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Abstract. Heart Valve Disease (HVD) encompasses
a number of common cardiovascular conditions that
account for a significant percentage of heart diseases.
At present, the acoustic phenomena generated by
the abnormal functioning of the heart valves can be
recorded and digitized using electronic stethoscopes
known as phonocardiographs. The analysis of the
phonocardiographic signals has made it possible to
indicate that the normal and pathological records differ
in terms of both temporal and spectral characteristics.
The present work describes the construction and
implementation of a Deep Learning (DL) algorithm for
the binary classification of normal and abnormal heart
sounds. The performance of this approach reached
an accuracy higher than 98 % and specificities in the
”Normal” class of up to 99 %.

Keywords. Artificial intelligence, deep neural network,
phonocardiography, heart valve disease.

1 Introduction

Heart noises are the expression of the opening
and closing of the four cardiac valves, where
the muscular contraction that drives the blood
from one cavity to another generates a high
acceleration and delay of the blood flow causing
a pressure differential [12, 15]. Its normal
physiological functioning is unidirectional, which
allows the correct circulation of blood through

the cardiovascular circuit. However, abnormal
noises can be produced when the heart valves
do not close or open completely, causing leaking
backwards and the interruption of laminar blood
flow by turning into a turbulent flow. These
sounds are called murmurs, and their correct
identification during auscultation, as part of the
diagnosis procedure, is crucial to detect potentially
life-threatening heart conditions.

Apart from traditional auscultation, these sounds
can be recorded and digitized using electronic
stethoscopes, which generate phonocardiographic
(PCG) signals. The identification of abnormalities
of the mechanical functioning of the heart is based
on a series of features extracted from the PCG
recordings, where computer-aided analysis allows
to identify between normal and abnormal records,
since these vary among themselves with respect to
their temporal and spectral characteristics.

Therefore, the precise feature extraction is
key for a correct classification of heart sounds
and can play an important role in assisting the
medical community in speeding up and improving
the diagnosis.

This article addresses the problem of identifying
abnormal heart conditions using features from
the PCG recording in both time and spectral
domain, extracted through a technique known

Computación y Sistemas, Vol. 26, No. 3, 2022, pp. 1143–1150
doi: 10.13053/CyS-26-3-4202

ISSN 2007-9737



Fig. 1. Block diagram of the complete process:
Dataset pre-processing and splitting, feature extraction,
classification using a deep neural network

as Continuous Wavelet Transform, and a based
Deep Learning (DL) methodology known as
Convolutional Neural Networks (CNN). The output
of the network grants the probability that a
particular PCG recording belongs to a normal or
abnormal class. The summary of the proposed
model as a block diagram is shown in Fig. 1.

2 Related Work

Several laboratories, using particular datasets,
have approached the heart sounds classification
problem using their own distinctive AI methodology
[14]. However, to make a correct comparison, it
is necessary to select those works that use the
same database as in the present work. Table
1 summarizes the feature extraction techniques
and classifiers used, along with the results
respectively obtained, using the same open access
dataset [17].

However, a point noted is the trifle with which
they approach the training of their models. It
is possible to observe in [17, 18, 13] that the
reported results are those obtained during training
since the number of the samples shown in the
confusion matrices, sums as the total of samples
in the dataset.

This has important implications for the
interpretation of the reported results since through
training it is only possible to know the memorization
capacity of the classification algorithm and the
degree of compaction of the data. It is not possible
to evaluate an actual performance if it is not
through a test data set that the classifier has
never seen.

Furthermore, the use of Convolutional Neural
Networks (CNN), along with the spectral
decomposition known as Continuous Wavelet
Transform (CWT), has never been used to classify
heart valve disease, placing the present work as a
new methodological proposal.

3 Materials and Methods

This section summarizes the feature extraction
techniques and Deep Learning algorithm used to
address the problem apropos the HVD detection,
along with the dataset description. The algorithmic
proposal was developed in Python 3.9 on the
Ubuntu 20.04 distribution. In particular, the deep
learning algorithm was built on Keras 2.4.3.

3.1 Dataset

The PCG signals used in this article were obtained
from an open database [17]1, containing 200
records for each of the following five classes:

— Aortic stenosis (AS).

— Mitral regurgitation (MR).

— Mitral stenosis (MS).

— Mitral valve prolapse (MVP).

— Normal (N).

Each signal was sampled at 8000 Hz, with
durations of at least one second. To maintain
uniformity in the data analysis, two windows of
6144 data points (0.768 s) were taken from each
signal, each one containing at least one complete
cardiac cycle, therefore, duplicating the number of
samples from 200 to 400 for each class.

It is possible to notice that the Normal (N) and
Pathological (AS, MR, MS, MV) classes, with a
ratio of 4:1, are strongly unbalanced. This has
implications for the model training, as mentioned in
the previous section. Since the Normal class was
separated into training and test subsets containing
320 (80%) and 80 (20%) time series, respectively,
it was necessary to select the same subsets of
the Pathological class to avoid the related bias.
Therefore, 80 random samples of each subclass

1https://github.com/yaseen21khan/
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Table 1. Comparative table between works that used the same dataset

Author Feature Extraction Classifier Precision Recall Specificity Global Accuracy

Son et al. 2018 [17] DWT and MFCCs SVM, KNN, DNN – 98.2% 99.4% 97.9%

Alqudah, A. M. 2019 [4]
Eight statistical moments

from the Instantaneous

Frequency Estimation + PCA

KNN* and Random Forest 100% 98.28% 100% 94.8%

Ghosh, S.K. et al. 2019 [7]
Wavelet Synchrosqueezing

Transform
Random Forest – – – 95.13%

Upretee, P., and

Yuksel, M. E. 2019
[18]

Centroid Frequency

Estimation
SVM and KNN* 99.6% 99.76% 98.83% 96.5%

Ghosh, S.K. et al. 2020 [6]
Local energy and entropy

from Chirplet Transform
WaveNet 98.0% 98.1% 99.3% 98.33%

(AS, MR, MS, MVP) were selected to structure the
other half of the training subset.

Afterward, each time series was transformed
using CWT. The implications of using this
extraction technique and the procedure are
discussed forward.

3.2 Continuous Wavelet Transform

CWT is a spectral decomposition method which is
based on representing the signal in the form of
wavelets with different displacement and scaling
factors, where the use of the correct mother
wavelet (MW) drives the enhancement of the
waveforms of interest.

The MW is an effectively limited waveform in
duration, with an average equal to zero. The MW
used in the CWT was a Morlet, described by:

ψ(t) = e−πt
2

eiπt. (1)

And starting with an MW ψ, the family ψτ ,s of
”daughters wavelets” can be obtained by simply
scaling and moving ψ:

ψτ ,s(t) =
1√
|s|
ψ(
t− τ
s

), s, τ ∈ R, s 6= 0, (2)

where s is a scaling or dilation factor that controls
the width of the wavelet and τ is a translation

parameter controlling its location. Scaling a
wavelet simply means stretching it (if |s| > 1) or
compressing it (if |s| < 1), while translating it simply
means shifting its position in time [2].

Thus, the CWT of a signal f(t) is given by [16]:

CWT (τ , s) = 〈f ,ψτ ,s〉
+∞∑
0

f(t)ψ(
t− s
τ

)dt, (3)

where the integral is solved for τ , s (shifting
and scaling parameters), which performs a
transformation of the signal f(t) from the time
domain to a function in the time domain and scale.

However, as a previous step to the CWT
calculation, the Hilbert transform was implemented
since this transform is an efficient tool to extract
the time-localized amplitude and phase of a
mono-component signal, with scale and translation
invariance, and its energy-conserving (unitary)
nature [5, 11]. The Hilbert transform ŝ(t) of a
function s(t), is defined as the convolution of (s(t)∗
1/(πt)) such that [9]:

ŝ(t) =
1

π

∫ ∞
−∞

s(τ)

t− τ
dτ . (4)

It is possible to observe that this gives us
a complex representation. To retrieve all the
information of the signal, it is necessary to select
a complex MW such as Morlet. By applying the
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Fig. 2. CWT Results: A) Block diagram of the full CWT
algorithm and post-processing to reduce dimensionality.
B) Magnitude of the coefficients obtained for each scale
at each time point, averaged for each of the class sets

CWT, we obtain a matrix representation of the
coefficients of size NxM , as shown in Fig. 2B. To
reduce computational demand, it was necessary to
apply an averaging 3× 3 filter as shown in Fig. 2A,
which highly reduces the matrix size.

3.3 Convolutional Neural Network (CNN)

Deep learning refers to AI models capable
of extracting features, with multiple levels of
abstraction and learning representations of data,
without the need for a human expert agent that
transformed the raw data into suitable internal
features from which the learning subsystem, could
detect or classify patterns in the input [8].

In particular, CNN discovers intricate patterns
in datasets by using the backpropagation to
optimize how a set of filters need to change
their internal parameters to compute the attributes
that best represent the data in a highly compact
depiction [10].

Fig. 3. Block diagram of the complete process:
Dataset pre-processing and splitting, feature extraction,
classification using a deep neural network

The proposition of the decomposition into
a spectral space through CWT may be
counterintuitive. However, since CNN uses
filters that look for local spatial patterns (the
locality depends on the size of the filter), the
frequency dynamics of the PCG records over time
contain richer information than the simple temporal
dynamics of the time series.

As it is possible to see in the flow chart
shown in Fig. 3, the CNN introduces a special
network structure, which consists of the so-called
convolution and grouping layers alternately that
allow extracting the main characteristics of the
coefficient matrices [1].

When using CNN for pattern recognition in
phonocardiographic sounds, the input data must
be organized as a series of feature maps. Since
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CWT was used to find spectral coefficients along
time, the expected input structure for a 2D CNN
occurred naturally, where each of the coefficients
represents the pixel values.

Once the input feature maps are formed,
the convolution and grouping layers apply their
respective operations to generate the activation of
the units in those layers, in sequence. The discrete
convolution between the filter and the coefficient
matrix is mathematically defined as:

conv(I,K)x,y =

nf1−1∑
i=0

nf2−1∑
j=0

K(i,j)I(x+i,y+j). (5)

It is possible to deduce that, if the image
dimension is given by (nH ,nW ) and, the filter
dimensions is given by (f1, f2), the dimension of
the convolution will be:

dim(I ∗K) =
[nH − f1

s
+ 1,

nW − f2
s

+ 1
]
. (6)

Max-pooling is a particular case of a
convolutional layer, where the filter is a matrix
of ones and, after the convolution, a maximum
function is applied. By convention, we consider
a square filter with dimensions f1 = f2 = 2 and
s = 2. This operation is defined as:

max
(
K(i,j)I(x+i,y+j)

)
. (7)

In CNN terminology, the pair of convolution and
max-pooling layers in succession is often referred
to as a convolutional layer [3]. Each of these
layers is in charge of finding, building attributes and
reducing the dimensionality of the input matrix to a
characteristic pattern.

Finally, this pattern is vectorized (flattened) and
fed to a multilayer perceptron network (MLP), which
will act as a classifier. In reality, nothing prevents
the use of any other architecture or classification
model, however by convention MLP is the most
commonly used.

The proposed architecture of the CNN is
described as pseudocode in the Algorithm 1.

3.4 Performance

The evaluation and validation of the machine
learning algorithm is an essential part of any AI
project. The model can give satisfactory results
when it is evaluated using a metric, such as
accuracy, but most of the time using a single
metric is not enough to judge the performance of
our model. That is why, in this section, the four
evaluation metrics used are defined, where the
primary building blocks are the true positive(tp),
true negative(tn), false positive(fp) and false
negative(fn) instantiations. In our particular case,
the tp cases are the PCG recordings labelled as
Normals. Therefore, the golden goal is to build a
classifier with 0% fp, thus ensuring that no patient
with any HDV is classified as Normal, which could
pose a risk to their health and even death.

Accuracy : It is the ratio between the number of
correct predictions and the total number of input
samples:

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
. (8)

Due to its construction, this metric is not ideal
when the classes are unbalanced (as is the case
with the dataset used). The problem arises when
the cost of misclassifying samples from minor
classes is very high. If we are faced with a
rare but fatal disease, the cost of not diagnosing
a sick person’s illness is far greater than the
cost of sending a healthy person for further tests.
Therefore, it is necessary to use metrics based
on relevance, that is, that do take into account
the imbalance of the classes, such as precision
and recall.

Precision and recall : Precision (also called
positive predictive value) is the fraction of relevant
instances among the retrieved instances:

Precision =
tp

tp+ fp
. (9)

While recall (also known as sensitivity) is the
fraction of relevant instances that were retrieve:

Recall =
tp

tp+ fn
. (10)
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Algorithm 1 CNN Architecture

1: input: CWT
2: CNN ← Convolution layer (16 Filters (21× 21))
3: Batch Normalization + Nonlinear layer +

MaxPooling
4: CNN ← Convolution layer (8 Filters (11× 11))
5: Batch Normalization + Nonlinear layer +

MaxPooling
6: CNN ← Convolution layer (4 Filters (7 × 7))
7: CNN ← Flatten()(CNN)
8: MLP ← 2 output neurons
9: output: Membership probability

Finally, since in a clinical test the goal
is to accurately identify people who have a
particular condition (where its misclassification into
a non-pathological class could be fatal), the ratio
between true negatives and false positives should
be accounted for, giving rise to a metric known as
specificity. In other words, specificity measures
how the test is effective when used on negative
individuals:

Specificity =
tn

tn+ fp
. (11)

4 Results

During the construction of the model, the
experimentation focused on two variables: the
number of scales to be used in the CWT and
the generation of the training subset, which as
mentioned in section 3.1, is partially built from
320 pseudorandomly selected items from the
Pathological (AS, MR, MS, MVP) subclasses.

For the case of CWT, the value of the power
coefficients obtained for each scale at each
time point, averaged for each of the class sets,
with 150 scales is shown in Fig 2. The
number of scales depends on the MW used to
perform the decomposition, since each MW has
a specific morphology and central frequency that
will change as a function of scale. There is
an approximate relationship between scale and
frequency defined as:

s(fr) =
ln( cf∗fsfr )

ln(2)
, (12)

where s is the approximate scale, cf is the central
frequency of the MW, fs is the sampling frequency
and fr is the target frequency to approximate.
However, this approximation is not exact and that is
why the selection of the MW, number of scales and
subscales can be defined as a hyperparameter.
For the PCG records used in the present work, the
150 scales of the complex Morlet proposed as MW
showed the level of detail sought.

On the other hand, to ensure that the
CNN’s performance was since the optimum
(local) minimum was found, which ensures the
generalizability of the model, and not from the
pseudo-random selection of the data, a 6-fold
cross-validation method was applied, where the
overall accuracy obtained was 97.70 ± .432.

By having an overall accuracy with a standard
deviation of less than 0.5%, the proposed model
execution can be attributed to its generalizability,
which allows us to select the best of the runs of
our classifier to evaluate its performance. Fig. 4B
shows the detailed accuracy, precision, recall and
specificity obtained using 20 % of the dataset as
the test set. It is possible to observe that 98.2% of
the classes were correctly classified according to
the binary accuracy.

Furthermore, the confusion matrix, from where
all the metric calculations were based, is shown
in Figure 4A, where each column of the matrix
represents the number of predictions of each class,
while each row represents the instances in the
real class.

5 Conclusion

This article focused on the classification of HVD
from 1000 PCG records, combining a deep
learning algorithm with time-frequency analysis
wherein the time-series recognition problem is
transformed into an image recognition problem.
To do so, the spectral characteristics through
time were extracted using CWT, and given the
dimensional nature of these features, it was
decided to use a CNN to classify each recording as
Normal or Pathological, since this is the first step
in the diagnostic procedure. If an abnormality is
present, further clinical tests must be carried out to
determine the type of abnormality. This approach
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Fig. 4. DL performance results (20% of the dataset as
the test set): A Confusion matrix used to calculate the
metrics. B Precision, Recall, Specificity and Accuracy for
the test dataset classification. The vertical axis shows
only the percentage from 0.8 to 1.0 to facilitate the
visualization of the results. ”N” and ”P” stand for Normal
and Pathological class respectively

has never been used, placing it as an innovative
methodological proposal.

Furthermore, the model had a performance,
measured through its accuracy, above 98.2%,
surpassing four of the five models described in
the literature (Table 1), placing it as a competitive
and efficient model for the classification of
valvular diseases.

In addition, one of the necessary metrics to
measure competitiveness in clinical diagnostic
systems, and where the present work takes into
account and stands out, is specificity (section
3.4), obtaining 99.5%, which means that less

than 1% of the Pathological PCG records will be
classified as Normal.

This provides robustness to the model and
invites to implement it in a system for the assisted
diagnosis of heart valve diseases to improve
the prognosis of patients, reducing the error
associated with the experience of the medical crew.
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