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Abstract. Let K be a propositional formula and
let φ be a query, the propositional inference problem
K |= φ is a Co-NP-complete problem for propositional
formulas without restrictions. We show the existence
of polynomial-time cases for some fragments of
propositional formulas K and φ that are different from
the already known case of Horn formulas. For example,
in the case that K is a formula in the fragment Krom
or Horn or Monotone, then K |= φ can be decided in
polynomial-time for any CNF φ.

Given two conjunctive normal forms (CNF’s) K and
φ, when K 6|= φ, our proposal builds a minimal set of
independent clauses S. The falsifying assignments of
S are exactly the subset of models of K, which are not
models for φ. In this way, the CNF S could extend the
initial formula K in such a way that repair the inference,
it is (S ∪K) |= φ is held.

Keywords. Propositional inference, repairing inference,
reasoning s, NP-complete, Co-NP-complete.

1 Introduction

The primary goal of complexity theory is to classify
computational problems according to their inherent
computational complexity. A central issue in de-
termining these frontiers has been the satisfiability
problem (SAT) in propositional calculus.

The case 2-SAT, which consists in determining
the satisfiability of propositions in two Conjunctive
Normal Forms (2-CNF), is an important tractable
case of SAT (see e.g. [2, 5, 12] for polynomial-time
algorithms for 2-SAT). Meanwhile, if F is a 3-CNF
formula, then the determination of the satisfiability
of F is a classical NP-complete problem.

The analysis on the algorithms solving SAT
problems has been helpful for delimiting frontiers
between tractable and non-tractable problems.

In fact, the 2-CNF (Krom formulas) is a fragment
of propositional formulas that has been very useful
to clarify the computational time-complexity for
different types of problems. Variations of the 2-SAT
problem (i.e. in the optimization and counting area)
have been key for establishing frontiers between
tractable and intractable problems. Some problems
related to 2-SAT remain intractable such as:
Max-2SAT (finding an assignment that maximizes
the number of satisfying clauses of F ), Min-2SAT
(finding a model of F with a minimum number
of true variables) [12], and #2SAT (counting the
number of models of F ) [1, 6].

SAT problem has many applications and it
has been shown to be fundamental for solving
deductive reasoning problems [15, 17]. The
automation of deductive reasoning is a basic
and challenging logic problem [18]. Deductive
propositional reasoning is usually abstracted
as follows: Given a propositional formula K
(capturing the knowledge about a domain), and
a propositional formula φ (a query capturing the
situation at hand), then the goal of reasoning is to
determine whether K implies φ, which is presented
as K |= φ. This is known as the propositional
inference problem (or the entailment problem).

We analyze here the computational complexity
of the propositional inference problem K |=
φ, considering K and φ as conjunctive normal
formulas (CNF).
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We want to determine the characteristics on the
formula K such that K |= φ is performed efficiently
and determine the frontier when this inference
problem changes to be intractable.

Since automatic reasoning is one of the purer
forms of human intellectual thought, the automa-
tion of such reasoning by means of computers
is a basic and challenging scientific problem
[18]. Thus, one of the fundamental problems in
automatic reasoning is the propositional inference
problem. This last problem is a relevant task in
many other issues such as: estimating the degree
of belief, belief revision, abductive explanation,
logical diagnosis, and many other procedures in
Artificial Intelligence (AI) applications.

Inference operations are present not only in logic
but in many areas of mathematics. The concept
of logical inference has proven to be more fruitful
for the development of a general logic theory than
the concept of theorem and of logical validity.
Abstract inference operations are known as closure
operators in universal algebra and lattice theory
[13]. In this research, we consider the inference
problem K |= φ from an algorithmic point of
view, instead of the algebraic perspective that
Beyersdorff [3] used.

The current techniques that are most used to
automatically check K |= φ, when K and φ
are CNF’s, are the resolution method [4] and the
systems type Gentzen [11]. However, these
processes have not only an inherent exponential
complexity, but also they lack of a recovery
proposal when K 6|= φ. On the contrary, our
proposal for checking K |= φ allows to build a new
CNF H for repairing K 6|= φ by (K ∪ H) |= φ.
Notice that K ∪ H continues as a CNF; therefore,
our proposal is closed on conjunctive forms.

Contribution In our main results, we show that
apart from the fragment of Horn formulas, there
are other fragments of the propositional calculus
where K |= φ is polynomial-time decidable. We
also present an algorithm forK |= φ, whenK and φ
are two CNF’s without restrictions. While K |= φ is
been checked, our proposal also builds a minimal
set of independent clauses S such that if K 6|= φ,
then S repairs the inference, that is, (K ∪ S) |= φ.

This is key for applications of automatic rea-
soning in belief revision and abductive explanation
problems [7].

The remainder of this paper is organized as
follows. In the following section some preliminaries
are established. Section 3 introduces the main
data structures to be used in this work. In this
section also is analyzed the first simple cases of
the propositional inference on limited fragments
of conjunctive forms, and some efficient cases
for the problem of inference between conjunctive
forms are established. In section 4, the general
problem of inference between conjunctive forms is
analyzed, as well as the time-complexity analysis
of our algorithmic proposal. Finally, in the last
section the conclusions are presented.

2 Preliminaries

Let X = {x1, . . . ,xn} be a set of n Boolean
variables. A literal is either a variable xi, or a
negated variable xi. We indistinctly denote the
negation of a literal l as l or ¬l. A variable x ∈ X
appears in a formula F only if either x or x is an
element of F . The size of a CNF F , denoted as
|F |, is defined as the sum of the occurrences of
literals appearing in F .

A clause C is a disjunction of different and
non-complementary literals. In this article, we
discard the case of tautological clauses. For k ∈
N , a k-clause is a clause consisting of exactly k
literals, and a (≤ k)-clause is a clause with at most
k literals. A phrase D is a conjunction of literals,
while a k-phrase is a phrase with exactly k literals.

A conjunctive normal form (CNF) F is a
conjunction of non-tautological clauses. We say
that F is a monotone positive CNF if all of its
variables appear in unnegated form. An F is
monotone when each literal of F appears with just
one of its signs. When a literal l of F appears with
only one of its signs, then l is called a pure literal
in F .

A k-CNF is a CNF containing only k-clauses. (≤
k)-CNF denotes a CNF containing clauses with at
most k literals. A 2-CNF formula F is said to be
strict only if each clause of F consists exactly of
two literals. In particular cases, we consider a CNF
as a set of clauses.
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A disjunctive normal form (DNF) is a disjunction
of phrases, and a k-DNF is a DNF containing only
k-phrases.

We use υ(X) to represent the variables
appearing in X, where X can be a literal, a clause,
a phrase, a DNF, or a CNF. For instance, for
the clause c = {x1,x2}, υ(c) = {x1,x2}. In
addition, we used ¬Y as the negation operator
of the logical element Y (a variable, a CNF, or a
formula). Lit(F ) is the set of literals involved in F ,
even if they appear with only one of the two signs.
For example, ifX = υ(F ), then Lit(F ) = X∪¬X =
{x1,x1, ...,xn,xn}. We denote {1, 2, ...,n} by [[n]],
and the cardinality of a set A by |A|.

An assignment s for a formula F is a function
s : υ(F ) → {0, 1}. An assignment s can
also be considered as a set of literals without a
complementary pair of literals, e.g., if l ∈ s, then
l 6∈ s. In other words, s turns l true and l false, or
vice versa. Let C be a clause and s an assignment.
Considering C as a set of literals, then we have that
C is satisfied by s if and only if (C ∩ s) 6= ∅. On the
other hand, if for all l ∈ C, l ∈ s, then s falsifies
C. A phrase D is satisfied by an assignment s if
D ⊆ s.

A model of F is an assignment for υ(F ) that
satisfies F . Meanwhile, a falsifying assignment of
F is an assignment for υ(F ) that contradicts F . Let
F be a CNF, F is satisfied by an assignment s if
each clause in F is satisfied by s. F is contradicted
by s if any clause in F is falsified by s. Meanwhile,
a DNF F is satisfied by s if any phrase in F is
satisfied by s. F is contradicted by s if all phrases
in F are contradicted by s.

If n = |υ(F )|, then there are 2n possible
assignments defined over υ(F ). Let S(F ) be the
set of 2n assignments defined over υ(F ). s |= F
denotes that the assignment s is a model of F , and
s 6|= F denotes that s is a falsifying assignment
of F . SAT(F ) is the set containing all satisfying
assignment of F (models of F ), where specific
values are assigned to all variables of F . On
the other hand, FAL(F ) is the set containing all
falsifying assignments of F .

Considering a CNF F as a set of clauses, and
F1 ⊂ F as a formula consisting of some (not
all) clauses from F , if υ(F1) ⊂ υ(F ), then an
assignment over υ(F1) is a partial assignment for

F . If n = |υ(F )| and n1 = |υ(F1)|, then any
assignment over υ(F1) has 2n−n1 as assignment
extensions over υ(F ). If s has logical values
determined for each variable in F , then s is a total
assignment, or just an assignment of F .

We denote F [s] as the operation of the
substitution of the literals in F by the logical
values taken for those literals in the assignment
s, and after, to perform any tautological operation
appearing in F [s].

The notation SAT(F ) is extended by considering
general propositional formulas F , not only CNF’s,
but also when SAT(F ) is the set of assignments
defined on υ(F ) such that s |= F . The SAT problem
consists on determining if F has a model, i.e., if
SAT(F ) 6= ∅. 2-SAT denotes the SAT problem
only defined on 2-CNF’s. #SAT(F ) denotes the
counting problem of determining the number of
models of F . #2SAT denotes #SAT for 2-CNF
formulas. Meanwhile, #FAL(F ) counts the number
of falsifying assignments of F .

Clearly, for any propositional formula F , S(F ) =
SAT (F ) ∪ FAL(F ). Then, FAL(F ) = S(F ) −
SAT (F ) by complementary properties on the set
of assignments. On the other hand, if n = |υ(F )|
then #FAL(F ) = 2n- #SAT(F ).

It is known that the logical inference problem
is a hard challenge in automatic reasoning, and
it is a Co-NP-complete problem even in the
propositional case. Let L be the set of all
propositional formulas. L(B) denotes the set
of all propositional formula expressed in the
fragment B of propositional calculus. For example,
L(DNF ),L(Krom),L(Horn),L(Mon) denote the
set of all Disjunctive Normal forms, 2-CNF’s, Horn-
formulas, and monotone formulas, respectively.

The problem to be analyzed here is the inference
problem on fragments B of the propositional
calculus, which is established as:

Problem IMP(B)
Instance: Let φ be a CNF and let K be a
propositional formula expressed in the fragment B.

Question: Does K |= φ hold ?

We analyze the IMP(B) problem from an
algorithmic point of view more than from an
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algebraic perspective, as it was analyzed by
Beyersdorff [3].

3 Inference on Fragments of
Conjunctive Forms

Let F be a CNF and let l be a literal, the
reduction of F by l, denoted by F [l], is the
formula generated by removing from F the clauses
containing l (subsumption), and by removing l from
the remaining clauses (unit resolution on F ).

The reduction of a formula F by a set of literals
can be inductively established as follows: let s =
{l1, l2, . . . , lk} be a partial assignment of υ(F ). The
reduction of F by s is defined by successively
applying F [li], li, i = 1, . . . , k. The reduction of F
by l1 gives the formula F [l1], following a reduction
of F [l1] by l2, giving as a result the formula F [l1, l2]
and so on. The process continues until F [s] =
F [l1, ..., lk] is reached. In case that s = ∅ then
F [s] = F .

Example 1. Let F = {{x1,x2}, {x1,x2}, {x1,x3},
{x1,x3}, {x2,x4}, {x2,x4}, {x2,x5}, {x5}}. Then,
F [x2] = {{x1}, {x1,x3}, {x1,x3}, {x4}, {x4}, {x5}},
and If s = {x2,x3}, F [s] = {{x1}, {x1}, {x1}, {x4},
{x4}, {x5}}.

LetK be a CNF and let s be a partial assignment
of K. If a pair of contradictory unitary clauses is
obtained while K[s] is being computed, then K is
falsified by the assignment s.

Furthermore, during the computation of K[s],
new unitary clauses can be generated. Thus,
the partial assignment s is extended by adding
the unitary clauses found, that is, s = s ∪
{u} where {u} is a unitary clause. Moreover,
K[s] can be reduced again using the new
unitary clauses. The above iterative process is
generalized, and we call Unit Propagation(K, s)
to this iterative process. For simplicity, we
abbreviate Unit Propagation(K, s) as UP (K, s).

As a result of applying UP (K, s), we obtain
a new assignment s′ that extends to s, and a
new subformula K ′ formed by the clauses from
K that are not satisfied by s′. We denote as
K ′ = UP (K, s) to the formula K ′ resulting of

the application of Unit Propagation on K by the
assignment s.

Notice that if s falsifies K then s′ could have
complementary literals, and K ′ is unsatisfiable. In
addition, when s satisfies K, then K ′ is empty.

The direct implementation of unit propagation
takes time quadratic in the total size of the set to
check, which is defined to be the sum of the size
of all clauses, where the size of each clause is the
number of literals it contains. Unit propagation can
however be done in linear time by storing, for each
variable, the list of clauses in which each literal is
contained [19].

Let K be a CNF, K =
∧m
i=1 Ci, where each Ci

is a clause. For each clause Ci, i ∈ [[m]], the
assignment s such that Ci[s] = 1, contains at least
one literal of Ci, and if Ci[s] = 0, then all literal
l ∈ Ci appears as l in s. It is easy to build FAL(K)
when K is a CNF, since each clause Ci ∈ K
determines a subset of falsifying assignments ofK.
Therefore, FAL(K) is the union of those falsifying
assignments for each clause in K, this means that:

FAL(K) =

m⋃
i=1

{s ∈ S(K) | FAL(Ci) ⊆ s}.

The following Lemma shows that the subsets of
satisfiable formulas are also satisfiable.

Lemma 1. If K is a satisfiable CNF, then ∀K ′ ⊆ K,
K ′ is a satisfiable CNF.

Proof. We know by the previous Lemma that
FAL(K) =

⋃
Ci∈K FAL(Ci) ⊂ S(K), and this

last containment is strict because K is satisfiable.
Clearly, if we discard some clauses from K,
forming K ′, then FAL(K ′) =

⋃
Ci∈K′ FAL(Ci)

⊆
⋃
Ci∈K FAL(Ci) ⊂ S(K). Thus, K ′ is

satisfiable.

Lemma 2. Let K be an unsatisfiable CNF, ∀ CNF
K ′ such that K ⊆ K ′, K ′ remains unsatisfiable.

Proof. For an unsatisfiable CNF K, it holds that
FAL(K) =

⋃
Ci∈K FAL(Ci) = S(K). Therefore,

if we add new clauses to K forming K ′, then
FAL(K) =

⋃
Ci∈K FAL(Ci) ⊆

⋃
Ci∈K′ FAL(Ci).

Since
⋃
Ci∈K FAL(Ci) = S(K), then we obtain

that also
⋃
Ci∈K′ FAL(Ci) = S(K). Thus, K ′

is unsatisfiable.
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Let K and φ be two propositional formulas, we
say that K implies φ, written as K |= φ, if φ is
satisfied for each model of K, i.e., if SAT (K) ⊆
SAT (φ). The last containment can be expressed
via the falsifying sets of the formulas as in the
following Lemma:

Lemma 3. FAL(φ) ⊆ FAL(K) if and only if K |=
φ.

Proof. This property comes from the basic proper-
ties on sets that are closed under complementation
and because of S(K) = SAT (K)∪FAL(K). Then,
(FAL(φ) ⊆ FAL(K)) ≡ (SAT (K) ⊆ SAT (φ)) ≡
K |= φ.

3.1 Building Strings to Falsify Clauses and to
Satisfy Phrases

Let K and φ be two CNF’s, K =
∧m
i=1 Ci and φ =∧k

i=1 ϕi. Each set FAL(Ci) can be represented in
a succinct way via a string Ai of length n = |υ(K)|.
Given a clause Ci = (xi1 ∨ . . .∨xik), then the value
at each position from i1-th to ik-th of the string Ai
is fixed with the truth value that falsifies each literal
of Ci. E.g., if xij ∈ Ci, the ij-th element of Ai is set
to 0. On the other hand, if xij ∈ Ci, then the ij-th
element is set to 1.

The variables in υ(K) which do not appear in
Ci are represented by the symbol *, meaning that
they could take any logical value in the set {0, 1}.
In this way, the string Ai of length n = |υ(K)|
represents the set of assignments falsifying the
clause Ci. E.g. if K = {C1, . . . ,Cm} is a 2-CNF,
n = |υ(K)|, C1 = {x1 ∨ x2} and C2 = {x2 ∨ x3},
the assignments of FAL(C1) can be represented
by the string 00 ∗ ∗ . . . ∗ and the assignments of
FAL(C2) are represented by the string ∗01 ∗ . . . ∗.

We call falsifying string to the string Ai that
represents the set of falsifying assignments of a
clause Ci. We denote by Fals(Ci), the string (with
n symbols), that is the falsifying string of the clause
Ci. For purposes of evaluating a falsifying string
s = Fals(Ci) = s1s2 . . . sk on a formula F , we
would consider s as only one assignment on the set
of variables X = {x1, . . . ,xk} of F . The evaluation
F [s] is defined in orded to iterate on each symbol
si, i ∈ [[k]] of the string, this is, F [s] = F [s1, . . . , sk],

in the following way. F [si] = F , if si = ∗. F [si] =
F [xi] when si = 1, and F [si] = F [xi] for si = 0.

On the other hand, let σ = (l1 ∧ . . . ∧ lj) be
a phrase defined over Lit(K). A string vσ of n
symbols is associated with σ, and each one of its
values vσ[i], i = 1, . . . ,n is determined as:

vσ[i] =

 1 if xi ∈ σ,
0 ifxi ∈ σ,
* if neither xi /∈ σ nor xi /∈ σ.

(1)

The string vσ is a succinct form to represent
SAT(σ), because any assignment s over K is a
satisfying assignment for σ, when s and vσ coincide
their values (0 or 1) in the same positions,

Thus, vσ represents the set of 2n−|σ| satisfying
assignments for σ. Therefore, we call vσ as the
satisfying string of the phrase σ.

The use of strings to represent a set of
assignments has been very useful to design
reasoning procedures, e.g. for computing belief
revision operators, or not redundant families of
subcubes [10, 16].

3.2 Basic Cases for the Inference Problem
K |= φ

Let X = υ(K) and Lit(K) = X ∪ X be the set
of variables and the set of literals appearing in
K, respectively. Let us assume K a satisfiable
formula, and φ that consists of only one literal l. For
this class of formulas, we analyze what happens to
K |= l.

— Case l 6∈ Lit(K): When l 6∈ υ(K) then K 6|= l,
because any model m of K can be extended
as m ∪ {¬l} that is a satisfying assignment for
K, but falsifies l.

— Case l ∈ Lit(K): Consider the formula K1 =
K[¬l]. In this case, if SAT(K1) 6= ∅ thenK 6|= l,
because any model m of K1 can be extended
as m∪{¬l} that is a model for K but falsifies l.
Otherwise, SAT(K1) = ∅ and K |= l, because
there are not models for K doing false to l.

Now, let us consider the case where φ is formed
by just one clause, φ = (l1 ∨ . . . ∨ lk). An initial
situation is given by υ(K) ∩ υ(φ) = ∅.
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Theorem 1. Let K be a satisfiable CNF and let φ
be a non-tautology clause. If (υ(K) ∩ υ(φ)) = ∅,
then K 6|= φ.

Proof. Let s ∈ Fals(φ), s exists since φ is a
non-tautology, and additionally, s has not assigned
values for variables in K, since (υ(K) ∩ υ(ϕ)) = ∅.
Let u ∈ Sat(K), u exists since K is satisfiable.
Let v = s ∪ u be an assignment for all variables
in K and φ. v is a valid assignment because it has
non contradictory literals, since (υ(K) ∩ υ(φ)) =
∅. Furthermore, φ[v] = false and K[v] = true
by construction of v, and then, K 6|= φ. Thus,
v is a witness of the succinct disqualification of
K |= φ.

On the other hand, let us assume that φ
continues as one clause φ = (l1 ∨ . . . ∨ lk), and
that υ(K) ∩ υ(φ) 6= ∅. In this case, let K1 =
UP (K, [l1, . . . , lk]). If K1 is satisfiable, then K 6|=
φ; otherwise K |= φ. When K1 is satisfiable,
then a model m for K1 exists and the assignment
s = m ∪ {l1, . . . lk} is valid since it does not have
complementary literals, and s holds K[s] = true
and φ[s] = false. Thus, K 6|= φ. Notice that the
computational complexity for determining K 6|= φ is
inherently related of the computational complexity
of determining Sat(K1).

Lemma 4. Let s ∈ Fals(φ). If K ′ = UP (K, s)
is formed by clauses with at least one pure literal,
then K 6|= φ.

Proof. Let s ∈ Fals(φ) and let K ′ = UP (K, s) =
C1∨. . .∨Ck. Let u1 =

⋃
i li, where li is a pure literal

in Ci ∈ K ′, then K ′[u1] = true since each clause
in K ′ has at least one pure literal. Let u = u1 ∪ s
be a valid assignment, since υ(K ′)∩ υ(φ) = ∅, and
then K 6|= φ, by theorem 1 .

Let K = K1 ∪K2, where for each C ∈ K2 there
is a literal li ∈ C that is pure in K2 and li /∈ Lit(φ).

Lemma 5. K |= φ if and only if K1 |= φ.

Proof. (⇐) If K1 |= φ then FAL(φ) ⊆ FAL(K1).
Also, FAL(K1) ⊆ FAL(K) since K contains a K1,
and it is possible that K has more clauses than
those in K1. By property of subsets FAL(φ) ⊆
FAL(K), and then K |= φ, by Lemma 3.

(⇒) By contradiction. Assume that K |= φ and
K1 6|= φ. If K1 6|= φ, then an assignment s ∈
Fals(φ) exists, and K1[s] = true. Let u1 =

⋃
i li,

where li is a pure literal inK2. Thus,K2[u1] = true.
Let v = s ∪ u1, v is a valid assignment because
any li is pure in K2 (li ∈ u1) and li /∈ s (since
li /∈ Lit(φ)). Furthermore, K[v] = true and φ[v] =
false, and thenK 6|= φ - a contradiction. Therefore,
K1 |= φ.

Let us consider the problem of propositional
inference: K |= φ, where K and φ are two
general CNF’s. The decision problem K |= φ is a
Co-NP-complete problem for CNF’s in general [3],
because K |= φ is equivalent to proving that (¬K ∨
φ) is a tautology. But, (¬K) is a DNF, due to the
D’Morgan law, that is distributed on a CNF φ, and
then (¬K ∨ φ) generates a DNF. And the tautology
problem on a DNF is a classic Co-NP-complete
problem. In particular, a formula K ′ in 3-DNF can
be written asK |= φ with φ = false andK = ¬K ′ a
3-CF. Then, any algorithm for deciding K |= φ also
determine the tautologicity of K ′, therefore K |= φ
is a Co-NP-complete even if K is a 3-CNF.

The fragment of propositional logic in which
K |= φ is known to have a polynomial-time
decidable method is when both K and φ are Horn
formulas. For this case, there exist linear-time
procedures for deciding K |= φ [8, 11]. However,
adding 2-CNF formulas as extensions of Horn
formulas would change the inference procedure
into an exponential-time complexity process on the
number of Horn inferences to perform.

For example, let (K ∧ H) be an input formula,
where K is a Horn formula and H is a monotone
2-CNF, and let φ be a Horn formula. If we want
to decide (K ∧ H) |= φ, then we could apply
the distributive property on each monotone positive
binary clause (x ∨ y) ∈ H and the Horn part
K. Therefore, K ∧ (x ∨ y) |= φ if and only if
(¬(K∧(x∨y))∨φ) is valid, and it holds if and only if
((¬K∨(¬x∧¬y))∨φ) ≡ (((¬K∨¬x)∧(¬K∨¬y))∨
φ) ≡ ((¬(K ∧x)∧¬(K ∧y))∨φ) ≡ (¬(K ∧x)∨φ)∧
(¬(K ∧ y) ∨ φ) ≡ ((K ∧ x) |= φ) ∧ ((K ∧ y) |= φ).

Thus, for each positive monotone binary clause,
we duplicate the number of Horn inferences to
perform. If we consider the existence of two
monotone binary clauses inH, that is (K∧(x1, y1)∧
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(x2, y2)) |= φ, and we apply the distribution on
literals of the monotone clauses, then we obtain
four Horn inferences: ((K∧x1∧x2) |= φ), ((K∧x1∧
y2) |= φ), ((K∧y1∧x2) |= φ) and ((K∧y1∧y2) |= φ).
If there are m positive monotone binary clauses
(xi ∨ yi), i = 1, . . . ,m in H, we would have under
the above reduction, a total of 2m Horn inferences,
type: (H ∧ (x1 ∨ y1) ∧ . . . ∧ (xm ∨ ym)) |= φ. which
leads to an exponential-time complexity process on
the number of Horn inferences to perform.

This exponential growth on the Horn infer-
ence, when positive monotone clauses are been
considered, has been one of the limitations in
the development of disjunctive logic programming
software. One of the researching lines for
tackling the time-complexity of non-Horn logic
programming has been to compile the knowledge
base and new information into more simple forms,
for example, using implicant prime forms [14].

The principle of resolution has been a practical
method to check unsatisfiability between conjunc-
tive forms. However, the inference based on
resolution method has intrinsic limitations [4].

Despite of the methods of refutation commonly
used in the Horn inference, here we consider other
kind of methods to determine whether K |= φ.
For the fragment of CNF’s, our method focuses on
checking that FAL(φ) ⊆ FAL(K) in order to prove
K |= φ.

Let us consider from now on that υ(φ) ⊆ υ(K).
Let l ∈ Lit(K). We determine the sets: Kl, K¬l,
and K0 formed by the clauses from K containing l,
l and neither l nor l, respectively. We define also
K−(l) = {D : (D ∨ l) ∈ Kl}. Let K ′ = K−(l) ∪
K0. Notice that in this case, K ′ = K[l]. If K ′ is
satisfiable, then K 6|= l, because any model m of
K can be extended as m ∪ {l} that is a model for
K that falsifies l. Otherwise, K |= l, because all
falsifying assignment for l also falsifies K.

Lemma 6. Let K be a formula in the fragment
of Krom or Horn or Monotone, and let s be a
partial assignment defined on υ(K), then K[s]
continues as a Krom, or Horn or Monotone
formula, respectively.

Proof. Note that for the fragment considered in this
lemma, K can also be seen as a CNF, K ′ =∧m
i=1 Ci. Let s be a partial assignment of K. Let

K ′ =
∧m
i=1 Ci[s], the resulting conjunctive form

from K[s]. C[s] does not increment the length |C|
neither change the parity of literals.

Thus, if K is in the fragment of Krom or Horn
or Monotone, then K ′ continues in the same logic
fragment of K.

The following theorem shows that the computa-
tional complexity to determine K |= φ, when K
is in the fragment of Krom or Horn or Monotone
is related to the computational complexity of
SAT (K).

Theorem 2. Let φ be a CNF and letK be a formula
in the fragment Krom or Horn or Monotone. For
this fragment of propositional formulas, K |= φ is
decided in polynomial-time.

Proof. We present as proof, a polynomial-time
algorithm.

For each ϕi ∈ φ
{ Let si = Fals(ϕi). Let Ki = UP (K, si).
If (SAT (Ki)) then K 6|= φ /*Because any model m
of Ki can be extended as m∪ si that is a model for
K but it falsifies φ */.
}
Returns(K |= φ) /*Because FAL(φ) ⊆ FAL(K) */

The loop consists of at most |φ| iterations,
proving in each step: SAT (Ki).

This is decided in polynomial-time since
SAT (Ki) is in the complexity class P for formulas
Ki in the fragment Krom or Horn or Monotone
formulas.

Thus, the total time complexity of the procedure
is polynomial.

From the previous theorem, we delimit the
frontier between tractable and intractable instances
for K |= φ, being K and φ CNF’s. We have shown
that K |= φ is solved in polynomial-time when K
is a 1-CNF or a 2-CNF. Meanwhile, K |= φ is a
Co-NP-complete problem even if K is a 3-CNF.
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4 An Exact Algorithm for K |= φ, when
K and φ are CNF’s

We will present in this section a general method
for checking K |= φ, when K and φ are two
CNF’s. Since K and φ are CNF’s, then FAL(φ)
and FAL(K) can be denoted through the falsifying
strings of their clauses. When K 6|= φ, then
FAL(φ) 6⊂ FAL(K).

In this case, FAL(φ) − FAL(K) 6= ∅ and this
implies the existence of a set of assignments S
in which S ⊆ FAL(φ) and S 6⊂ FAL(K). Then,
an algorithm for checking K |= φ could consists
in computing FAL(φ) − FAL(K). Assuming K =∧m
i=1 Ci,φ =

∧k
i=1 ϕi, we want to determine:

∀i ∈ [[k]] :

Si = FAL(ϕi)−
m⋃
j=1

FAL(Cj)

 . (2)

We have designed a procedure to compute
FAL(ϕi)−FAL(K) based on the application of the
independence property introduced by Dubois [9].

Definition 1. Given two clauses Ci and Cj , if they
have at least one complementary literal, it is said
that Ci and Cj are independent. Otherwise, we
say that both clauses are dependent.

Definition 1 can be written in terms of falsifying
strings as follows:

Given two falsifying strings A = Fals(Ci) and
B = Fals(Cj) each one of length n, if there is
an i ∈ [[n]] such that A[i] = x and B[i] = 1 −
x, x ∈ {0, 1}, then the clauses Ci,Cj (as well
as its falsifying strings) have the independence
property. Otherwise, we say that both clauses
(strings) are dependent.

This means that the falsifying strings for
independent clauses have complementary values
(0 and 1) in at least one of their fixed values.

Let K = {C1,C2, · · · ,Cm} be a CNF of m
clauses. K is called independent if each pair of
clauses Ci,Cj ∈ K, i 6= j has the independence
property. Otherwise, K is called dependent.

Let F = {C1,C2, · · · ,Cm} be a CNF with m
clauses defined on n = |υ(F )| variables. Let

Ci, i ∈ [[m]] be a clause in F such that |Ci| < n, and
x ∈ (υ(F )− υ(Ci)) be any variable. We have that:

Ci ≡ (Ci ∨ x) ∧ (Ci ∨ x). (3)

Definition 2. Given a pair of dependent clauses
C1 and C2, if Lit(C1) ⊆ Lit(C2), then we say that
C2 is subsumed by C1.

If C1 subsumes C2, then FAL(C2) ⊆ FAL(C1).
On the other hand, if C2 is not subsumed by C1

and they are dependent, there is a set of indices
I = {1, . . . , p} ⊆ {1, . . . ,n} such that for each
i ∈ I,xi ∈ C1, but xi 6∈ C2. There exists a reduction
to make C2 independent from C1. We call this
transformation the independent reduction between
two clauses, and it works as follows. Let C1 and C2

be two dependent clauses.
Let {x1,x2, . . . ,xp} = Lit(C1) \ Lit(C2). By (3)

we can write: C1∧C2 ≡ C1∧ (C2∨¬x1)∧ (C2∨x1).
Now C1 and (C2 ∨ ¬x1) are independent. Applying
(3) to (C2 ∨ x1):

C1 ∧ C2 ≡
C1 ∧ (C2 ∨ ¬x1) ∧ (C2 ∨ x1 ∨ ¬x2) ∧ (C2 ∨ x1 ∨ x2).

The first three clauses are independent. If we
repeat the above process of making the last clause
independent from the previous clauses until xp
is achieved, then (C1 ∧ C2) is equivalent to the
following set of independent clauses: C1 ∧ (C2 ∨
¬x1) ∧ (C2 ∨ x1 ∨ ¬x2) ∧ . . . ∧ (C2 ∨ x1 ∨ x2 ∨ ... ∨
¬xp) ∧ (C2 ∨ x1 ∨ x2 ∨ ... ∨ xp).

The last clause contains all literals of C1, so it is
subsumed by C1, and then:

C1 ∧ C2 ≡ C1 ∧ (C2 ∨ ¬x1) ∧ (C2 ∨ x1 ∨ ¬x2) ∧
. . . ∧ (C2 ∨ x1 ∨ x2 ∨ ... ∨ ¬xp). (4)

We obtain on the right side of (4) an independent
set of p+ 1 clauses. We denote this independence
reduction as ind reduct(C1,C2). We will use the
independent reduction between two clauses C and
ϕ (or between their respective falsifying strings) in
order to define:

Ind(C,ϕ) =

 ϕ If ϕ and C are independent,
∅ If ϕ is subsumed by C,
ind reduct(C,ϕ)− C Otherwise.

(5)
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The following theorem shows that the indepen-
dent operator (5) builds a set of clauses, which
covers exactly the space allocations that conforms
FAL(ϕi)− FAL(Cj).

Theorem 3. Let ϕ and C be two clauses, then
FAL(Ind(C,ϕ)) = FAL(ϕ)− FAL(C).

Proof. If Ind(C,ϕ) = ∅, then FAL(ϕ) ⊆ FAL(C).
Therefore, FAL(ϕ) − FAL(C) = ∅. Now, we
assume that Ind(C,ϕ) 6= ∅. Let s be an
assignment such that s ∈ FAL(Ind(C,ϕ)). We
will show that s ∈ FAL(ϕ) and s /∈ FAL(C). If s ∈
FAL(Ind(C,ϕ)), then s falsifies ϕ because each
clause in Ind(C,ϕ) has the form (ϕ ∨ R) where R
is a disjunction (R could be empty, for example in
the case Ind(c,ϕ) = ∅). If s falsifies (ϕ∨R), then s
has to falsify ϕ, and thus s ∈ FAL(ϕ).

Algorithm 1 Procedure Ind(K,φ)

Input: K: A KB, φ: a CNF
V = ∅ {Temporal stack for processing each ϕi ∈
φ}
for all ϕi ∈ φ do

Push(ϕi,V ); Fs = ∅; {Output in Fs a CF (Set
of clauses)}
for all Cj ∈ K do

while (V 6= ∅) do
ϕ = Pop(V); {Try following clause}
Fs = Fs− ϕ; {Remove the exit clause}
Nc = Ind(ϕ,Cj); {Form: Nc ∧ Cj |= ϕ }
if (Nc 6= ∅) then
Fs = Fs ∪ Nc; {Only if there are
clauses to add}

end if
end while
for all ϕ ∈ Fs do

Push(ϕ,V ); {Next iteration considers new
clauses}

end for
end for
Si = Fs; {Si = Ind(K,ϕi)}

end for

On the other hand, each clause (ϕ ∨ R) ∈
Ind(C,ϕ) is independent from C because of
the construction of the operator Ind; therefore,
FAL(C) ∩ FAL(Ind(C,ϕ)) = ∅. Thus, s /∈
FAL(C).

Theorem 4. (C ∪ Ind(C,ϕ)) |= ϕ.

Proof. If ϕ and C are independent, then
Ind(C,ϕ) = ϕ. Therefore, (C ∧ Ind(C,ϕ)) ≡
(C ∧ ϕ) |= ϕ by the propositional property
(p ∧ q) ⊃ q and by reflexivity q |= q. Otherwise, we
assume (C ∧ Ind(C,ϕ)) ≡ (C ∧ ϕ) by Equation
4, and by the property (C ∧ ϕ) |= ϕ, then the
theorem holds.

Let ϕ be a clause, and K =
∧m
j=1 Cj . If we apply

the Ind operator between each Cj and ϕ, we get
as result Si. The union of each Si, S = ∪mi=1Si
holds that S ⊆ FAL(ϕ) and S 6⊂ FAL(K). The
pseudo-code for computing Ind(K,φ) is shown in
the Algorithm 1.

In order to generate a minimum set of
independent clauses as a result of Ind(K,ϕ), it is
crucial to sort the clauses Cj ∈ K in ascending
order according to the length |Sj | = |Lit(Cj) −
Lit(ϕ)|. This is done since the number of literals
in Cj , different to the literals in ϕ, determine the
number of independent clauses to be generated.
Hence, we have a strategy for reducing the number
of independent clauses to be generated by each
Ind(Cj ,ϕ),∀Cj ∈ K.

The operator Ind applied on the clause ϕ, and
on each one of the clauses Cj ∈ K, allows us
to build the space FAL(ϕ) − FAL(K). Thus,
the following recurrence is defined as: A1 = ϕ,
Aj+1 = Ind(Cj ,Aj).

In order to perform Ind(Cj ,Aj), the remaining
clauses in Cl ∈ K, l = j + 1, . . . ,m (those that
are not reduced independently with Aj) are sorted
again in ascending order according to the number
of common literals between the literals represented
by Aj .

The above process can be extended to each
ϕi ∈ φ, i = 1, . . . , k, as follows:

Ai,1 = ϕi.

Ai,j+1 = Ind(Cj ,Ai,j), j = 1, . . . ,m and i = 1 . . . k.

The clauses Ai,m+1 comply with
⋃k
i=1(Ai,m+1) =

FAL(φ) − FAL(K). These strings Ai,j , i =
1, . . . , k, j = 1, . . . ,m form a matrix of strings, as
it is illustrated in Table 1. Notice that if Ai,j = ∅,
then Ai,l = ∅, for l = j + 1, . . . ,m.
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Example 2. Let us illustrate our procedure on
K a 2-CNF and a general CNF φ. Let K =
{(x1,x2), (x1,x7), (x1,x7), (x2,x3), (x3,x4), (x5,x6)
, (x6,x7)} and φ = ϕ1∧ϕ2∧ϕ3 = {(x3,x6), (x2,x6,
x7), (x1,x4,x5)}.

In each cell of the Table 1, the result of
Ind(Cj ,ϕi) is shown until we determine K |=
ϕi, i = 1, . . . , 3. Although K |= ϕ2, the procedure
reports that K 6|= φ, because of K 6|= ϕ1 and K 6|=
ϕ3. However, our procedure also builds a set of
independent clauses whose falsifying assignments
cover exactly the set of models of K, which are not
models for ϕ1 and ϕ3. This is shown in the last
column of Table 1.

As a result of Table 1, let H = Ind(K,φ) = {(x1,
x3,x6,x7), (x1,x2,x3,x6,x7), (x1,x2,x3,x4,x5,x6,
x7)}. Notice that K ∪ H continues being a CNF.
The new CNF H holds FAL(H) ⊆ FAL(φ).
Furthermore, FAL(H) represents the minimum set
of models for K that are not models for φ, since
FAL(H) = FAL(φ) − FAL(K). Therefore, we
have that (K ∪ H) |= φ by Theorem 4. Although
K and φ are 2-CNF’s, H = Ind(K,φ) could not
be a 2-CNF, which means that our procedure is not
closed under 2-CNF’s.

4.1 Time-Complexity Analysis

Given K and φ two conjunctive normal forms, the
time-complexity of our method that checks K |=
φ depends on the maximum number of clauses
that can be generated through Ind(K,ϕi) for each
ϕi ∈ φ. Ind(K,ϕi) generates the empty set
in some cases (when K |= ϕi). However, in
the worst case, the time complexity for calculating
Ind(K,ϕi) depends on the length of the sets:
Sij = {x1,x2, . . . ,xp} = Lit(Cj) − Lit(ϕi), j =
1, . . . ,m.

In order to simplify our analysis, let us consider
as first case when K is a strict 3-CNF. For this
case, K |= φ is an intractable problem. As it
was previously mentioned, given ϕi ∈ φ, the sets
Sij = Lit(Cj) − Lit(ϕi), j = 1, . . . ,m are sorted
in ascending order on the number of literals. The
case |Sij | = 0 indicates that Cj and ϕ have the
independence property, or that ϕi is subsumed by
Cj . In any case, no new strings are formed by
Ind(Cj ,ϕi).

Fals(ϕi) arranges logical values for a set of
variables that do not change value during the
process Ind(K,ϕi); therefore, | Si1 | + | Si2 |
+ . . .+ | Sim |≤ n− | ϕi |. And, in the worst
case, Sij = {x1,x2} = Lit(Cj) − Lit(ϕi) has two
literals, because the case where |Sij | = 3 already
determines that K 6|= ϕi (by Theorem 1).

Therefore, Ind(Cj ,ϕi) generates at most two
new clauses Ca and Cb holding Ca = (ϕi∨¬x1) and
Cb = (ϕi ∨ x1 ∨ ¬x2). This conforms a Fibonacci
sequence on the length of clauses formed by
Ind(Cj ,ϕi). Considering x = |ϕi|, then the number
of clauses generated by Ind(K,ϕi) is modeled by
the Fibonacci recurrence: T (x) = T (x+ 1) +T (x+
2).

It is known that the growth of the Fibonacci
sequence T (n) is upper bounded by Φn−1, with
Φ = 1+

√
5

2 - known as the “golden ratio”.

Let us consider Poly(n,m) as a polynomial
function that represents the computational time
spent in sorting the clauses in Sij , to review
for subsumed clauses and to perform the
independence reduction between two clauses.

Thus, when K is a 3-CNF, the time complexity in
the worst case for checking K |= ϕi has an upper
bound of O(Φn−|ϕi| ∗ Poly(n,m)), where Φ is the
“golden ratio”, and n = |υ(K)|.

If K 6|= φ, then Ind(K,φ) allows to build a new
CNF whose falsifying assignments cover FAL(φ)−
FAL(K) exactly. Consequently, in this way the
initial inference is repaired by (K∪Ind(φ,K)) |= φ.
Repairing the initial inference problem is relevant
for different problems in automatic reasoning. For
example, in propositional belief revision [7], as well
as other automatic reasoning problems between
conjunctive forms.

5 Conclusion

The inference problem is key to improve automatic
reasoning methods. We show the existence
of polynomial-time inference methods for some
fragments (apart from the Horn fragment) of
propositional logic. For example, we have
shown that if K is expressed via a 2-CNF
and φ is a CNF without restrictions, then the
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Table 1. Computing Ind(K,φ)

FAL(ϕ1) FAL(K)

**01*** *10**** ****01* *****00 1*****0 0*****0 00*****

*1**0* **1**0* **1**0* **1**01 **1**01 **1**01 **1**01 1*1**01

011**01

FAL(ϕ2) FAL(K)

*****00 *00**** 0*****0 1*****0 ****01* *10**** **01***

0***10 *0***10 10***10 10***10 K |= ϕ2

FAL(ϕ3) FAL(K)

****01* **01*** 1*****0 00***** 0*****0 *10**** *****00

0**00** 0**000* 0**000* 0**000* 01*000* 01*0001 0110001 0110001

propositional inference problem K |= φ is solved
in polynomial-time.

Furthermore, given two CNF’s K and φ, our
proposal to check K 6|= φ builds a set of
independent clauses S such that the falsifying
assignments of S are exactly the subset of models
of K, which are not models for φ.

As a result, this builds the set S of necessary
clauses that repair the inference problem, this is
(S ∪ K) |= φ. This is key in applications of
automatic reasoning on propositional formulas.
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