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Abstract. This research presents the design of a 

platform that assists in the generation of convolutional 
(CNN) and multilayer neural networks to provide a user-
friendly interface for the design, formation, and 
development of neural networks.  This platform is 
developed in LabVIEW as this software allows to 
perform inter-faces and generate an executable for use. 
It aims to reduce the development time of neural 
networks by providing an assistant-like graphical 
interface that guides the user through various common 
scenarios (data import, neural network construction and 
adjustment), allows the user to focus on solving their 
problems without having to write code, edit text files, or 
manually analyze recorded data. The user interface with 
the options offered is described. The way the neural 
network is generated is described. The results generated 
with the platform are presented producing an image with 
the proposed methodology applying a complete 
convolution layer. The usefulness of this platform is 
explained by presenting a case where there is a 
significant improvement in the development of a neural 
network, in time and reduction of errors. 

Keywords: CNN, multilayer, software, platform, 

LabVIEW platform, MATLAB platform. 

1 Introduction 

The artificial neural network is a model extracted 
from the biological neural network. In the biological 
neural network, "when a neuron receives an 
exciting input that is large enough compared to its 
inhibitory input, it sends a peak of electrical activity 
through its axon. Learning occurs by changing the 
effectiveness of synapses so that the influence of 
one neuron on another changes [1]. 

Artificial intelligence is becoming a widely used 
tool for its robust applicability to problems, 
particularly those that cannot be solved well by 
humans, for example, in medicine where 
algorithms are used to identify subjects with a 
family history of an inherited disease or an 
increased risk of a chronic disease or in the 
evaluation of changes in human performance in 
such situations-rehabilitation [2]. 

There is a particular type of artificial neural 
network that makes a difference in practice, which 
is precisely the one that corresponds to networks 
used to process signals: convolutional networks. 
Their success in solving computer vision problems 
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that, until recently, were considered almost 
intractable, has served to reaffirm neural networks 
in Artificial Intelligence. Recent advances in CNNs 
have led to vast improvements in the accuracy of 
hearing and vision systems. Characterized by 
deep structures and many parameters, deep CNNs 
challenge the performance of current computers. 
Most of the work is focused on the implementation 
and improvement of these networks. 

In recent years, many advances have been 
made with deep neural networks, delivering 
cutting-edge results in machine learning tasks 
such as the classification of images and 
documents. Companies make use of the latest 
advances in deep learning by benefiting from a 
rapidly evolving software environment comprising 
different deep learning frameworks. 

Tensor Flow [3] began in 2011 as an internal 
Google project called "Google Brain" and was 
made public in 2017 as an open-source deep 
learning system, meaning a neural network, which 
can run on multiple CPUs and GPUs. It is used to 
train neural networks that can detect and decipher 
patterns and correlations analogous to those we 
see in human learning and reasoning. 

Caffe [4] gives scientists and practitioners a 
clean, customizable structure for cutting-edge 
deep learning algorithms and a collection of 
reference models. The framework is a BSD-
licensed C++ library with Python and MATLAB 
links to train and implement general-purpose, 
convolutional neural networks and other deep 
models efficiently in commodity architectures. 

ONNX [5] (Open Neural Network Exchange) 
was announced just in September 2017. It’s a joint 
effort by Microsoft and Facebook. ONNX is a 
format designed to make it easy to exchange deep 
learning models between people of this nature. 
The initiative aims to make it easier for developers 
to use multiple in-turn neural network programming. 

Weka [6] is a software platform for machine 
learning and data mining written in Java and 
developed at Waikato University. It is mainly used 
to make classifiers. 

PyTorch [7] is an open-source machine 
learning library that specializes in tensor 
calculations, automatic differentiation, and GPU 
acceleration. For those reasons, PyTorch is one of 
the most popular deep learning libraries, 
competing with Keras and TensorFlow for the 

"most used" deep learning package award. 
PyTorch tends to be especially popular among the 
research community because of its Pythonic 
nature and extensibility facility (i.e., enhancement 
of custom layer types, network architectures, etc.). 

Microsoft Cognitive Toolkit [8] (CNTK) is an 
open-source toolkit for commercially distributed 
deep learning. It describes neural networks as a 
series of computational steps through a directed 
graph. CNTK allows the user to easily perform and 
combine popular model types such as 
breakthrough DNN, convolutional neural networks 
(CNN) and recurrent neural networks (RNN / 
LSTM). CNTK implements stochastic gradient 
downgradient (SGD, error backpropagation) 
learning with automatic differentiation and 
parallelization on multiple GPUs and servers.  

Corporations like Amazon, Apple, Google, IBM 
and Microsoft, provide their machine learning 
services in the cloud, both in the form of pre-trained 
that can be used for predictions and form platforms 
that design models based on customer-
provided data. 

Datalore represents Jetbrains vision of online 
machine learning environments, which consists of 
intelligent encoding support for Python online 
Jupyter laptops running powerful CPU and GPU 
code, offering real-time collaboration and results 
sharing facilities [9]. 

Maintaining a rigorous approach to the life cycle 
and evolution of machine learning can be difficult, 
especially when it comes to designing a new 
machine learning mechanism or process. Access 
to appropriate testing tools and resources is 
essential for researchers operating in this field. As 
a neural network developer, we probably all spend 
hours customizing a work environment at least 
once. We recognized that the tools, tools and 
techniques are more or less the same. Therefore, 
maintaining a custom environment while keeping 
all software up to date can be a monotonous task. 

However, a local platform is needed for 
researchers and scientists who wish to experiment 
and develop this technology, which, unlike those 
mentioned above, is friendly to people from other 
areas of research and which must incorporate the 
advantages of neural networks in their lines 
of research. 

This work aims to help in the reduction in the 
development time of a neural network, grant ease 
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in modifying the network to find the appropriate 
configuration for each application. The same 
purpose of a neural network for example the 
parametric robot identification that can be 
performed with neural networks changes between 
each type of robot, the developed software allows 
to readjust the design without the need to modify a 
code of hundreds of lines, by simply modifying the 
parameters that the user enters in the software, the 
desired result can be obtained. 

This article is divided into 6 chapters. Chapter 2 
details the approach of the proposed silver-form 
and its comparison with other software, chapter 3 
details the software, the design of the user 
interface and the way in which the platform 
develops the neural network based on the 
parameters entered by the user, Chapter 4 
presents results obtained with the platform, 
chapter 5 presents an application that could be 
improved with the use of our software and chapter 
6 presents the conclusions. 

2 Background 

The proposed wizard is designed to be used by 
someone with basic knowledge of neural networks, 
for the user to understand the terminology of the 
parameters needed to configure each layer of the 
new network and understand each part that 
composes it. Software like Knime [10] which is 
developed on the Eclipse platform and 
programmed, essentially, in Java.  

It is conceived as a graphical tool and has a 
series of nodes (encapsulating different types of 
algorithms) and arrows (representing data flows) 

that are displayed and combined in a graphical and 
interactive manner. 

Barista [11], an open-source graphical tool for 
deep neural network design. Barista uses Caffe as 
the underlying because of its concept of network 
layers as the building blocks of a model. 

Expresso [12] a GUI tool written in Python is 
built on top of Caffe. Expresso provides a 
convenient wizard as a graphical interface that 
guides the user through various common 
scenarios, data import, construction, and deep 
networking, performing various experiments, 
analyzing, and visualizing the results of 
these experiments.  

These platforms expose deep learning in a GUI 
and use the Python TensorFlow, Keras5 or Caffe 
libraries as backends. The user must configure 
Python manually using virtual environments or 
Anaconda6 and may have to resolve 
dependencies of the corresponding deep learning 
framework. On the contrary, our software is easily 
installed via the Windows installer. 

For the development the platform was analyzed 
an existing CNN to have the bases of the elements 
that should be able to integrate the 
proposed  platform.  

Figure 1 shows the general structure of a CNN, 
to the image input an image processing is 
performed that can contain, filtering, evaluation 
function, bias and so on, then there is the pooling 
layer that reduces the size of the image, after 
repeating these layers several times the 
information enters a fully connected neural network 
and finally the output is obtained.  

In the construction of a convolutional neural 
network, the more layers are added, the more 
complex the combinatorics of outputs and inputs in 
the process become. For example, a neural 
network with 3 convolutional layers, the first layer 
is shown in Figure 2, 10 9x9 kernels are applied 
and a sub-sample is made by obtaining a map of 
46x46x10 on the output. 

Finally, the output of convolutional layer 3 is 
connected to a fully connected network that has 
3610 input neurons that correspond to each value 
of the output map. Multiple hidden layers are built 
until only 4 parameters are output. 

Mathematically, convolution is a mathematical 
operation performed on two functions to produce a 

 

Fig. 1. Structure of a CNN 
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third that is usually interpreted as a modified 
(filtered) version of one of the original functions. 

Subsequent convolutions are shown in Table 1. 
Figure 3 illustrates the convolution operation, takes 
a window of the input image X of the same size of 
the filter W, and multiplies by its matrix.  

The values obtained from the multiplication of 
each element of the image for each element of the 
filter are added and the element of the matrix Y 
containing the resulting elements is obtained, this 
process is repeated until the entire input map 
is  completed. 

During the convolution process you have a 
small reduction that is related to the size of the filter, 
this happens when you start to get the window of 
the input image, being an array of for example 9x9, 
if you take it from the first reading as center of the 
matrix, there are no elements in the first half of the 
matrix, so there is a reduction in the size of the filter 
minus one, in the given example, if you have a 
100x100 input and apply a 9x9 filter you will have 
an output of 92x92. 

Sharing parameters while using local receptive 
fields allows you to control the number of 
parameters of a convolutional network. However, 
the computational cost of processing images in a 
neural network can be quite high.  

For this reason, convolutional networks often 
include a second key component: pooling or sub-
sampling layers. 

When a sub-sample is made, the jump size 
defines how the window is traversed in the original 
matrix, figure 4 shows a matrix of 4 x 4 and as the 
window with the jump size 1 is selected, figure 5 
shows the result obtained 

In comparison, figure 6 where the window break 
is 2, the number of steps you must perform to 
complete the path of the same matrix is greater, 
this modifies the size of the output matrix shown in 
figure 7. 

The window size modifies the size of the sub 
matrix that is selected to get the maximum average 
depending on the type of reduction used. 

This modifies the result obtained as more 
elements are taken from the array, but it is still 
reduced to a single element per selected window, 
figure 8 shows a window of size 2 with jump 1, and 
figure 9 shows a window of size 3 with jump 1. 

The window and jump size influence the output 
size of the subsample, it is important to note this 
for the next layer. 

3 Software Framework 

The wizard is built in LabVIEW and with-poured 
into an executable file; the file that is obtained as 
output has the extension. “.m” can therefore be run 
on MATLAB or GNU Octave open-source software. 
The supported neural networks are CNN 
and multilayer. 

Using GNU Octave to run the neural network 
designed with the platform has the advantage of 
being a free-to-use program. To use it on Windows, 
simply download the installer from your website 
and run it. In the case of MacOS you download the 
file with extension ".dmg" from the website [13], this 
will install it as an application, finally, you need to 
enter the privacy and security settings and unlock 
the program, this happens because the system 
detects that it is an application from an unknown 
developer.  

The installation on Linux depends on the 
distribution, in which you want to install, there is 
support for these distributions [14]: Debian, Ubuntu, 
Arch Linux, Slackware, Gentoo, Fedora, 
openSUSE, CentOS y RHEL.  

 

Fig. 2. First layer of convolution 

Table 1. Data from subsequent convolutions 

Layer Input Kernel 
size 

Pooling Output 

2 46X46X10 5X5X10 2X2 21X21X10 

3 21X21X10 3X3X10 2X2 19x19x10 
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Fig. 3. Convolution process 

 

Fig. 4. Window selection with jump size 1 

 

Fig. 5. Sub-sample result with jump 1 

 

Fig. 6. Window selection with jump size 2 

 

Fig. 7. Sub sample result with jump 2 

 
Fig. 8. Sub sample with window size 2 

 
Fig. 9. Sub sample with window size 3 
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Installation in Debian and Ubuntu, which are the 
most used distributions are: 

1. Open terminal, 

2. Add repository ‘sudo apt-get install 
octave’, 

3. Enter the system password, 

4. You can additionally install: 

a. octave-doc, octave-info, and 
octave-htmldoc for the 
documentation. 

b. liboctave-dev for the octave 
development header files and 
mkoctfile (required to install Octave 
Forge packages). 

c. octave-dbg for the debugging 
symbols. 

3.1 Graphical User Interface 

Figure 10 shows the user interface that as a first 
option allows the user to select between the 
options: generating function, convolutional network, 
and multilayer network. For this interface design 
tabs were used for the user to select the 
desired option. 

In the first option, the user is asked to select the 
files containing the vectors 𝜙 and 𝛼 to generate an 
image that can serve as input for CNN. 

The phi and alpha vectors must be the same 
size and belong to the real numbers. The operation 
performed with these vectors is a cross product of 
Alpha per phi transposed, this generates an array 
that normalizes between 0 and 255 to be able to 
be converted to an image of the same size of the 
array where each element of the array is a pixel of 
the generated image. 

The second option allows to generate the code 
for a convolutional network, as seen in figure 11 
the interface requests the path where the input 
image for the network is located. 

The user is allowed to select the number of 
convolutional layers the neural network is intended 
to contain, as the user changes the number of 
layers desired the interface displays the tabs of 
each layer so that the user configures each and 
requests to select the input image as shown in 
figure 12. 

Within each tab of each layer, there are four 
tabs where the user configures the parameters of 
each convolutional layer (filtering, bias, activation 
function and sub-sampling layer) and whether 
activate each layer type, where the user can 
choose the layer type.  

The first option is convolutional layer where you 
can select the number of filters you want to apply, 
how many sets of filters and how many filters for 
each set, the kernel with which you want the 
convolution to be done, can be selected from pre-
designed kernels, the desired kernel can be 
manually entered, random kernel can be selected 
from a defined range or imported from an external 
file as shown in figure 13. Figure 13 and 14 shows 
how the interface changes if a random kernel or 
kernel is selected from a file. 

 

Fig. 10. Generating function user interface 

 

Fig. 11. Layer number selection interface and input 

image selection 

 

Fig. 12. User interface to create a convolutional 
network 
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When random kernel is selected, the filter size 
and the minimum and maximum range of values 
are asked. In the case of the kernel from file is 
requested to select the local file containing the 
kernel, in case more than one filter is being used, 
the files must have the same name and numbered 
at the end of the name, each file will correspond to 
a kernel for example kernel_1, kernel_2 and so on.   

Figure 15 shows the interface in bias settings, 
in this layer you can select a random selection 
range or import an external file. 

Figure 16 shows the selection of activation 
function that can be performed, can be selected 
between the ReLU function, sigmoid function, or 
hyperbolic tangent. 

Figure 17 shows the configuration of the sub-
sampling stage that the user can perform, you can 
select the type of sub-sampling, average or 
maximum, you can set the window size and the 
jump size. 

1.1. Generation of the Neural Network 

The program generates a MATLAB file with 
extension. m in the same folder of the system 
where the input image is located and with the same 
name for easy identification in the system. 

The generated neural network can be executed 
by CPU or GPU, this gives us greater versatility, 
both for users who want to optimize the execution 
times and use the GPU, as for those who do not 
have a special hardware and use the CPU. 

The wizard allows you to create a given image 
that is not counted with one as input for CNN, this 
image is created with the vectors 𝜙 and 𝛼 that the 
user provides to generate an image that can serve 
as input for the CNN, having the address of the 
vector data read as MATLAB variables and are 
created as vectors, vector multiplication is 
performed, and an image is created with the map 
of values obtained where each resulting value 
equals a pixel. 

The wizard creates the code that allows 
MATLAB to have the image information, takes the 
image address provided by the user and using the 
function "imread" the image information is imported, 
then converts the image values to double precision 
to work with them and obtains the image size and 
saves a variable with the original information in 
case you need to compare with the original 

 

Fig. 13. Kernel interface from file 

 

Fig. 14. Random kernel interface 

 

Fig. 15. User interface for bias selection 

 

Fig. 16. User interface for activation function selection 
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information, this process can be repeated for 
n images. 

The handling of the different kernels is of utmost 
importance as you can get to use a lot. We propose 
that at the start of the generated network all kernels 
to be used are declared using the following 
nomenclature:  

Kernel_C_D_M . 

Here C is the layer number, D is the set number 
and M is the filter number within the set, this way 

when the convolution is done only the correct sub-
indices are used. 

Figure 18 shows the process performed by the 
platform to write kernels to be used during the 
neural network. First the desired kernel type is 
identified (random, by file or predefined), if random 
values are generated and indexes are placed to 
identify it, if by file is read with the address provided 
by the user, the information is imported and the 
kernel is generated with the corresponding 
subscripts, if it is pre-defined from the list provided 
by the software, the values are written. 

Using the kernels written, the platform performs 
the convolution operation described in section 3. 

Having the output of the convolutional layer, the 
sum of Bias is performed,  

The value of Bias controls how predisposed the 
neuron is to shoot a 1 or a 0 independent of the 
weights. A high bias makes the neuron require a 
higher input to generate an output of 1. A low bias 
makes it easier. Figure 19 shows the procedure, 
adds the input element with a bias value and 
generates the output matrix. 

The next step is the evaluation using a non-
linear function, in this process the evaluation of 
each element of the matrix is performed and a new 
matrix is obtained with the results of the evaluation, 
this matrix maintains the same dimension, there 
are different evaluation functions that are used 
repeatedly, Figure 20 shows some functions and 
their evaluation process. 

The last procedure performed on the layer is the 
reduction or pooling, this process was explained in 
section 3. 

4 Results and Discussion 

Two files were generated with 100 number alloys 
each, were entered as 𝜙  and 𝛼   vectors in the 
software to use the image generating function, in 
figure 21 the generated image.  

In Figure 23 we can see the MATLAB output 
when running the code generated with the platform, 
as we can see for this case, we selected the edge 
preset kernel that generates an image with the 
edges in white and the rest of the image in black, 
In Figure 24 the convolution with the focus kernel 
was performed. In both cases only the convolution 
with the selected kernel applies. 

 

Fig. 17. User interface for sub-sampling configuration 

 

Fig. 18. Writing flow diagram of kernels 
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Fig. 19. Bias process 

 

Fig. 20. Assessment of non-linear function 

 

Fig. 21. Generated figure 

 

Fig. 22. Convolutional layer applied to generated image 

 

Fig. 23. Image convoluted with focus kernel 
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In Figure 25 a complete convolution layer was 
made, with 2 sets of filters with 1 filter each, the 
kernels were entered by file, the software 
recognizes that two with-together filters are being 
used and creates 2 stages of sub-sampling, bias, 
and activation function.  

The input of this layer was an image of 240x240 
pixels, and the output is two images of 
120x120  each. 

Convolutional layers can be created with 
different settings and the program will connect 
each layer to the next layer. 

The dynamic model of a manipulator robot 
contains in its mathematical structure parameters 
such as centers of gravity, masses, moments of 
inertia and friction coefficients [15]. These 

parameters are generally unknown; this is the case 
for most commercial robots where the 
manufacturer does not provide their nominal 
values. While there are control theory tools such as 
adaptive schemes and robust controllers that allow 
for errors in dynamic parameters, knowledge of 
these is crucial for most schemes based on the 
dynamic model of a robot. 

The parametric identification problem has led to 
the derivation of several identification schemes 
that have become an attractive tool for determining 
the dynamic parameters of manipulating robots. 
especially when it is difficult to measure them 
directly. However, the non-linear nature of the 
dynamic model of manipulative robots makes the 
parametric identification task nontrivial. 

 

Fig. 24. Image result after a convolutional layer with all 

components 

 

Fig. 24. Convolutional set cover and 1 filter each 
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System identification can be defined as the 
characterization of a dynamic system, observing its 
measurable behavior. When a priori information 
about the rules governing a system does not exist 
or is too complex, for example in 
electrocardiographic signals, identification 
techniques are used to construct a model only by 
observing the input output data. So, the system is 
called a black box, because the internal behavior 
is unknown.  

In many physical systems, our knowledge of 
mechanical, chemical, or electrical laws allows us 
to formulate a model, which is the fundamental tool 
for studying the system, either analytically or 
through simulations. However, no matter how deep 
our physical perception, the parameters of any 
model are inaccurate. 

There is an area of opportunity to introduce 
neural networks in this topic, in [16] use a Hopfield 
neural network for the estimation of parameters, in 
the context of the identification of a dynamic 
system. CNN could offer a solution to this problem 
by designing a neural network that would perform 
the parametric identification of a dynamic system, 
in a particular case that of a manipulative robot. 

The dynamic model of a manipulator robot of n 
degrees of freedom is given by the Eq. (1) [15]: 

𝜏 = 𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝑔(𝑞) + 𝑓𝑓(�̇�, 𝑓𝑒), (1) 

where: 

 𝑞 Vector of generalized coordinates. 

 �̇� Vector of articular speeds. 

 �̈� Vector of articular accelerations. 

 𝑀(𝑞) Inertial matrix. 

 𝐶(𝑞, �̇�) Matrix of centripetal forces and 

Coriolis. 

 𝑔(𝑞) Vector of gravitational forces. 

 𝑓𝑓(�̇�, 𝑓𝑒)  Vector of friction pairs. 

The number of parameters to be identified may 
be large if the manufacturer’s parameters are not 
available, or if it is not physically possible to 
measure them. The proposed platform allows to 
create a neural network for this purpose with the 
ease of being modified in the process for its 
adjustment or to increase the number of 
parameters, if at first you want to ignore the friction 
pair vector and then incorporate it the software 

allows you to do this without recreating the neural 
network from scratch. 

5 Conclusions 

The analysis of a neural network convolution 
allowed identifying the repetitive processes that the 
assistant can perform. The proposed method of 
creating an image as a convolutional network input 
using user-provided data allows a solution if the 
user does not have a created image and only has 
a data set such as an electrical signal. 

The proposed platform can significantly reduce 
the development time of a neural network and 
helps to avoid code error when you want to adjust 
some parameter or configuration of the network. 

This platform is aimed at researchers and 
scientists who wish to experiment with deep 
learning, opening it up to users who prefer GUI-
based interaction and want to minimize the 
opportunity cost associated with software 
configuration, it is also sought that potential users 
who are not from the computational area approach 
the use of neural networks and that they can 
integrate it into their lines of research in other 
totally different areas. 

The mentioned application exemplifies the 
approach with which this platform is designed, the 
objective of improving the design time of a CNN 
and the ease of modifying it when the application 
changes. Using the proposed image generation 
methodology, the applications of this platform are 
not only limited to the identification and 
classification of images, but CNN can also be 
performed for problems where numerical data are 
generated, whether mechanical, electrical, 
magnetic among others. 

In the immediate future, the possibility of the 
platform generating the training stage will 
be  implemented. 
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