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Abstract. One of the ways of acquiring new knowledge 

or underlying patterns in data is by means of clustering 
algorithms or techniques for creating groups of objects 
or individuals with similar characteristics in each group 
and at the same time different from the other groups. 
There is a consensus in the scientific community that 
the most widely used clustering algorithm is K-means, 
mainly because its results are easy to interpret and 
there are different implementations. In this paper we 
present an exploratory analysis of the behavior of the 
main variants of the K-means algorithm (Hartigan-
Wong, Lloyd, Forgy and MacQueen) when solving 
some of the difficult sets of instances from the 
Fundamental Clustering Problems Suite (FCPS) 
benchmark. These variants are implemented in the R 
language and allow finding the minimum and maximum 
intra-cluster distance of the final clustering. The 
different scenarios are shown with the results obtained. 
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1 Introduction 

Nowadays, huge amounts of data are produced, 
both by public and private institutions and in 
different fields of knowledge. Often, this data has 
underlying patterns that can be of great use for 
decision making in companies and institutions. 
One of the ways of acquiring new knowledge or 

underlying patterns in the data is by means of 
clustering algorithms or techniques for creating 
groups of objects or individuals with similar 
characteristics in each group and at the same 
time different from the other groups [1,2]. 

There are different clustering algorithms. A 
generic classification of these algorithms is 
partitional, hierarchical, fuzzy, density-based, 
grid-based, model-based, spatial, to name a few. 
There is a consensus in the scientific community 
that the most widely used clustering algorithm is 
K-means, mainly because its results are easy to 
interpret and there are different 
implementations [3]. 

Due to the wide use of the K-means algorithm, 
it has been extensively studied and numerous 
improvements have been proposed. It is worth 
mentioning that the problem K-means solves is 
NP-hard (i.e., it has a high computational 
complexity) so it remains an open research 
challenge to improve its efficiency when solving 
large instances [4]. 

There are data sets where K-means, by its 
very nature, does not work as desired. As we 
have experienced, for K-means to work properly, 
the centroids (i.e., the means of each cluster) 
have to be sufficiently far apart. 
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Therefore, in this research we conducted a set 
of experiments aiming at performing an 
exploratory analysis and observing the behavior 
of different variants of the K-means algorithm 
when solving data instances with a high level 
of complexity. 

The R language allows us to run the four main 
variants of the K-means algorithm, which are 
included in the cluster package. The variants that 
the R language has implemented are Hartigan-
Wong, Lloyd, Forgy, and MacQueen. The main 
differences between these variants are in the 
initialization and classification phase, in particular 
in the way the initial centroids are selected and 
the way each individual is assigned to the new 
cluster [5-6]. The datasets for the experimentation 
were obtained from R's CRAN package, 
Fundamental Clustering Problem Suite 
(FCPS) [7]. 

The document is organized as follows, Section 
2 presents some of the most relevant works 
related to the article, from the origins of the 
algorithm to the current trend. Section 3 describes 
in general terms each of the datasets that will be 
used and the research in which those have been 
part of the experimentation to provide new 
knowledge in the area of clustering. The 
experimental process is shown in Section 4 and 
the results obtained in Section 5. Section 6 
presents the cluster analysis and the discussion 
and Section 7 the conclusions. 

2 Literature Review 

When reviewing the specialized scientific 
literature, we found few articles that describe or 
address the analysis of variants of the K-means 
algorithm. In this work, we rely on 
experimentation to show the behavior of the 
variants in relation to the intra-cluster, minimum 
and maximum distance at which each variant 
converges, and subsequently, we analyze the 
final clustering. 

Some of the relevant works found in the state-
of-the-art study are presented below. 

In 2006, in a summary of the algorithm 
variants and their results is presented in [8], half a 
century after its appearance. The interest in 
variants and their origins continued and in 2008, a 

review is presented in [9] of how the first variants 
originated, in their continuous and discrete 
version. Along the same lines, in 2010 the work 
described in [10] studied the main characteristics 
of clustering in general and described the key 
pieces for the design of new algorithms, marking 
a trend in research with respect to the K-
means algorithm. 

In 2013, the work described in [11] 
implemented in the Mathematica software the 
variants of the K-means algorithm proposed by 
Forgy/Lloyd, MacQueen, and Hartigan & Wong. In 
this work, they experimented with the combination 
of metrics to maximize distances or reduce 
differences based on the characteristics of the 
test data set. In 2015, hierarchical clustering is 
presented in [12] and comparisons are performed 
with specific measures of distance and linkage.  

They mainly compare simple link, full link and 
average link using the SPSS statistical software. 
In 2017, in [13] the development of a hybrid 
algorithm is described to improve the variant 
proposed by Lloyd. In this work, they incorporate 
the advantages of clustering with the DBSCAN 
algorithm, which is a density-based algorithm to 
obtain the initial centroids, generating more 
suitable centroids from the input data set. 

In 2019, the paper [14] provides information on 
the origins of the K-means algorithm. The main 
relevant improvements found using a systematic 
review of the literature and the trends and 
challenges of the algorithm. In 2020, 12 datasets 
are presented in [15], which constitute a 
challenge to be solved by the different clustering 
algorithms. Finally, in 2021, a benchmark is 
described in [16], which consists of the main 
clustering algorithms and dataset libraries of the 
main clustering programming languages. 

As mentioned in the previous paragraphs, 
there are numerous variants of the K-Means 
algorithm, however, there is little work on 
comparative analysis of implementations using 
experimental methods. In this sense, the work 
carried out by [11] in 2013 stands out, where the 
Hartigan-Wong, Lloyd-Forgy and MacQueen 
variants, implemented in Mathematica, are 
analyzed and two instances are solved, a test 
instance of four dimensions and nine cases and 
the well-known iris flower dataset instance [17].  
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In contrast, in this research we selected the 
four variants provided by the R language, which 
are: Hartigan-Wong, Lloyd, Forgy and MacQueen. 
It should be noted that in this research, five 
synthetic instances of the FCPS repository [7] and 
the iris instance were solved. The average intra-
cluster distance was used as the 
comparison metric. 

2.1 Basic K-Means Algorithm 

K-means is an iterative method that consists of 
partitioning a set of n objects into k ≥ 2 clusters, 
such that the objects in one cluster are similar to 
each other and different from those in 
other clusters. 

Formally, the problem solved by K-means is 
formalized as follows. 

Let N = {x1, ..., xn} be the set of n objects to be 

partitioned by a similarity criterion, where xi  d 

for i = 1, ..., n and d ≥ 1 is the number 
of dimensions. 

Also, let k ≥ 2 be an integer and K = {1, ..., k}. 
For a k-partition P = {G(1), ..., G(k)} of N, let μj be 

the centroid of the group G(j), for j  K. 

The object xi belongs to the group G(j) and 
d(xi, μj) denotes the Euclidean distance between 
xi and μj for i = 1,..., n and j =1,..., k. 

In the following sections, a brief description of 
each of the K-means variants implemented in R 
is presented. 

2.1.1 Lloyd 

For Lloyd’s algorithm (i.e., the basic K-means 
algorithm), let K be a set of k centroids, and for 
each centroid μ in K, let G(μ) denote its 
neighborhood (i.e., the set of data points for which 
μ is the nearest neighbor). 

Each stage of Lloyd's algorithm moves each 
centroid μ to the centroid of G(μ) and then 
updates G(μ) by recalculating the distance from 
each object to its nearest centroid. These steps 
are repeated until convergence [18]. 

2.1.2 Forgy 

This is essentially the basic K-means algorithm, 
except for the initialization of the centroids. This 
variant randomly selects k objects and uses these 
as the initial centroids [19]. 

2.1.3 MacQueen 

This algorithm is fundamentally the same as the 
basic K-means. It adjusts all cluster centroids to 
the mean of their respective centroid μ each time 
an object xi changes cluster membership 
G(μ) [20]. 

2.1.4 Hartigan-Wong 

This algorithm assigns each object xi to one of K 
groups or clusters to minimize the sum of squares 
within the cluster as shown by Eq. (1) [21]: 

𝑆𝑢𝑚(𝑘) =  ∑ ∑ (𝑥(𝑖, 𝑗) − 𝑥(𝑘, 𝑗))
2𝑑

𝑗=𝑜

𝑛

𝑖=0
, (1) 

where 𝑥(𝑘, 𝑗) is the average of the objects 
belonging to the cluster. The main difference with 
respect to the basic K-means consists in the 
objective function: in this algorithm the objective 
function is Eq. (1), while in K-means it is the 
Euclidean distance [22]. 

3 Description and Preparation of 
Datasets 

The datasets used for the experimentation were 
obtained from the repository [7,15]. This 
repository can be found in the R language 
packages and includes a collection of more than 
300 artificial datasets that were created expressly 
for the evaluation of clustering algorithms, 
heuristics and strategic improvements of these 
algorithms. This dataset is called the 
Fundamental Clustering Problems Suite 
(FCPS) [16]. 

Five datasets were taken from this repository 
in order to perform an exploratory clustering 
analysis with variants of the K-means algorithm, 
in particular, the variants that are implemented in 
the R language. In addition, the iris instance with 
four dimensions is included [17]. 

Table 1 presents the six selected datasets, the 
first column shows the instance Id, the second 
column the instance name and the last two 
columns the defined value of k and the number of 
objects in the instance. 

The distribution of the objects, i.e., the 
clustering challenge for each of the instances 
described in Table 1, is presented below. 
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Table 1. Datasets for experiments 

Id Name k N 

1 diamond9 9 3,000 

2 longsquare 6 900 

3 spherical_4_3 4 400 

4 spherical_5_2 5 250 

5 triangle1 4 1,000 

6 iris 3 150 

 

Fig. 1. Dataset diamond9 

 

Fig. 3. Dataset spherical_4_3 

 

Fig. 2. Dataset longsquare 

 

Fig. 4. Dataset spherical_5_2 
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Figure 1 shows the diamond9 instance, which 
consists of nine diamonds or square groups that 
are connected to each other at the corners.  

This instance has been used as part of the 
experiments described in [23] to automatically 
determine the number of clusters in an instance 
based on cluster evaluation metrics. 

Figure 2 shows the longsquare instance, which 
consists of two different types of clustering: some 
based on cluster compactness and other based 
on connectivity. This instance has been used in 
the work presented in [24] as part of the 
optimization of multi-objective clustering. 

Figure 3 shows the spherical_4_3 instance, 
which originally contained four clusters in three 
dimensions, but for the purposes of this study, 
only the first two dimensions, x and y, were taken. 
This instance has been used in the work 
described in [25] to evaluate the performance of a 
genetic algorithm, and subsequently, this 
algorithm is applied to image classification. 

Figure 4 shows the spherical_5_2 instance, 
which consists of five clusters where the objects 
are overlapping. This instance has been used in 
the experiments presented in [26] to evaluate the 
performance of various cluster validity indices: for 
example, the Davies-Bouldin (DB) index and the 
Dunn's index. 

Figure 5 shows the triangle1 instance, which, 
similar to Figure 2, consists of two different types 
of clustering: those based on cluster compactness 
and those based on connectivity. 

Figure 6 shows the iris instance. 

3.1 Data Preparation 

Alternatively, if the data package FCPS cannot be 
installed in R, the dataset can be obtained from 
the benchmark [27]. In this case, the datasets are 
downloaded, and the two attributes to work with 
(the x and y coordinates) are selected and loaded 
into a variable in R with the instruction 
read.csv(“path”). 

The read.csv command allows to load each 
instance from a file in table format and create a 
data frame from it. Table 2 presents the code 
required in R. The first column contains the 
identification of the dataset described in Table 1 
and the next column contains the R code to read 
from a file.  

In the case of the iris instance, we go through 
the exercise of taking it from the R dataset and 
load it into a variable. 

 

Fig. 5. Dataset triangle1 

 

Fig. 6. Dataset iris 

Table 2. Loading files into variables 

Id Read from a file 

1 diamond9 <- read.csv("diamond9.csv") 

2 longsquare <- read.csv("longsquare.csv") 

3 spherical_4_3 <- read.csv("spherical_4_3.csv") 

4 spherical_5_2 <- read.csv("spherical_5_2.csv") 

5 triangle1 <- read.csv("triangle1.csv") 

6 Iris <- datasets::iris[0:4] 
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4 Experimental Procedure 

The K-means clustering algorithm is an 
unsupervised machine learning algorithm that 
allows to divide a given data set into a set of k 
clusters. The central idea of clustering is to define 
the clusters in such a way that the total intra-
cluster variation is minimized. 

To develop this experimental process with the 
variants of the K-means algorithm implemented in 
R, we follow the flow presented in Figure 7. 

To this end, the next steps must be followed: 
1) start with the test set (see Table 1) that will be 
processed by the K-means variant, 2) the variant 
is selected and the data set is processed, 3) when 
the algorithm converges, the sum of the intra-
cluster distances is stored in a variable, 4) steps 1 
to 3 are repeated 30 times and the intra-cluster 
distances are summed, and 5) the average intra-
cluster distance for that instance with that variant 
is calculated. 

4.1 Computing K-Means Clustering in R 

The 4 variants of the K-means algorithm that are 
implemented in R are: Lloyd, Forgy, MacQueen 
and Hartigan-Wong. In this research, to analyze 
the behavior of each variant, the "intra-cluster 
distance", which is the sum of the distances 
between the centroids, will be used. In these 
tests, the variant of the algorithm that yields the 
highest "intra-cluster distance" will be the one that 
best separates the clusters. 

The standard R function for K-means 
clustering is kmeans() and it is implemented as 
shown in the code in Figure 8. 

Figure 8 shows the parameters of the function 
implemented in R [28], where x is the numerical 
matrix of the dataset to be clustered, centers is 
the number of partitions to be formed by the 
algorithm, iter.max is the maximum number of 
iterations allowed, and algorithm is the name of 
the variant to be used to cluster the dataset. 
When the variant is not specified in the algorithm 
parameter, the default function used is the 
Hartigan and Wong. 

In the specialized literature, the vast majority 
of authors, when referring to the K-means 
algorithm, cite MacQueen (followed by Lloyd and 
Forgy) instead of the basic method. Additionally, 
in general, the Hartigan-Wong algorithm performs 
better than either of them. 

5 Results of K-means Variants 

Once the thirty runs of each variant were 
executed for each of the test datasets, the 

 

Fig. 7. Procedure for each variant of K-means 

 

Fig. 8. K-means function in R 

Table 3. Average intra-cluster distances 

Id 
Average of intra-cluster distances 

Hartigan Lloyd Forgy MacQueen 

1 15661 15684 15640 15630 

2 41007 40927 40867 40504 

3 34487 34439 34403 34185 

4 29256 29216 29186 29004 

5 56044 55624 55211 55075 

6 589.73 598.25 593.99 585.47 
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relevant results were summarized in Tables 3 
and 4. 

Table 3 shows the identifier of each dataset 
described in Table 1, and the following columns 
show the average distance between clusters 
obtained with each of the variants of the K-means 
algorithm: starting with Hartigan, Lloyd, Forgy, 
and MacQueen. The minor (minimum) and major 
(maximum) intra-cluster distance marked in blue 
and yellow, respectively. 

Table 4 is an extension of Table 3, showing, in 
summary form, which of the variants obtained the 
minor (minimum) and major (maximum) intra-
cluster distance and for each of them, the number 
of iterations needed to reach convergence. 

It is important to mention that for all instances, 
the variant that in all cases reports the minor 
intra-cluster distances is the MacQueen variant. 
Additionally, except in two cases, the Lloyd 
variant reports the largest intra-cluster distance, 
for all other cases, it is the Hartigan variant. 

Another important fact from the results shown 
in this table is the number of iterations, which is 
seen to increase by a third with the MacQueen 
variant to obtain the minor intra-cluster distances. 

6 Clustering Analysis and Discussion 

This section presents the cluster analysis for each 
of the instances and we will discuss the main 
observations found in the behavior of each of the 
instances resulting from the variants of the K-
means algorithm, mainly concerning the intra-
cluster distances, the clustering and the number 
of iterations. 

Figure 9 shows how the variants obtained a 
different clustering for this instance. This is mainly 
due to the fact that the instance is composed of 
two different types of clustering, in the upper right 
part four clusters can be visually identified, which 
present a spherical shape and in the lower left 
part two clusters with an elongated shape can 
be seen. 

The Figure 9 has two sections, a) and b). 
Section a) shows the clustering with the variant 
that obtained the minor intra-cluster distances, 
section b) shows the clustering with the variant 
that obtained the major intra-cluster distances, all 
referring to Table 3. In addition, below each 
section, the distribution of the objects by cluster 
is shown. 

Table 4. Minor and major intra-cluster distances 

Id Minor Iterations Major Iterations 

1 MacQueen 19 Lloyd 4 

2 MacQueen 5 Hartigan 2 

3 MacQueen 12 Hartigan 4 

4 MacQueen 8 Hartigan 3 

5 MacQueen 3 Hartigan 2 

6 MacQueen 3 Lloyd 4 

 

Fig. 9. Minor and major intra-cluster distance for 
longsquare 
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MacQueen's variant, Figure 9 a), generates 
one centroid for each of the spherical clusters in 
the upper part and two for the clusters in the 
lower part, separating them vertically, while in 
Figure 9 b), Hartigan's variant merges two of the 
spheres in the upper part and in the lower part, 
generates three clusters for the elongated 
regions, also separating them vertically. 

It should be noted that the minor intra-cluster 
distance was always obtained for all instances 
with the MacQueen variant. 

The major intra-cluster distance obtained in 
most instances corresponds to the Hartigan 
variant, except for the first and last instances, see 
Table 3. 

The Lloyd variant obtains the major intra-
cluster distance for the diamond9 instance. This 
instance has the peculiarity that it is composed of 
nine clusters that are connected at their corners, 
usually used in experimentation to automatically 
identify the number of clusters that constitute 
an instance. 

On the other hand, the final clustering obtained 
with the variants reporting the minor and major 
intra-cluster distance, maintains the same 
structure and distribution of objects for each 
cluster, except for the longsquare instance. 

It is important to mention that the number of 
iterations required by each of the variants to 
obtain the final clustering also varies, see Table 3. 
This is best seen in case one, where the 
MacQueen variant executes 19 iterations while 
Lloyd performs only 4. Similarly, in case 3, the 
MacQueen variant executes 12 iterations and 
Hartigan 4. 

What is surprising is that the Lloyd and Forgy 
variants rarely appear in these experiments. 
Forgy never got either the minor or major intra-
cluster distance. Lloyd only achieved the major 
intra-cluster distance twice. 

Lloyd and Forgy variants, in the general 
literature, are characterized by working well for 
large data sets and by randomly selecting the 
initial centroids. 

However, when the algorithm is executed in 
the computer memory, it requires storing the 
results of the last two iterations, which is very 
expensive, and it also creates empty cluster sets. 
As for the input data, Lloyd's variant works with 

discrete data distributions and Forgy's with 
continuous data distributions. 

On the other hand, the variant proposed by 
MacQueen is characterized by initializing the 
centroids with the first objects in the set, one for 
each cluster, and then recalculating the centroid 
of a cluster immediately after it is assigned an 
object, and not at the end of the iteration as in the 
other variants. In this sense, the MacQueen 
variant is said to be more efficient because it 
updates the centroids frequently and runs through 
all the clusters before convergence. 

Finally, based on the behavior of these 
variants and the information obtained, it is 
possible to decide which variant to choose to 
solve an instance with the variants implemented 
in the R language. 

7 Conclusion 

In this paper we present an exploratory analysis 
of the behavior of the main variants of the K-
means algorithm (Hartigan-Wong, Lloyd, Forgy 
and MacQueen) when solving some of the difficult 
sets of instances from the Fundamental 
Clustering Problems Suite (FCPS) benchmark. 

The main results show that, of the four 
variants, MacQueen gives the best results when 
the variance of the clusters is intended to be the 
minor; however, the Hartigan variant is better for 
obtaining the major variance. In this sense, the 
default variant using R in the kmeans() function is 
the Hartigan variant. 

It is important to note the time and number of 
iterations to reach the solution, since in all cases 
where the minor intra-cluster variance was 
obtained, the number of iterations was higher. In 
general, it is suggested to use the MacQueen 
variant when there are no restrictions on the 
solution time. 
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