
Development of a Platform for Generation of CNN
and Multilayer Neural Networks

Daniel Marcelo González-Arriaga1, María Aurora Diozcora Vargas-Treviño2,
Josefina Guerrero García 1, Jesús López Gómez3

1 Benemérita Universidad Autónoma de Puebla,
Facultad de Ciencias de la Computación,

México

2 Benemérita Universidad Autónoma de Puebla,
 Facultad de Ciencias de la Electrónica,

México

3 Universidad Juárez Autónoma de Tabasco,
División Académica de Ingeniería y Arquitectura,

México

daniel.gonzaleza@alumno.buap.mx,
{aurora.vargas,josefina.guerrero}@correo.buap.mx, jesus.lopezg@ujat.mx

Abstract. This research presents the design of a

platform that assists in the generation of convolutional
(CNN) and multilayer neural networks to provide a user-
friendly interface for the design, formation, and
development of neural networks. This platform is
developed in LabVIEW as this software allows to
perform inter-faces and generate an executable for use.
It aims to reduce the development time of neural
networks by providing an assistant-like graphical
interface that guides the user through various common
scenarios (data import, neural network construction and
adjustment), allows the user to focus on solving their
problems without having to write code, edit text files, or
manually analyze recorded data. The user interface with
the options offered is described. The way the neural
network is generated is described. The results generated
with the platform are presented producing an image with
the proposed methodology applying a complete
convolution layer. The usefulness of this platform is
explained by presenting a case where there is a
significant improvement in the development of a neural
network, in time and reduction of errors.

Keywords: CNN, multilayer, software, platform,

LabVIEW platform, MATLAB platform.

1 Introduction

The artificial neural network is a model extracted
from the biological neural network. In the biological
neural network, "when a neuron receives an
exciting input that is large enough compared to its
inhibitory input, it sends a peak of electrical activity
through its axon. Learning occurs by changing the
effectiveness of synapses so that the influence of
one neuron on another changes [1].

Artificial intelligence is becoming a widely used
tool for its robust applicability to problems,
particularly those that cannot be solved well by
humans, for example, in medicine where
algorithms are used to identify subjects with a
family history of an inherited disease or an
increased risk of a chronic disease or in the
evaluation of changes in human performance in
such situations-rehabilitation [2].

There is a particular type of artificial neural
network that makes a difference in practice, which
is precisely the one that corresponds to networks
used to process signals: convolutional networks.
Their success in solving computer vision problems

Computación y Sistemas, Vol. 26, No. 1, 2022, pp. 171–182
doi: 10.13053/CyS-26-1-4162

ISSN 2007-9737

that, until recently, were considered almost
intractable, has served to reaffirm neural networks
in Artificial Intelligence. Recent advances in CNNs
have led to vast improvements in the accuracy of
hearing and vision systems. Characterized by
deep structures and many parameters, deep CNNs
challenge the performance of current computers.
Most of the work is focused on the implementation
and improvement of these networks.

In recent years, many advances have been
made with deep neural networks, delivering
cutting-edge results in machine learning tasks
such as the classification of images and
documents. Companies make use of the latest
advances in deep learning by benefiting from a
rapidly evolving software environment comprising
different deep learning frameworks.

Tensor Flow [3] began in 2011 as an internal
Google project called "Google Brain" and was
made public in 2017 as an open-source deep
learning system, meaning a neural network, which
can run on multiple CPUs and GPUs. It is used to
train neural networks that can detect and decipher
patterns and correlations analogous to those we
see in human learning and reasoning.

Caffe [4] gives scientists and practitioners a
clean, customizable structure for cutting-edge
deep learning algorithms and a collection of
reference models. The framework is a BSD-
licensed C++ library with Python and MATLAB
links to train and implement general-purpose,
convolutional neural networks and other deep
models efficiently in commodity architectures.

ONNX [5] (Open Neural Network Exchange)
was announced just in September 2017. It’s a joint
effort by Microsoft and Facebook. ONNX is a
format designed to make it easy to exchange deep
learning models between people of this nature.
The initiative aims to make it easier for developers
to use multiple in-turn neural network programming.

Weka [6] is a software platform for machine
learning and data mining written in Java and
developed at Waikato University. It is mainly used
to make classifiers.

PyTorch [7] is an open-source machine
learning library that specializes in tensor
calculations, automatic differentiation, and GPU
acceleration. For those reasons, PyTorch is one of
the most popular deep learning libraries,
competing with Keras and TensorFlow for the

"most used" deep learning package award.
PyTorch tends to be especially popular among the
research community because of its Pythonic
nature and extensibility facility (i.e., enhancement
of custom layer types, network architectures, etc.).

Microsoft Cognitive Toolkit [8] (CNTK) is an
open-source toolkit for commercially distributed
deep learning. It describes neural networks as a
series of computational steps through a directed
graph. CNTK allows the user to easily perform and
combine popular model types such as
breakthrough DNN, convolutional neural networks
(CNN) and recurrent neural networks (RNN /
LSTM). CNTK implements stochastic gradient
downgradient (SGD, error backpropagation)
learning with automatic differentiation and
parallelization on multiple GPUs and servers.

Corporations like Amazon, Apple, Google, IBM
and Microsoft, provide their machine learning
services in the cloud, both in the form of pre-trained
that can be used for predictions and form platforms
that design models based on customer-
provided data.

Datalore represents Jetbrains vision of online
machine learning environments, which consists of
intelligent encoding support for Python online
Jupyter laptops running powerful CPU and GPU
code, offering real-time collaboration and results
sharing facilities [9].

Maintaining a rigorous approach to the life cycle
and evolution of machine learning can be difficult,
especially when it comes to designing a new
machine learning mechanism or process. Access
to appropriate testing tools and resources is
essential for researchers operating in this field. As
a neural network developer, we probably all spend
hours customizing a work environment at least
once. We recognized that the tools, tools and
techniques are more or less the same. Therefore,
maintaining a custom environment while keeping
all software up to date can be a monotonous task.

However, a local platform is needed for
researchers and scientists who wish to experiment
and develop this technology, which, unlike those
mentioned above, is friendly to people from other
areas of research and which must incorporate the
advantages of neural networks in their lines
of research.

This work aims to help in the reduction in the
development time of a neural network, grant ease

Computación y Sistemas, Vol. 26, No. 1, 2022, pp. 171–182
doi: 10.13053/CyS-26-1-4162

Daniel Marcelo González-Arriaga, María Aurora Diozcora Vargas-Treviño, et al.172

ISSN 2007-9737

in modifying the network to find the appropriate
configuration for each application. The same
purpose of a neural network for example the
parametric robot identification that can be
performed with neural networks changes between
each type of robot, the developed software allows
to readjust the design without the need to modify a
code of hundreds of lines, by simply modifying the
parameters that the user enters in the software, the
desired result can be obtained.

This article is divided into 6 chapters. Chapter 2
details the approach of the proposed silver-form
and its comparison with other software, chapter 3
details the software, the design of the user
interface and the way in which the platform
develops the neural network based on the
parameters entered by the user, Chapter 4
presents results obtained with the platform,
chapter 5 presents an application that could be
improved with the use of our software and chapter
6 presents the conclusions.

2 Background

The proposed wizard is designed to be used by
someone with basic knowledge of neural networks,
for the user to understand the terminology of the
parameters needed to configure each layer of the
new network and understand each part that
composes it. Software like Knime [10] which is
developed on the Eclipse platform and
programmed, essentially, in Java.

It is conceived as a graphical tool and has a
series of nodes (encapsulating different types of
algorithms) and arrows (representing data flows)

that are displayed and combined in a graphical and
interactive manner.

Barista [11], an open-source graphical tool for
deep neural network design. Barista uses Caffe as
the underlying because of its concept of network
layers as the building blocks of a model.

Expresso [12] a GUI tool written in Python is
built on top of Caffe. Expresso provides a
convenient wizard as a graphical interface that
guides the user through various common
scenarios, data import, construction, and deep
networking, performing various experiments,
analyzing, and visualizing the results of
these experiments.

These platforms expose deep learning in a GUI
and use the Python TensorFlow, Keras5 or Caffe
libraries as backends. The user must configure
Python manually using virtual environments or
Anaconda6 and may have to resolve
dependencies of the corresponding deep learning
framework. On the contrary, our software is easily
installed via the Windows installer.

For the development the platform was analyzed
an existing CNN to have the bases of the elements
that should be able to integrate the
proposed platform.

Figure 1 shows the general structure of a CNN,
to the image input an image processing is
performed that can contain, filtering, evaluation
function, bias and so on, then there is the pooling
layer that reduces the size of the image, after
repeating these layers several times the
information enters a fully connected neural network
and finally the output is obtained.

In the construction of a convolutional neural
network, the more layers are added, the more
complex the combinatorics of outputs and inputs in
the process become. For example, a neural
network with 3 convolutional layers, the first layer
is shown in Figure 2, 10 9x9 kernels are applied
and a sub-sample is made by obtaining a map of
46x46x10 on the output.

Finally, the output of convolutional layer 3 is
connected to a fully connected network that has
3610 input neurons that correspond to each value
of the output map. Multiple hidden layers are built
until only 4 parameters are output.

Mathematically, convolution is a mathematical
operation performed on two functions to produce a

Fig. 1. Structure of a CNN

Computación y Sistemas, Vol. 26, No. 1, 2022, pp. 171–182
doi: 10.13053/CyS-26-1-4162

Development of a Platform for Generation of CNN and Multilayer Neural Networks 173

ISSN 2007-9737

third that is usually interpreted as a modified
(filtered) version of one of the original functions.

Subsequent convolutions are shown in Table 1.
Figure 3 illustrates the convolution operation, takes
a window of the input image X of the same size of
the filter W, and multiplies by its matrix.

The values obtained from the multiplication of
each element of the image for each element of the
filter are added and the element of the matrix Y
containing the resulting elements is obtained, this
process is repeated until the entire input map
is completed.

During the convolution process you have a
small reduction that is related to the size of the filter,
this happens when you start to get the window of
the input image, being an array of for example 9x9,
if you take it from the first reading as center of the
matrix, there are no elements in the first half of the
matrix, so there is a reduction in the size of the filter
minus one, in the given example, if you have a
100x100 input and apply a 9x9 filter you will have
an output of 92x92.

Sharing parameters while using local receptive
fields allows you to control the number of
parameters of a convolutional network. However,
the computational cost of processing images in a
neural network can be quite high.

For this reason, convolutional networks often
include a second key component: pooling or sub-
sampling layers.

When a sub-sample is made, the jump size
defines how the window is traversed in the original
matrix, figure 4 shows a matrix of 4 x 4 and as the
window with the jump size 1 is selected, figure 5
shows the result obtained

In comparison, figure 6 where the window break
is 2, the number of steps you must perform to
complete the path of the same matrix is greater,
this modifies the size of the output matrix shown in
figure 7.

The window size modifies the size of the sub
matrix that is selected to get the maximum average
depending on the type of reduction used.

This modifies the result obtained as more
elements are taken from the array, but it is still
reduced to a single element per selected window,
figure 8 shows a window of size 2 with jump 1, and
figure 9 shows a window of size 3 with jump 1.

The window and jump size influence the output
size of the subsample, it is important to note this
for the next layer.

3 Software Framework

The wizard is built in LabVIEW and with-poured
into an executable file; the file that is obtained as
output has the extension. “.m” can therefore be run
on MATLAB or GNU Octave open-source software.
The supported neural networks are CNN
and multilayer.

Using GNU Octave to run the neural network
designed with the platform has the advantage of
being a free-to-use program. To use it on Windows,
simply download the installer from your website
and run it. In the case of MacOS you download the
file with extension ".dmg" from the website [13], this
will install it as an application, finally, you need to
enter the privacy and security settings and unlock
the program, this happens because the system
detects that it is an application from an unknown
developer.

The installation on Linux depends on the
distribution, in which you want to install, there is
support for these distributions [14]: Debian, Ubuntu,
Arch Linux, Slackware, Gentoo, Fedora,
openSUSE, CentOS y RHEL.

Fig. 2. First layer of convolution

Table 1. Data from subsequent convolutions

Layer Input Kernel
size

Pooling Output

2 46X46X10 5X5X10 2X2 21X21X10

3 21X21X10 3X3X10 2X2 19x19x10

Computación y Sistemas, Vol. 26, No. 1, 2022, pp. 171–182
doi: 10.13053/CyS-26-1-4162

Daniel Marcelo González-Arriaga, María Aurora Diozcora Vargas-Treviño, et al.174

ISSN 2007-9737

Fig. 3. Convolution process

Fig. 4. Window selection with jump size 1

Fig. 5. Sub-sample result with jump 1

Fig. 6. Window selection with jump size 2

Fig. 7. Sub sample result with jump 2

Fig. 8. Sub sample with window size 2

Fig. 9. Sub sample with window size 3

Computación y Sistemas, Vol. 26, No. 1, 2022, pp. 171–182
doi: 10.13053/CyS-26-1-4162

Development of a Platform for Generation of CNN and Multilayer Neural Networks 175

ISSN 2007-9737

Installation in Debian and Ubuntu, which are the
most used distributions are:

1. Open terminal,

2. Add repository ‘sudo apt-get install
octave’,

3. Enter the system password,

4. You can additionally install:

a. octave-doc, octave-info, and
octave-htmldoc for the
documentation.

b. liboctave-dev for the octave
development header files and
mkoctfile (required to install Octave
Forge packages).

c. octave-dbg for the debugging
symbols.

3.1 Graphical User Interface

Figure 10 shows the user interface that as a first
option allows the user to select between the
options: generating function, convolutional network,
and multilayer network. For this interface design
tabs were used for the user to select the
desired option.

In the first option, the user is asked to select the
files containing the vectors 𝜙 and 𝛼 to generate an
image that can serve as input for CNN.

The phi and alpha vectors must be the same
size and belong to the real numbers. The operation
performed with these vectors is a cross product of
Alpha per phi transposed, this generates an array
that normalizes between 0 and 255 to be able to
be converted to an image of the same size of the
array where each element of the array is a pixel of
the generated image.

The second option allows to generate the code
for a convolutional network, as seen in figure 11
the interface requests the path where the input
image for the network is located.

The user is allowed to select the number of
convolutional layers the neural network is intended
to contain, as the user changes the number of
layers desired the interface displays the tabs of
each layer so that the user configures each and
requests to select the input image as shown in
figure 12.

Within each tab of each layer, there are four
tabs where the user configures the parameters of
each convolutional layer (filtering, bias, activation
function and sub-sampling layer) and whether
activate each layer type, where the user can
choose the layer type.

The first option is convolutional layer where you
can select the number of filters you want to apply,
how many sets of filters and how many filters for
each set, the kernel with which you want the
convolution to be done, can be selected from pre-
designed kernels, the desired kernel can be
manually entered, random kernel can be selected
from a defined range or imported from an external
file as shown in figure 13. Figure 13 and 14 shows
how the interface changes if a random kernel or
kernel is selected from a file.

Fig. 10. Generating function user interface

Fig. 11. Layer number selection interface and input

image selection

Fig. 12. User interface to create a convolutional
network

Computación y Sistemas, Vol. 26, No. 1, 2022, pp. 171–182
doi: 10.13053/CyS-26-1-4162

Daniel Marcelo González-Arriaga, María Aurora Diozcora Vargas-Treviño, et al.176

ISSN 2007-9737

When random kernel is selected, the filter size
and the minimum and maximum range of values
are asked. In the case of the kernel from file is
requested to select the local file containing the
kernel, in case more than one filter is being used,
the files must have the same name and numbered
at the end of the name, each file will correspond to
a kernel for example kernel_1, kernel_2 and so on.

Figure 15 shows the interface in bias settings,
in this layer you can select a random selection
range or import an external file.

Figure 16 shows the selection of activation
function that can be performed, can be selected
between the ReLU function, sigmoid function, or
hyperbolic tangent.

Figure 17 shows the configuration of the sub-
sampling stage that the user can perform, you can
select the type of sub-sampling, average or
maximum, you can set the window size and the
jump size.

1.1. Generation of the Neural Network

The program generates a MATLAB file with
extension. m in the same folder of the system
where the input image is located and with the same
name for easy identification in the system.

The generated neural network can be executed
by CPU or GPU, this gives us greater versatility,
both for users who want to optimize the execution
times and use the GPU, as for those who do not
have a special hardware and use the CPU.

The wizard allows you to create a given image
that is not counted with one as input for CNN, this
image is created with the vectors 𝜙 and 𝛼 that the
user provides to generate an image that can serve
as input for the CNN, having the address of the
vector data read as MATLAB variables and are
created as vectors, vector multiplication is
performed, and an image is created with the map
of values obtained where each resulting value
equals a pixel.

The wizard creates the code that allows
MATLAB to have the image information, takes the
image address provided by the user and using the
function "imread" the image information is imported,
then converts the image values to double precision
to work with them and obtains the image size and
saves a variable with the original information in
case you need to compare with the original

Fig. 13. Kernel interface from file

Fig. 14. Random kernel interface

Fig. 15. User interface for bias selection

Fig. 16. User interface for activation function selection

Computación y Sistemas, Vol. 26, No. 1, 2022, pp. 171–182
doi: 10.13053/CyS-26-1-4162

Development of a Platform for Generation of CNN and Multilayer Neural Networks 177

ISSN 2007-9737

information, this process can be repeated for
n images.

The handling of the different kernels is of utmost
importance as you can get to use a lot. We propose
that at the start of the generated network all kernels
to be used are declared using the following
nomenclature:

Kernel_C_D_M .

Here C is the layer number, D is the set number
and M is the filter number within the set, this way

when the convolution is done only the correct sub-
indices are used.

Figure 18 shows the process performed by the
platform to write kernels to be used during the
neural network. First the desired kernel type is
identified (random, by file or predefined), if random
values are generated and indexes are placed to
identify it, if by file is read with the address provided
by the user, the information is imported and the
kernel is generated with the corresponding
subscripts, if it is pre-defined from the list provided
by the software, the values are written.

Using the kernels written, the platform performs
the convolution operation described in section 3.

Having the output of the convolutional layer, the
sum of Bias is performed,

The value of Bias controls how predisposed the
neuron is to shoot a 1 or a 0 independent of the
weights. A high bias makes the neuron require a
higher input to generate an output of 1. A low bias
makes it easier. Figure 19 shows the procedure,
adds the input element with a bias value and
generates the output matrix.

The next step is the evaluation using a non-
linear function, in this process the evaluation of
each element of the matrix is performed and a new
matrix is obtained with the results of the evaluation,
this matrix maintains the same dimension, there
are different evaluation functions that are used
repeatedly, Figure 20 shows some functions and
their evaluation process.

The last procedure performed on the layer is the
reduction or pooling, this process was explained in
section 3.

4 Results and Discussion

Two files were generated with 100 number alloys
each, were entered as 𝜙 and 𝛼 vectors in the
software to use the image generating function, in
figure 21 the generated image.

In Figure 23 we can see the MATLAB output
when running the code generated with the platform,
as we can see for this case, we selected the edge
preset kernel that generates an image with the
edges in white and the rest of the image in black,
In Figure 24 the convolution with the focus kernel
was performed. In both cases only the convolution
with the selected kernel applies.

Fig. 17. User interface for sub-sampling configuration

Fig. 18. Writing flow diagram of kernels

Computación y Sistemas, Vol. 26, No. 1, 2022, pp. 171–182
doi: 10.13053/CyS-26-1-4162

Daniel Marcelo González-Arriaga, María Aurora Diozcora Vargas-Treviño, et al.178

ISSN 2007-9737

Fig. 19. Bias process

Fig. 20. Assessment of non-linear function

Fig. 21. Generated figure

Fig. 22. Convolutional layer applied to generated image

Fig. 23. Image convoluted with focus kernel

Computación y Sistemas, Vol. 26, No. 1, 2022, pp. 171–182
doi: 10.13053/CyS-26-1-4162

Development of a Platform for Generation of CNN and Multilayer Neural Networks 179

ISSN 2007-9737

In Figure 25 a complete convolution layer was
made, with 2 sets of filters with 1 filter each, the
kernels were entered by file, the software
recognizes that two with-together filters are being
used and creates 2 stages of sub-sampling, bias,
and activation function.

The input of this layer was an image of 240x240
pixels, and the output is two images of
120x120 each.

Convolutional layers can be created with
different settings and the program will connect
each layer to the next layer.

The dynamic model of a manipulator robot
contains in its mathematical structure parameters
such as centers of gravity, masses, moments of
inertia and friction coefficients [15]. These

parameters are generally unknown; this is the case
for most commercial robots where the
manufacturer does not provide their nominal
values. While there are control theory tools such as
adaptive schemes and robust controllers that allow
for errors in dynamic parameters, knowledge of
these is crucial for most schemes based on the
dynamic model of a robot.

The parametric identification problem has led to
the derivation of several identification schemes
that have become an attractive tool for determining
the dynamic parameters of manipulating robots.
especially when it is difficult to measure them
directly. However, the non-linear nature of the
dynamic model of manipulative robots makes the
parametric identification task nontrivial.

Fig. 24. Image result after a convolutional layer with all

components

Fig. 24. Convolutional set cover and 1 filter each

Computación y Sistemas, Vol. 26, No. 1, 2022, pp. 171–182
doi: 10.13053/CyS-26-1-4162

Daniel Marcelo González-Arriaga, María Aurora Diozcora Vargas-Treviño, et al.180

ISSN 2007-9737

System identification can be defined as the
characterization of a dynamic system, observing its
measurable behavior. When a priori information
about the rules governing a system does not exist
or is too complex, for example in
electrocardiographic signals, identification
techniques are used to construct a model only by
observing the input output data. So, the system is
called a black box, because the internal behavior
is unknown.

In many physical systems, our knowledge of
mechanical, chemical, or electrical laws allows us
to formulate a model, which is the fundamental tool
for studying the system, either analytically or
through simulations. However, no matter how deep
our physical perception, the parameters of any
model are inaccurate.

There is an area of opportunity to introduce
neural networks in this topic, in [16] use a Hopfield
neural network for the estimation of parameters, in
the context of the identification of a dynamic
system. CNN could offer a solution to this problem
by designing a neural network that would perform
the parametric identification of a dynamic system,
in a particular case that of a manipulative robot.

The dynamic model of a manipulator robot of n
degrees of freedom is given by the Eq. (1) [15]:

𝜏 = 𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝑔(𝑞) + 𝑓𝑓(�̇�, 𝑓𝑒), (1)

where:

 𝑞 Vector of generalized coordinates.

 �̇� Vector of articular speeds.

 �̈� Vector of articular accelerations.

 𝑀(𝑞) Inertial matrix.

 𝐶(𝑞, �̇�) Matrix of centripetal forces and

Coriolis.

 𝑔(𝑞) Vector of gravitational forces.

 𝑓𝑓(�̇�, 𝑓𝑒) Vector of friction pairs.

The number of parameters to be identified may
be large if the manufacturer’s parameters are not
available, or if it is not physically possible to
measure them. The proposed platform allows to
create a neural network for this purpose with the
ease of being modified in the process for its
adjustment or to increase the number of
parameters, if at first you want to ignore the friction
pair vector and then incorporate it the software

allows you to do this without recreating the neural
network from scratch.

5 Conclusions

The analysis of a neural network convolution
allowed identifying the repetitive processes that the
assistant can perform. The proposed method of
creating an image as a convolutional network input
using user-provided data allows a solution if the
user does not have a created image and only has
a data set such as an electrical signal.

The proposed platform can significantly reduce
the development time of a neural network and
helps to avoid code error when you want to adjust
some parameter or configuration of the network.

This platform is aimed at researchers and
scientists who wish to experiment with deep
learning, opening it up to users who prefer GUI-
based interaction and want to minimize the
opportunity cost associated with software
configuration, it is also sought that potential users
who are not from the computational area approach
the use of neural networks and that they can
integrate it into their lines of research in other
totally different areas.

The mentioned application exemplifies the
approach with which this platform is designed, the
objective of improving the design time of a CNN
and the ease of modifying it when the application
changes. Using the proposed image generation
methodology, the applications of this platform are
not only limited to the identification and
classification of images, but CNN can also be
performed for problems where numerical data are
generated, whether mechanical, electrical,
magnetic among others.

In the immediate future, the possibility of the
platform generating the training stage will
be implemented.

References

1. Berzal, F. (2018). Redes Neuronales & Deep

Learning.

2. Hamet, P., Tremblay, J. (2017). Artificial intelligence

in medicine. Metabolism: Clinical and Experimental,
Vol. 69, pp. S36–S40.

Computación y Sistemas, Vol. 26, No. 1, 2022, pp. 171–182
doi: 10.13053/CyS-26-1-4162

Development of a Platform for Generation of CNN and Multilayer Neural Networks 181

ISSN 2007-9737

3. Abadi, M., Agarwal, A., Barham, P., Brevdo, E.,
Chen, Z., Citro, C., Corrado, G.S., et al. (2016).

TensorFlow: Large-scale machine learning on
heterogeneous distributed systems. DOI:
10.48550/arXiv.1603.04467.

4. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S.,
Long, J., Girshick, R., Guadarrama, S., Darrell, T.
(2014). Caffe: Convolutional architecture for fast

feature embedding. Proceedings of the ACM
Conference on Multimedia. Association for
Computing Machinery, pp. 675–678. DOI:
.48550/arXiv.1408.5093.

5. Bai, J. et al. (2019). ONNX: Open neural network

exchange. GitHub repository [Preprint]. GitHub.

6. Frank, E. et al. (2016). WEKA Workbench Online

Appendix for Data Mining: Practical Machine
Learning Tools and Techniques.

7. Paszke, A. et al. (2019). PyTorch: An Imperative

Style, High-Performance Deep Learning Library. In
Wallach, H. et al. (eds) Advances in Neural

Information Processing Systems 32. Curran
Associates, Inc., pp. 8024–8035.

8. Seide, F., Agarwal, A. (2016). CNTK: Microsoft’s

Open-Source Deep-Learning Toolkit. In Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. New
York, NY, USA: Association for Computing
Machinery (KDD ’16), pp. 2135.

9. etBrains (2021). Introducing Datalore Enterprise

2021.3: Database Connections, SQL Cells,
Interactive Reports, and More. The JetBrains
Datalore Blog.

10. Berthold, M.R. et al. (2008). KNIME: The Konstanz

information miner. Studies in Classification, Data
Analysis, and Knowledge Organization, pp. 319–
326.

11. Klemm, S. et al. (2018). Barista - a Graphical Tool

for Designing and Training Deep Neural Networks.
pp. 1–8.

12. Sarvadevabhatla, R.K., Babu, R.V. (2015).

Expresso : A user-friendly GUI for designing, training
and exploring convolutional neural networks.

13. Octave (2021). Octave for macOS.

14. Octave (2021). Octave for Debian systems.

15. Reyes-Cortés, F. (2011). Robótica. Control de

Robots Manipuladores. ALFAOMEGA.

16. Atencia, M., Joya, G., Sandoval, F. (2005). Hopfield

neural networks for parametric identification of
dynamical systems. Neural Processing Letters, Vol.
21, No. 2, pp. 143–152.

Article received on 28/07/2021; accepted on 30/09/2021.
Corresponding author is María Aurora Diozcora Vargas-
Treviño.

Computación y Sistemas, Vol. 26, No. 1, 2022, pp. 171–182
doi: 10.13053/CyS-26-1-4162

Daniel Marcelo González-Arriaga, María Aurora Diozcora Vargas-Treviño, et al.182

ISSN 2007-9737

