Dean, J. (2013). Distributed
representations of words and phrases and
their compositionality. Advances in Neural
Information Processing Systems, Vol. 26,
pp. 3111–3119.

26. Pennington, J., Socher, R., Manning, C.
(2014). Glove: global vectors for word
representation. Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing, pp. 1532–1543. DOI:
10.3115/v1/D14-1162.

27. Joulin, A., Grave, E., Bojanowski, P.,
Mikolov, T. (2017). Bag of tricks for efficient
text classification. Proceedings of the 15th
Conference of the European Chapter of the
Association for Computational Linguistics,
Vol. 2, pp. 427–431.

28. Devlin, J., Chang, M., Lee, K., Toutanova, K.
(2019). BERT: Pre-training of deep
bidirectional transformers for language
understanding. Proceedings of the 2019
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Vol. 1,
pp. 4171–4186. DOI: 10.18653/v1/N19-1423.

29. Cortes, C., Vapnik, V. (1995). Support-vector
networks. Machine Learning, Vol. 20, No. 3,
pp. 273–297. DOI: 10.1007/bf00994018.

30. Ruiz, A. M., Cornet, A., Shimanoe, K.,
Morante, J. R., Yamazoe, N. (2005). Effects

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 681–693
doi: 10.13053/CyS-28-2-4130

Kheir Eddine Daouadi, Yaakoub Boualleg, Oussama Guehairia692

ISSN 2007-9737

of various metal additives on the gas sensing
performances of tio2 nanocrystals obtained
from hydrothermal treatments. Sensors and
Actuators B: Chemical, Vol. 108, No. 1-2,
pp. 34–40. DOI: 10.1016/j.snb.2004.09.045.

31. Mccallum, A., Nigam, K. (1998). A
comparison of event models for Naive Bayes
text classification. AAAI Conference on
Artificial Intelligence, pp. 41–48.

32. Kim, Y. (2014). Convolutional neural networks
for sentence classification. Proceedings of the
Conference on Empirical Methods in Natural
Language Processing, pp. 1746–1751. DOI:
10.3115/v1/D14-1181.

33. Mikolov, T., Karafiát, M., Burget, L.,
Černocký, J., Khudanpur, S. (2010).
Recurrent neural network based language
model. Proceedings of the 11th Interspeech,
pp. 1045–1048. DOI: 10.21437/Interspeech.
2010-343.

34. Hochreiter, S., Schmidhuber, J. (1997).
Long short-term memory. Neural Computation,
Vol. 9, No. 8, pp. 1735–1780. DOI: 10.1162/
neco.1997.9.8.1735.

35. Schuster, M., Paliwal, K. (1997). Bidirectional
recurrent neural networks. IEEE Transactions
on Signal Processing, Vol. 45, No. 11, pp.
2673–2681. DOI: 10.1109/78.650093.

36. Soliman, A. B., Eissa, K., El-Beltagy, S. R.
(2017). AraVec: A set of Arabic word
embedding models for use in Arabic NLP.
Procedia Computer Science, Vol. 117, pp.
256–265. DOI: 10.1016/j.procs.2017.10.117.

37. Torrey, L., Shavlik, J. (2010). Transfer
learning. Handbook of Research on Machine
Learning Applications and Trends, pp. 242–
264. DOI: 10.4018/978-1-60566-766-9.ch011.

38. Vaswani, A., Shazeer, N., Parmar, N.,
Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., Polosukhin, I. (2017). Attention is
all you need. Advances in Neural Information
Processing Systems, Vol. 30, pp. 5998–6008.

39. Conneau, A., Lample, G. (2019). Cross-
lingual language model pretraining. Advances

in Neural Information Processing Systems,
Vol. 32, pp. 7057–7067.

40. Gage, P. (1994). A new algorithm for data
compression. C Users Journal, Vol. 12, No. 2,
pp. 23–38.

41. Sennrich, R., Haddow, B., Birch, A. (2016).
Neural machine translation of rare words with
subword units. Proceedings of the 54th Annual
Meeting of the Association for Computational
Linguistics, pp. 1715–1725. DOI: 10.18653/v1/
P16-1162.

42. Uysal, A. K., Gunal, S. (2014). The impact of
preprocessing on text classification.
Information Processing and Management, Vol.
50, No. 1, pp. 104–112. DOI: 10.1016/j.ipm.20
13.08.006.

43. Hutto, C., Gilbert, E. (2014). Vader: a
parsimonious rule-based model for sentiment
analysis of social media text. Proceedings of
the International AAAI Conference on Web and
Social Media, Vol. 8, No. 1, pp. 216–225. DOI:
10.1609/icwsm.v8i1.14550.

44. Kingma, D. P., Ba, J. (2014). Adam: A method
for stochastic optimization. 3rd International
Conference for Learning Representations,
pp. 1–15. DOI: 10.48550/ARXIV.1412.6980.

45. Zhang, J., Karimireddy, S. P., Veit, A., Kim,
S., Reddi, S. J., Kumar, S., Sra, S. (2020).
Why ADAM beats SGD for attention models.
Proceedings of the International Conference
on Learning Representations, pp. 1–18.

46. Sun, C., Qiu, X., Xu, Y., Huang, X. (2019).
How to fine-tune Bert for text classification?
Chinese Computational Linguistics, pp. 194–
206. DOI: 10.1007/978-3-030-32381-3_16.

47. Antoun, W., Baly, F., Hajj, H. (2020).
AraBERT: Transformer-based model for
Arabic language understanding. Proceedings
of the 4th Workshop on Open-Source Arabic
Corpora and Processing Tools, with a Shared
Task on Offensive Language Detection, pp.
9– 15.

Article received on 26/01/2022; accepted on 24/04/2024.
*Corresponding author is Kheir Eddine Daouadi.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 681–693
doi: 10.13053/CyS-28-2-4130

Comparing Pre-Trained Language Model for Arabic Hate Speech Detection 693

ISSN 2007-9737

