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Abstract. The Quadratic Assignment Problem (QAP) 

consists of finding an optimal allocation of n facilities to 
n locations in such a way as to minimize the cost of 
interaction between facilities. The QAP is considered as 
a NP-hard. This article presents an application of QAP 
that consists of modeling a traffic system by introducing 
a probability transition matrix to transform the QAP into 
the Stochastic Quadratic Assignment Problem (SQAP). 
The objective of this article is to find solutions for SQAP 
through the implementation of the metaheuristic Greedy 
Randomized Adaptive Search Procedure (GRASP), in 
the JAVA programming language. The program is 
executed for a set of test instances and the results 
obtained by the application of two search strategies that 
make four combinations in the construction phases and 
the post processing phases of the metaheuristics. The 
program was also executed for a problem that presents 
instances of size n = 12 to 30, whose optimal solution is 
given. Given the need to offer solutions to logistics 
problems of the NP-hard class, a tool for approximating 

the optimal solutions is presented. 

Keywords. Metaheuristics, GRASP, QAP, SQAP. 

1 Introduction 

The Quadratic Assignment Problem (QAP) is a 
discrete optimization problem in particular of 
combinatorial optimization and consists of finding 
an optimal assignment of n facilities to n localities 
with the purpose of minimizing the cost of 
transportation, given two matrices, a matrix of 

distances between the localities and another with 
the flow of materials between the facilities. 

Note that each facility can only be assigned to 
one location and each location can only accept one 
facility, that is, it is a one-to-one relationship. The 
distance and material flow matrices are symmetric. 
What is required is that the facilities with the 
highest flow of materials are as close as possible 
in order to minimize the cost of transportation. The 
QAP solutions posed as a combinatorial 
optimization problem are permutations, observe in 
figure 1 the solution of that assignment is 2413 
which represents the assignment of facility 2 to city 
A, 4 to city B,1 to city C and the 3 to the city D. 

On the other hand, [13] mentions that the QAP 
is one of the most difficult problems of the NP-hard 
class and the motivation for its study is the number 
of applications that can be found in: logistics areas, 
operations research, combinatorial analysis and 
data in computer science, in order to reinforce the 
theoretical importance of the study of QAP.  

Additionally, in [13] it is stated about some 
problems posed as QAP among these are the 
following: Traveling Salesman Problem, Bin 
Packing, Maximal Clique, Isomorphism and Graph 
Partitioning [13]. A survey for the quadratic 
assignment problem presents an analysis of 362 
publications which the 95% are directly related 
to QAP. 

The QAP was proposed by [11] as a 
mathematical model for the allocation of 
economic activities. 
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In 1976 Shani and González proved that QAP 
is an NP-hard problem [24, 25] where it is shown 
that for problems of this class there is no exact 
algorithm that can solve them in a polynomial 
order time. 

So far, only optimal solutions have been found 
using exact methods for instances of size less than 
30 [23, 26]. QAP appears in many applications, 
such as computer keyboard design, manufacturing 
programming, airport terminal design, and 
communications processes, among others. The 
most popular exact algorithm to solve the QAP is 
the branch and bound [24] algorithm with some 
variants: the first exact parallel branch and bound 
algorithm was proposed by [26]. However, in 
recent years it has been proposed its solution 
through different approximation techniques called 
metaheuristics for the QAP [20, 18], among these 
are: Ant Colony (ACO), Artificial Neural Networks 
(NN), Genetic Algorithms (GA), Scatter Search 
(SS), Annealing Simulated (SA), Tabu Search (TS) 
[26] and Greedy Randomized Adaptive Search 
Procedure (GRASP) [14, 15] among others. 
Another technique [19, 21] implemented GRASP 
in parallel for QAP. 

The major drawbacks that heuristic techniques 
face is the existence of local optimum that are not 
absolute. If during the search there is a local 
optimum, the heuristic could not continue the 
process and would be “trapped” at the same point. 
In order to solve the problem, it is recommended to 
restart the search from another initial solution and 
verify that the new search explores other 
paths [2, 3]. 

Most combinatorial optimization problems are 
specific problems, so a heuristic technique 

algorithm that works for one problem is sometimes 
not useful for solving other problems. However, in 
recent years, general purpose heuristics called 
metaheuristics have been developed that try to 
solve the above drawbacks. Most metaheuristics 
are developed with neighborhood search 
methods [2, 3]. 

GRASP is an iterative procedure where each 
step consists of a construction phase and an 
improvement phase. In the construction phase, a 
constructive heuristic procedure is applied to 
obtain a good initial solution. This solution is 
improved in the second phase by a local search 
algorithm. The best of all the solutions examined is 
the final result [16, 23]. 

The main contribution of this research is to find 
solutions for SQAP through the implementation of 
the metaheuristic Greedy Randomized Adaptive 
Search Procedure (GRASP), in the JAVA 
programming language. The document is divide as 
follows. Section 1 contains an introduction, in 
section 2, the related work is presented, section 3, 
the formulation of QAP is given, after this in section 
4, the GRASP methodology is described, in 
section 5, the SQAP is stated, in the section 6, all 
the results are presented. Finally, in section 7, the 
conclusion and future work is presented. 

2 Related Works 

The QAP is a combinatorial optimization problem 
that consists in finding an optimal allocation of n 
resources to n locations in order to minimize the 
cost of transportation. A matrix of requirements for 
units to be transported and the cost of transport per 
unit between the localities is given. 

There are as many techniques and applications 
to solve the QAP as the one proposed by [25] that 
includes the solution of real problems using 
multiobjective optimization of ant colonies for 
the QAP.  

Furthermore, other algorithms such as the 
hybrid artificial bee colony [6] are an efficient 
metaheuristic for the QAP solution, which 
promises to be a good candidate to obtain an 
optimal solution with large instances for these 
intractable problems. 

Although metaheuristics are used for solving 
complex and real-world problems, they do not 

 

Fig. 1. QAP scheme for n = 4 
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provide an exact solution, but only an approximate 
solution like [12] that use the combination of 
different neighborhood structures to make an 
improvement in the implementation for QAP. 

Furthermore, in [26, 27] it is stated that genetic 
algorithms and taboo search metaheuristics can 
provide near optimal solutions for large QAP 
instances that require a reasonable time 
to complete. 

Since metaheuristics are not specific to a 
problem, it is interesting to determine which 
metaheuristics is best suited for each type 
of problem. 

The word metaheuristics was coined by [2] at 
the same time that the term Tabu Search 
emerged (1986). 

A metaheuristic is a master strategy that guides 
and modifies other heuristics to generate better 
solutions than are normally presented by other 
methods [26]. 

There are several successful metaheuristics in 
solving combinatorial problems. The GRASP 
metaheuristic is one of the most recent techniques, 
it was originally developed by [11] at the time of 
studying coverage problems of high combinatorial 
complexity [3]. Each iteration in GRASP generally 
consists of two steps: the build phase and the local 
search procedure. In the first stage, an initial 
solution is built that is later improved by post-
processing to perfect the solution obtained in the 
first stage until obtaining a local optimum. 

The metaheuristic procedures are a class of 
approximation methods, designed to solve difficult 
combinatorial optimization problems, where the 
classical heuristics are neither effective nor 
efficient, much less the exact methods [10]. 

Metaheuristics have the virtue of obtaining 
solutions close to the optimum in a reasonable 
computation time with respect to the size of the 
problem using moderate computational resources. 

This article presents the design of a GRASP 
metaheuristic for QAP and applied to Stochastic 
Quadratic Assignment Problem (SQAP) where the 
test instances were taken and modified from the 
QAPLIB library [22]. 

Optimization problems are based on choosing 
the best configuration from a set of feasible 
solutions to achieve an objective [12]. Optimization 
problems are divided into two categories: problems 
with continuous and discrete variables, for the 

case of the first group a set of real numbers or a 
function is sought, while in the second it is 
generally intended to find an objective that is taken 
within a finite and discrete set, an integer, a set of 
integers, a permutation, or a graph. The two types 
of problems have different methods of solving; 
however, combinatorial optimization problems 
belong to the second category [12] as an 
example, GRASP 

3 Formulation of the Quadratic 
Assignment Problem 

The QAP consists of finding an optimal allocation 
that minimizes the cost of transporting materials, 
among n facilities in n locations, considering the 
distance between locations and the flow of 
materials between facilities. The QAP can be 
formulated by a combinatorial optimization 
model (CP).  

Given a set N = {1, 2, ..., n} and two symmetric 

matrix of size n x n where: F= (𝑓𝑖𝑗) and D = (𝑑𝑘𝑙),  a 

permutation  p N  must be found that minimizes: 

∑∑𝑓𝑖𝑗𝑑𝑝(𝑖)𝑝(𝑗) 

𝑛

𝑗=1

𝑛

𝑖=1

 , (1) 

where N is the set of all permutations of N. F is 
the material flow matrix between facilities and D is 
the distance matrix between nodes. 

The QAP can also be posed as an integer 
programming problem as follows: 

Min f = tr(FXDXt), (2) 

∑𝑥𝑖𝑘

𝑛

𝑖=1

= 1 (𝑘 = 1,2… , 𝑛), (3) 

∑𝑥𝑖𝑘

𝑛

𝑘=1

= 1 (𝑖 = 1,2… , 𝑛),  (4) 

𝑥𝑖𝑘 = {
1 𝑖𝑓 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑘,
0             𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒,

 

where X is a matrix of binary variables, tr is the 
trace of the matrix, with the matrix F and 
D symmetric. 
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For our application, the flow matrix F is a 
stochastic non-symmetric matrix and D is the 
distance matrix which remains symmetric, with 
which, the objective function of the problem loses 
the previous integer programming trace structure 
but retains the combinatorial 
optimization structure. 

4 General GRASP Methodology 

The GRASP design has been used by some 
researchers to solve the QAP for different 
instances [15] and with other applications such as: 
building blocks which are common to other 
metaheuristics, GRASP with path- relinking and 
their different strategies for the efficient 
implementation, path relinking for balancing 
reconfigurable transfers lines [5, 8, 9, 25], multi-
mode transportation planning of crude oil via 
GRASP and path relinking [25] and hybridization of 
GRASP with data mining [3]. 

There are applications of GRASP in 
experimental investigation to study the probability 
and distribution of solution time [1].  

Probabilistic stopping rules for GRASP 
heuristics and extensions that propose stopping 
rules based on the tradeoff between solution 
quality and the time needed to find a solution that 
might improve the solution are discussed in [23].  

A GRASP metaheuristic to improve accessibility 
after disaster, in which the problem considers the 
allocation of scarce resources to repair a rural road 
network after a natural disaster with the purpose of  
maximizing the accessibility of as many people as 
possible to the main cities or regional centers, 
where the economic and social infrastructure 
usually is located, is presented in [7]. 

GRASP is an iterative process; each iteration 
consists of two steps: the construction phase and 
the local search procedure. In the first, an initial 
feasible solution is built, later it is improved by 
means of an exchange procedure until obtaining a 
local optimum [4]. 

Once the two phases have been executed, the 
solution obtained is stored and another iteration is 
carried out, each time saving the best solution that 
has been found so far. Algorithm 1 exemplifies the 
aforementioned metaheuristics. 

The GRASP overview has three main 
components. The first is the Greedy component 
that uses a myopic algorithm for the selection of 
the components that guide the construction of 
solutions.  

The second is that the Randomized used for the 
random selections from an elite list of candidates 
that determine the search path.  

Finally, the Adaptive component has the mission 
of updating each result obtained from the 
components of the solution that is built. 

4.1 Implementation for the Quadratic 
Assignment Problem 

The GRASP design has been used by some 
researchers to solve the QAP for different 
instances [15, 4, 6]. The construction phases for 
QAP are as follows. 

Construction phase, Stage 1. The two initial 
assignments are made simultaneously, specifically 
it will be said that resource i is assigned to location 
k and resource j is assigned to location l, when the 
cost corresponding to this pair of assignments is 

𝑓𝑖𝑗𝑑𝑘𝑙  . 

Let α, β, (0 < α, β <1) be the parameters that 
restrict the list of candidates (RLC), 𝐹 = 𝑓𝑖𝑗 and 

𝐷 = 𝑑𝑘𝑙 the symmetric n x n matrices with zeros in 
the input diagonal with which it is formed a non-
symmetric compact square matrix. 

𝐶 =

(

 
 
 

0 𝑑12 𝑑13
𝑓21 0 𝑑23
𝑓31
⋮
⋮
𝑓𝑛1

𝑓32
⋮
⋮
𝑓𝑛2

0
⋮
⋮
⋯

   

 

𝑑14 ⋯ 𝑑1𝑛
𝑑24 ⋯ 𝑑2𝑛
𝑑34
⋱
⋮
⋯

⋯
⋯
0

𝑓𝑛 𝑛−1

𝑑3𝑛
⋮

𝑑𝑛−1 𝑛
0 )

 
 
 

 

Algorithm 1. Generic GRASP pseudocode 

Procedure GRASP 

InputInstance(); 

While (stop criterion not satisfied) do 

        

ConstructSolutionGreedyRandomizeAdaptative()

; 

        Post-proccesing(); 

        UpdateSolution(); 

End {While} 

Return (Best solution) 

End {GRASP} 
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Let [x] be the integer part of x. Let 𝑚 =
𝑛(𝑛 − 1) 2⁄  be the number of entries in the lower 
and upper triangles of the compact matrix. 

Subsequently, the distance and flow entries are 
listed in increasing and decreasing order 
respectively, that is: 

𝑑𝑘1𝑙1 ≤ 𝑑𝑘2𝑙2 ≤ ⋯ ≤ 𝑑𝑘𝑚𝑙𝑚, (5) 

𝑓𝑖1𝑗1 ≥ 𝑓𝑖2𝑗2 ≥ ⋯ ≥ 𝑓𝑖𝑚𝑗𝑚. (6) 

Now, two ordered lists are obtained, therefore, 
the parameter β will be used to restrict both lists, 
for which they are cut to the element [βm]. A new 

list of costs is generated by multiplying the 
distances by the flows in the corresponding order, 
in this way the new list is obtained: 

𝑓𝑖1𝑗1
𝑑𝑘1𝑙1 , 𝑓𝑖2𝑗2𝑑𝑘2𝑙2 , ⋯ , 𝑓𝑖𝑚𝑗𝑚𝑑𝑘𝑚𝑙𝑚  , (7) 

𝑓𝑖1𝑗1𝑑𝑘1𝑙1 , 𝑓𝑖2𝑗2𝑑𝑘2𝑙2 , ⋯ , 𝑓𝑖[𝛽𝑚]𝑗[𝛽𝑚]𝑑𝑘[𝛽𝑚]𝑙[𝛽𝑚]  . (8) 

The last list is ordered in increasing order using 
the parameter α to obtain the definitive restricted 
list of candidates (RLC). Using the RLC, only the 
first [αβm] elements will be taken and a fixed 

element 𝑓𝑖𝑗 𝑑𝑘𝑙that represents a cost of make a pair 

of assignments (i, k) and (j, l), that is, two 
components of the solution are obtained. To 
simplify the solution, it is written as a permutation, 
where the k-th component and the l-th component 
are placed. 

In this way, the random component of the 
method is appreciated, and the first stage of the 
construction phase concludes. 

Stage 2. It is intended to complete the initial 
solution by calculating the n-2 remaining 
assignments, through an avid procedure that 
produces one by one the assignments that have 
the least cost with respect to the existing 
assignments. In the event of a tie, it will be broken 
randomly and relying on an adaptive component in 
charge of updating the solution as it is being built. 

Let 

Γ = {(𝑗1,𝑙1), (𝑗2, 𝑙2), … , (𝑗Γ, 𝑙Γ)}, (9) 

the set of assignments under construction. Stage 
2 starts with |Γ| = 2 as a result of the results of 
stage 1. 

Let 

𝐶𝑖𝑘 = ∑ 𝑓𝑖𝑗𝑑𝑘𝑙
(𝑗,𝑙)∈Γ

 , (10) 

the cost of assigning factory i to location k with 
respect to existing assignments. 

Subsequently, the unassigned pairs (i, k) that 

have the minimum cost 𝐶𝑖𝑘 are selected, thus 
producing the Greedy procedure. 

In this part, there is also an RLC where the 𝐶𝑖𝑘 

are ordered in increasing order and one of the first 
[αz] is randomly taken, where z represents the 
number of pairs not yet assigned. Again, it is 
observed that the random component appears. 

The function of the adaptive component of 
GRASP is to update the set Γ by adding new 
assigned pairs, that is: 

Γ = Γ ∪ {(𝑖, 𝑘)} . (11) 

At the end of this stage, the first phase also 
concludes, therefore, a solution has been built 
contained in the set: 

Γ = {(𝑗1, 𝑙1), (𝑗2𝑙2), … , (𝑗𝑛𝑙𝑛)} . (12) 

Ordering the first components of the pairs, the 
second components are taken to form the 
permutation equivalent to the solution [14]. 

Post processing phase: stage 2. The mission of 
the phase is to improve the solution that was 
produced in the construction phase. In this case, a 
local search procedure known as descent method 
was applied that works iteratively, successively 
replacing the current solution with a better solution 
in its neighborhood, the search ends when no 
better solution is found with respect to the 
function cost. 

The success of a local search algorithm consists 
of the adequate choice of a neighborhood 
structure, the efficient neighborhood search 
technique and initial solution. The GRASP 
construction phase plays an important role in the 
last point as it produces good initial solutions for 
local search [14].  

The neighborhood structure used in processing 
phase is 2-exchange (2-I). In practice, the flow 
matrix is taken, as well as the distance matrix and 
their elements are listed separately. The flows 
(matrix) are ordered from highest to lowest and the 
distances from least to greatest, both lists are 
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restricted with a parameter 0< α < 1, they are 
multiplied generating a new list of elements of the 
form 𝑓𝑖𝑗*𝑑𝑘𝑙  that contains large flows and 

short distances.  

This list is restricted with a parameter 0 < β < 1, 
with these operations you have a restricted list of 
candidates (RLC), from this list an element of the 
form is randomly selected 𝑓𝑖𝑗*𝑑𝑘𝑙 , producing the 

first assignment pair (i, k), (j, l), interpreted as 
facility k is assigned to location i and facility l is 
assigned to location j. finally n-2 components 
remain to be assigned, again with a greedy we 
calculate the 𝑐𝑖𝑘 costs with respect to the 2 
assignments against the remaining possible 
assignments, another RLC is formed and one of 
these candidates is selected with which the third 
assignment is generated and so on. Until 
completing the permutation of n components 
called initial solution S0 which is subjected to 
phase 2, called improvement phase, this is an 
iteration of GRASP. 

In the case of the second phase or improvement 
phase, taking as the initial solution the solution 
emanating from the first phase using a local search 
procedure, when this procedure is finished there 
will be a local optimal solution, which could also be 
a global optimal, algorithm 2 shows the 
pseudocode of the local search, where the input 
parameters are p that is the solution permutation 
produced in the construction phase and N(p) is the 
neighborhood of p. 

5 SQAP Model 

The SQAP is an application of the proposed QAP 
[7], the transformation is carried out by modeling a 
human trafficking system in a shopping center, the 
people who arrive at the shopping center are 
incorporated into a central corridor (circulation 

area flow of customers) also known as Steiner 
node where people walk in the direction of the 
place of their choice with a probability of going to 
place i, when leaving they go to place j with another 
probability of choice, the behavior of the traffic 
system it is modeled by means of: a waiting line 
with arrival rate, the departure rate with 
the parameters.  

Before the previous steps, the objective is 
established, which is the allocation of services to 
the premises of the shopping center, in such a way 
that the layout of the businesses is planned in 
order to speed up traffic, avoiding crowds, defined 
in the following paragraph. 

For the mathematical formulation in general of 
the SQAP as in [14] the following notation 
is considered: 

v = customer transfer speed. 

Algorithm 2. Pseudocode for the local search phase 

Local procedure (p,N(p),s) 

1 While s is not optimal local do 

2  Find a better solution t  V (s); 
3  Let s = t; 

4  End; {While} 

5  Return (s as optimal local) 

Local end; 

Table 1. GRASP 2-I Neighborhood 

Instance BKV 
2-

exchange 
Gap % 

Nug 20 2570 2570 0.0 

Nug 22 3596 3596 0.0 

Nug 24 3488 3496 0.2 

Nug 25 3744 3748 0.1 

Nug 27 5234 5236 0.0 

Nug 28 5166 5178 0.2 

Nug 30 6124 6156 0.5 

Table 2. GRASP Execution Results  

n C_PFP BVF WVF TCPU 

12 MSG2-
I 

44.99 49.6 90 

14 G_2-I 80.79 90.6 291 

15 MSG2-
I 

91 101.2 191 

20 G_2-I 194.99 215.99 1061 

21 G_2-I 197.4 209 1348 

22 G_2-I 300.4 310.2 1719 

24 G_2-I 279.2 293.6 2252 

25 G_2-I 308.4 340.59 2670 

30 G_2-I 486 523.8 5556 

42 G_2-I 182 182.07 20001 
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𝑑𝑖𝑗  = distance between nodes (or locals) i to j. 

𝑡𝑖𝑗 = time of customer service that node i leaves 

to go to node j given by 𝑑𝑖𝑗  / v. 

𝑝𝑖𝑗  = the probability that a customer leaves node 

i to node j. 

λ𝑗 = the arrival rate of a customer at node j. 

The Steiner node is considered to be a server 
with unlimited capacity, that is, as soon as a client 
enters the circulation of the system, there is a 
channel that provides the service, which is a 
function of the distance traveled in its transfer, it is 
that is, the waiting line behaves as if each client 
had its own server, therefore the Steiner node is a 
waiting line system [5]. 

In a system of waiting lines [16, 17] M / G / ∞ the 
average time spent in it is equal to the average 
time of service in the waiting line. In this case, the 
time spent in the system is the time that the client 
spends in the Steiner node, which is basically the 
time necessary for a client to move from node i to 
node j in the system. The time of stay for clients 

from node Steiner to node i is 1 µ𝑖⁄ , applying Little's 

law, the average time of clients at node Steiner to 
node i is 𝜆𝑖 (1/µ𝑖). The total number of clients in 

the system is: 

𝜆𝑖𝑝𝑖𝑗𝑡𝑖𝑗 ≡ 𝑞𝑖𝑗
𝑑𝑖𝑗

𝑣
 , (13) 

where: 

𝑞𝑖𝑗  =λ𝑖𝑝𝑖𝑗 , (i=1,2,…,n; j=1,2,…,n), (14) 

It is about finding the assignment of n services 

to n locals, that is, a permutation p  N  : 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    
1

𝑣
∑ ∑ 𝑓𝑖𝑗𝑑𝑝(𝑖)𝑝(𝑗)

𝑛
𝑗=1

𝑛
𝑖=1 . (15) 

6 Experiment and Results 

To obtain the results, the instances obtained from 
QAPLIB [20], designed by [14, 26], of dimensions 
12, 14, 15, 20, 21, 22, 24, 25 and 30 and 42[10], 
were taken, each instance is made up of three 
input parameters: dimension, distance matrix D 
and flow matrix F. The flow matrix was modified to 
obtain a transition matrix. The implementation 
proposed for GRASP in this study was with 500 

fixed iterations, the parameters for the RLC are α 
= 0.2 and β = 0.3. It is worth mentioning that with 
the first phase of GRASP with two options an initial 
solution is generated, the second option is to 
generate multiple start-up solutions, subsequently, 
a post-processing phase with a search by 
neighborhoods of the type 2-exchange. 

The program for carrying out the study was 
designed in JAVA programming language, 
likewise, the executions were processed on a 
TOSHIBA laptop computer with an i7 processor. In 
these tests, acceptable results were obtained, 
approximating the optimum as in the 
execution time. 

The results of table 1 show that the GRASP 
implementation in Java of this work for QAP is 
efficient, since runs were carried out for the 
matrices proposed by Nugent, TE Vollmann and J. 
Ruml de Nug 20 to 30 available in [20].  

Column 2 shows the optimal values reported on 
the internet and the third column shows the results 
obtained, where the least favorable gap of the runs 
was less than 0.5%.  

Table 2 shows the summary of the best results 
obtained in the four combinations of the execution 

Table 3. Solutions of each instance 

n Permutation 

12 4,6,11,8,5,10,2,1,12,7,9,3 

14 9,3,8,13,1,12,5,7,6,10,11,14,2,4 

15 4,2,11,14,6,13,7,12,3,10,1,8,9,5,15 

20 
17,5,7,4,13,8,6,2,19,20,1,10,12,11,9,3,18,15,14
,16 

21 
5,2,9,14,6,11,4,20,21,3,18,16,8,15,12,13,7,19,1
0,1,17 

22 
17,15,4,16,8,11,22,10,7,21,20,5,6,14,18,1,3,19,
12,13,9,2 

24 
2,19,1,18,6,5,21,13,12,3,9,14,7,10,22,11,16,23,
20,24,17,8,15,4  

25 
5,12,4,20,22,24,8,25,10,15,17,23,14,7,13,18,3,
9,19,16,2,6,11,21,1 

30 
24,25,19,7,21,28,17,1,10,2,13,30,26,12,22,8,20
,29,5,23,11,3,9,4,15,6,18,27,16,14  

42 
25,16,24,42,11,12,20,10,6,40,3,36,35,23,32,22,
21,1,5,38,19,41,37,7,15,28,2,31,9,34,8,26,29,1
4,39,18,13,33,17,27,30,4 

Computación y Sistemas, Vol. 26, No. 1, 2022, pp. 271–279
doi: 10.13053/CyS-26-1-4170

GRASP Proposal for the Search for SQAP Solutions 277

ISSN 2007-9737



of the proposed program, in the first column the 
initials DM means dimension of the matrix, C_PFP 
means combination of the first phase and post-
processing phase of GRASP, MSG2-I is first phase 
multiple greedy solutions and second phase 2-
exchange, G_2-I is first phase greedy algorithm 
with a single solution and second phase 2-
exchange, BVF is the best value found by the 
combination, WVF is the worst value found by a 
combination, TCPU / milliseconds is the execution 
time of the best combination run. 

Table 3 shows the allocation permutations of 
each test instance, which indicate the allocation of 
stores to premises in a shopping center and the 
objective values are the amount of circulation in a 
central aisle. 

The program was also executed for a problem 
proposed by [7] that presents instances of size n = 
12, whose optimal solution is given by the 
permutation 7,3,2,11,8,12,9,10,1,4.6,5 with 172 
customers circulating down the aisle. 

7 Further Work and Conclusions 

Finding solutions for SQAP is not an easy task as 
it belongs to the NP-hard class. The objectives set 
out in this work were first achieved with the 
implementation of a metaheuristic that allows a 
flexible and efficient tool to find solutions [10]. 

Subsequently, design test instances to execute 
the robust algorithm that offers solutions in a 
reasonable computation time (see TCPU in the 
table) and with approximation solutions to the 
optimal values for the SQAP.  

Finally, in this research, an application was 
made to model the traffic of people circulating in a 
shopping center with a central aisle. 

As future work, it is expected to expand the 
computational experience to matrices of greater 
dimension such as the Skorin Kapov matrix [26] 
that have dimensions from 49 to 100 and to design 
another metaheuristic to carry out comparison 
experiments, in order to increase the tools that 
contribute in the solution of practical-real 
application problems of the NP-hard class. 
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