
Analysis of CNN Architectures for Human
Action Recognition in Video

David Silva, Alain Manzo-Martínez, Fernando Gaxiola,
Luis Gonzalez-Gurrola, Graciela Ramírez-Alonso

Universidad Autónoma de Chihuahua,
Facultad de Ingeniería, Chihuahua,

Mexico

david.a.silva.carnero@gmail.com,
{amanzo, lgaxiola, lcgonzalez, galonso}@uach.mx

Abstract. Every year, new Convolutional Neural
Network (CNN) architectures appear to deal with
different problems in the activity of image and video
recognition. These architectures usually work along the
ImageNet dataset for looking for the best performance of
the CNNs without taking into account the video task
where they are used. This can represent a problem if the
task is Human Action Recognition (HAR) in video, since
the CNN architectures are pre-trained with an image
dataset that can practically contain any object, while
HAR problem requires consecutive frames of people
doing actions. To prove the idea that using CNNs pre-
trained on an image dataset does not always achieve the
best performance on a video dataset and that, therefore,
it is worth comparing the performance of different CNNs
under similar circumstances for the HAR problem, this
work proposes an analysis between eight different CNN
architectures. Each one of the CNN was exclusively
trained with RGB images, which were extracted from the
frames of the different classes of videos of HMDB51
dataset. To make the classification of an activity in video,
we average the predictions taking into account the
successes. We also made some ensembles with the
best performance CNNs to measure the improvement in
accuracy. Our results suggest that Xception is a strong
baseline model that could be used by the community to
make their comparisons of their proposals more robust.

Keywords. Human action recognition, convolutional
neural network, HMDB51.

1 Introduction

In recent years, the problem of HAR has received
a lot of attention from researchers. This is because
today it is common to find problems related to video

surveillance, behavior analysis or Human
Computer Interaction (HCI) [1].

The first attempts to solve this problem using
hand crafted features such as Histogram of
Oriented Gradients (HOG), Histogram of Optical
Flow (HOF) or Motion Boundary Histogram (MBH)
[2-6]. However, the main issue of using these types
of approaches is that it is difficult to transfer the
handcrafted features of a training dataset to
another [7]. This issue was solved by the
introduction of convolutional neural networks
(CNN), which are able to automatically detect
features in raw images, to find the connection
between them and use the learned features of a
training dataset to train a different dataset [8-13].

With the breakthrough that CNN caused in
2012 in the machine vision community given their
tremendous reduction of error rates of up to 20%
to closest participants, it was clear that CNN would
be the approach to exploit in image/video
classification problems. In fact, two of the three
most popular approaches (two-stream and
3DCNN) use CNN as a pillar while the third one
uses recurrent neural networks [13].

One of the main questions when building a HAR
model is which CNN to use, since every year there
are new state-of-the-art CNN architectures on the
ImageNet dataset. One may think that using the
CNN with the top performance on the ImageNet
dataset can achieve the best results. The main
issue of thinking this way is that is not taking into
consideration that the CNN was trained to classify
images with any object class of the 1000 classes
that the ImageNet dataset has and not frames of

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

ISSN 2007-9737

human actions, which they are the main
components of the videos in a HAR dataset. With
this in mind, the main objective of this work is to
prove that a CNN with the best performance on the
ImageNet dataset does not always achieve the
best results on a video dataset, thus it is important
to test different CNNs under the same conditions
when building a HAR model.

Regarding the originality of this study, we argue
that even when new CNN models appear
practically every year, very little is known regarding
how these models compare to each other, or even
against the previous competitive proposals, over
the HAR problem, since no systematic and
exhaustive experimental comparison, to the best of
our knowledge, had been done until now.

This work makes an analysis of comparison
about training time and accuracy of 8 different CNN
architectures using different sets of RGB images
that were built from the videos of the HMDB51
dataset. The CNN models were trained as image
classifiers and it was used the average of the
predictions of each image frame to generate the
classification label of the activity in video. Lastly,
different ensembles were considered using the
best accuracy performance on the CNN
architectures to prove if there is an increment in the
accuracy using ensemble predictions.

The main contribution of this study is twofold.
First, we empirically show that for a CNN having
top performance on the Imagenet dataset does not
imply top performance on the HAR task, as it
usually is assumed by the community. This opens
up important questions regarding what would be
the best experimental setting for these neural
models to achieve better results on such task.

Additionally, we tackle a long standing question
for the HAR problem, which is to make the first
exhaustive evaluation that considers up to 8
different state-of-the-art CNN-based approaches
under very similar experimental settings that will
allow to have the first impressions of who is who
regarding performance and efficacy for Human
Action Recognition endeavors. As a whole, with
these results, the community will have enough
evidence regarding what baseline model to use
from now on, this being the Xception network, to
compare their new contributions against.

2 Related Work

This section includes a description of previous
works related to the HAR problem using the
HMDB51 dataset. We made a revision based on
the three main approaches for handling the HAR
problem. It is important to note, that this work is not
going to consider all the approaches revised here
and the papers cited are only to tell the viewer what
has been done in relation to HAR using the
HDMB51 dataset and which CNNs are the most
used among researchers on this field.

Two-stream approach was proposed by
Simonyan et al. in 2014 [15] by the idea that they
can have a CNN trained with raw RGB frames and
another CNN trained with optical flow, which
represents the moving vectors between two
consecutive frames. They later combined the
predictions of the two-streams using a weighted
averaged of the predictions. Each stream had a
CNN called ClarifaiNet and their best accuracy
was 59.4%.

Wang et al. [16] decided to divide a video into 3
segments so that each segment have their own
two-stream network and then combine the
predictions of all segments of a certain stream and
after that combine the stream predictions. All
segments of all streams used the Inception-V2
CNN and they obtained an accuracy of 69.4%.

Zhu et al. [17] designed an architecture that was
able to combine the feature vector of different
frames into a video representation by using max
pooling and a pyramidal layer. They also used
Kinetics as the pre-trained dataset for the CNN,
which result in better accuracy than using the
ImageNet dataset. They also used Inception-V2
and their best result was an 82.1% in accuracy.

Cong et al. [18] developed an adaptive batch
size K-step model averaging algorithm (KAVG).
They customized the Adam optimizer and
proposed to use a network to determine the best
optical flow images from RGB frames. They
attached that model to the two-stream network to
form a three-stream network, which increases their
accuracy even more. For the three streams, they
used the ResNet152 network obtaining an 81.24%
in accuracy.

He et al. [19] added an additional stream to the
two-stream approach, which it was able to fuse the
features of a frame with the features of its two

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

David Silva, Alain Manzo-Martínez, Fernando Gaxiola, et al.624

ISSN 2007-9737

neighbor frames. This was done several times with
the purpose of improve the frames features and
that proved to be beneficial for the model. The
CNN they chose was Inception-V2 obtaining a
73.1% in accuracy.

Wan et al. [1] proposed to combine the 3DCNN
approach with the two-stream approach by using
3D convolutions on the spatial-stream and the
VGG16 CNN on the temporal-stream. They also
used a SVM after the combination of the two-
stream features for the final prediction and
obtained a 70.2% in accuracy.

Sun et al. [20] preferred to use a 3DCNN to
model the relationship between the features of
multiple frames, but instead of using a 3D
convolution, they decided to divide the convolution
in a set of 2D convolutions followed by a 1D
convolution to model the temporal relationship
between frames. They created their own 3D CNN
and their best result was 59.1% in accuracy.

Carreira et al. [21] combined the two-stream
approach with the 3DCNN approach by using a 3D
CNN in both streams. They also proposed to use
the Kinetics dataset for pre-training instead of the
ImageNet dataset. The 3D CNN is based on
Inception-V1 and it was called I3D CNN. The best
result obtained was 80.9% in accuracy.

Wang et al. [22] used the I3D CNN proposed by
Carreira et al. to build an architecture capable of
learning the Fisher vector and bag of words
representation of a combination of features
extracted from RGB and optical flow frames. Their
best result showed an 82.1% in accuracy.

Piergiovanni et al. [23] designed an evolving
algorithm, which it was able to create convolutional
models with different number and type of layers for
the best detection of spatial and temporal features
in videos. The model is based on Inception-V1 and
the best result was 82.1% in accuracy.

Yang et al. [7] also attacked the computational
cost of the 3D convolutions just like Sun et al. [20]
but they used unidirectional asymmetric 3D
convolutions. They also made their own CNN
architecture achieving a 65.4% in accuracy.

Stroud et al. [24] proposed a model called D3D,
which it was trained with RGB frames and with
extracted knowledge of a temporal network trained
with optical flow images. The CNN that they used
was a 3D CNN called S3D-G and it is based on the

I3D CNN. Their best result showed an 80.5% in
accuracy.

Sharma et al. [25] chose to make a visual
attention model using the Inception-V1 CNN as a
feature extractor, an attention mechanism that was
in charge of selecting which parts of the feature
tensor were the most important ones and an RNN
to model the relationship between the most
important features of each frame. Their best result
was a 41.3% in accuracy.

Ye et al. [26] proposed to combine the features
of the last convolutional layer of each of the two
ResNet101 CNN in a two-stream network and feed
the combined feature vector to a convolutional
LSTM to make the final prediction. They obtained
a 69.3% in accuracy.

Outside HMDB51 dataset there is also
numerous works on HAR in videos using different
datasets. For example, He et al. [27] proposed to
create a high accuracy architecture based on the
integration of information from audio, RGB frames
and two different types of optical flow images. They
used ResNeXt101 and InceptionResNetV2 CNNs
on their experiments. The Kinetics 400 database
was used for pre-training and the final training and
evaluation were on the Kinetics 600. The best
accuracy was 85% using an ensemble of
individual models.

Donahue et al. [28] decomposed the video into
frames; each frame entered to a CNN to extract its
characteristics and then passed to a LSTM. The
prediction of each LSTM was averaged to have the
final video tag. The base architecture in their
experiments was a combination of the CaffeNet
architecture and another network proposed by
other authors. They got 82.37% accuracy in the
UCF101 dataset.

Yue-Hei Ng et al. [29] experimented with
various numbers of frames, various CNN
architectures such as feature extractors (AlexNet
and Inception-V1), various feature grouping
architectures, and a recurring network in order to
model a higher level of temporal features between
frames in the video. They used the UCF101
database, obtaining an 88.6% accuracy.

Limin et al. [30] used UCF101 dataset. A
valuable observation about their work is that they
used 3 different CNNs (ClarifaiNet, GoogleNet and
VGG16) on their experiments and the results
showed that VGG16 outperforms GoogleNet,

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

Analysis of CNN Architectures for Human Action Recognition in Video 625

ISSN 2007-9737

which is interesting because the later performs
better on ImageNet dataset. Although they did not
train their CNNs under the same circumstances,
due to the random corner-center cropping and
random resizing techniques that they applied to the
frames, this last work is an example of why we do
not have to assume that a single CNN will be the
best on every single dataset in existence.

3 Theoretical Background

3.1 Artificial Neural Networks (ANN)

The ANN is a machine learning (ML) algorithm
based on the operation of neurons in the human
brain. ANN uses mathematic equations to learn
patterns of the training data and they are made up
by the union of multiple units called perceptrons.

Frank Rosenblatt made the perceptron and he
defined it as an artificial neuron that receives
multiple inputs and produces one binary output that
is feed to the next neuron. A perceptron also
receives the name of neuron [31].

Equation (1) shows the process of calculating
the output of a neuron, where 𝑓(·) represents the
activation function, 𝑏 represents the bias of the
neuron, 𝑥௜ represents the input 𝑖 and 𝑤௜ represents
the weight associated to the input 𝑖:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓 ൭𝑏 + ෍ 𝑥௜𝑤௜

௡

௜ୀଵ

൱. (1)

The following are some of the activation
functions that can be used on a neuron [31]:

 Sigmoid function: It is an S-shaped function
and it converts the input values into
probabilities between 0 and 1.

 Softmax function: It is commonly used in the
output layer of neural networks in classification
algorithms. Computes the probability of the
output being one of the target classes
compared to the other classes.

 Tanh: This function represents the relationship
between the hyperbolic sine and the
hyperbolic cosine. It is S-shaped and converts
input values to probabilities between -1 and 1.

 ReLU: It is conventionally used in the hidden
layers of neural networks. It works in such a

way that, if the input is greater than 0, the
output is the same input value; if it is less than
0, the output is equal to 0.

The process of all the calculations that are
made from left to right through all the neurons in an
ANN is called “forward propagation”. The output of
this process is used to generate the error of the
network in comparison to the target. The error is
used to adjust the network parameters (weight and
bias), and that adjustment process is called back
propagation [31].

3.2 Convolutional Neural Networks (CNN)

In an ANN each neuron in the input layer is
connected to each neuron on the subsequent
layer, this is known as a dense layer. However, in
a CNN, a dense layer is not used until the last
layers of the networks. In this way, a CNN can be
defined as a neuronal network that exchanges a
dense layer for a convolutional layer in at least one
layer of the network [32].

A convolution can be defined as the sum of the
element-wise multiplication between the values of
the filters that overlap the values of the input
tensor. A convolution takes into consideration the
spatial relationship between pixels and its main
goal is to extract useful features from the input
tensor [33].

Nonlinear functions such as ReLU are applied
to the output of the convolutions and then the new
output is passed to the next layer and the process
continues. A CNN also includes a pooling layer,
which it helps to reduce the width and height of the
input tensor [32].

Finally, the feature tensor is flattened to
produce a 1-dimensional vector, which it is feed to
one or more dense layers to make the
predictions [32].

In practice, CNNs provide two key benefits:
local invariance and compositionality. The concept
of local invariance allows to classify an image that
contains a particular object, regardless of where in
the image the object appears. This local invariance
is obtained by using "pooling layers" that identify
regions in the input volume with a high response to
a particular filter. The second benefit is
compositionality. Each filter composes a local
patch of lower-level features into a higher-level

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

David Silva, Alain Manzo-Martínez, Fernando Gaxiola, et al.626

ISSN 2007-9737

representation, similar to how you can compose a
set of mathematical functions that are based on the
output of previous functions. This composition
allows the network to learn richer features and
deeper into the network.

For example, the network can build edges from
pixels, shapes from edges, and then complex
objects from shapes, all in an automated manner
that occurs naturally during the training
process [32].

Figure 1 shows an example of an architecture
CNN, where F1, F2 are the number of feature
maps on each layer and C1 and C2 are the number
of neurons in each dense layer.

3.2.1 CNN Architectures

In this section, we are going to review some
important characteristics of the CNN architectures
that will be considered later in the analysis. Since
most of the literature revised use Inception-V1 or
Inception-V2, we decided to consider the most
similar one that belongs to the Keras library for
python, which was Inception-V3.

Inception-V3 [34] is a 48-layer CNN and its
main difference from the Inception-V2 CNN is that

it uses RMSProp Optimizer, 7x7 factorized
convolutions, batch normalization in the auxiliary
classifiers and label smoothing, which is a type of
regularizing component added to the loss formula
that prevents the network from becoming too
confident about a class avoiding the overfitting.

ResNet architectures family are also common
in the revised works, we decided to consider
ResNet152 [35] because we want to compare only
the most accurate CNN within a group of related
CNN. ResNet152 is a 152-layer CNN and its CNN
family was the first that attacked the problem of
vanishing gradient by using residual connections
and residual blocks. A residual block is a stack of
layers set in such a way that the output of a layer
is taken and added to another layer deeper in the
block using a residual connection. Finally, a non-
linearity is applied to the result of the sum.

For the comparative analysis, the remaining
CNN architectures were chosen from the Keras
library, according to the next criteria. Since we
work with the Keras library to get the previous
CNNs architectures, we decided to also compare
some of the other CNNs that the Keras library
offers to work with.

DenseNet201 [36] was selected because it is
the best of all DenseNet CNNs and because it
introduced the concept of dense connections
between features maps. This proved to be
beneficial because it solves the vanishing gradient
problem as ResNet did and at the same time, it
maintains the low-level features through all the
convolutional layers within a dense block.

The Xception [37] CNN stands for an extreme
version of Inception and has 36 convolutional
layers and was chosen because it proposed the
use of modified Depthwise Separable
Convolutions (DSC) with no intermediate non-
linearity. These types of convolutions were stacked
in the Xception model like Inception modules and
the Xception accuracy on ImageNet probed to be

Fig. 1. Example of an architecture CNN

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

Analysis of CNN Architectures for Human Action Recognition in Video 627

ISSN 2007-9737

better than InceptionV3, so we wanted to know if
this feature was maintained with the
HMDB51 dataset.

The EfficientNetB0 [38] and EfficientNetB3 [38]
CNNs are part of a large family of CNNs known as
EfficientNet. There are CNN architectures going
from EfficientNetB0 all the way to EfficientNetB7.

At first, we used 3 CNNs of this family,
EfficientNetB0, EfficientNetB3 and EfficientNetB7,
but we decide to skip the use of EfficientNetB7 in
the experiments because the difference in
accuracy between EfficientNetB3 and
EfficientNetB7 was not significant and the number
of parameters increased.

The main contribution of this type of CNNs is
the introduction of compound scaling which
uniformly scales network width, depth, and
resolution with a set of fixed scaling coefficients.

For instance, if the aim is to use 2N times more
computational resources, then the network depth
can increase by αN, width by βN, and image size by
γN, where α, β, and γ are constant parameters
computed by a small grid search on the original
small model.

EfficientNet uses a compound coefficient ø to
uniformly scale the width, depth, and resolution of
the network in a novel manner. The use of the
compound scaling method is justified since, when

Fig. 2. Set of frames extracted per video

Fig. 3. No augmentation data was used for each frame in the first set of frames

Fig. 4. Image augmentation for each frame in the second set of frames

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

David Silva, Alain Manzo-Martínez, Fernando Gaxiola, et al.628

ISSN 2007-9737

the input image is bigger, the network needs
additional layers and channels to increase the
receptive field and to capture more fine-grained
patterns on the bigger image, respectively.

Finally, we decided to select MobileNetV2 and
NASNetMobile from Keras library to compare the
accuracy of mobile CNNs in respect to the other
ones. MobileNetV2 [39] is a 53-layer CNN and is
the successor of MobileNetV1 which introduced
the concept of DSC which dramatically decreased
the number of parameters in the network.
MobileNetV2 like its predecessor uses DSC, but
non-linearities in narrow layers are removed this
time, which was beneficial for the model
classification performance. It also introduced
inverted residual blocks (as opposed to ResNet) to
improve parameter efficiency.

NASNetMobile [40] CNN is part of the NASNet
CNN family and it was built using reinforcement
learning using an RNN that selected the best
combinations between a predefined set of states
and actions, these combinations are called blocks.
The main idea behind this approach was to make
use of transfer learning by searching for an

1 https://serre-lab.clps.brown.edu/resource/hmdb-a-

large-human-motion-database/#Evaluation

architectural building block that work on a small
dataset (CIFAR10) and then transfer the block to a
larger dataset (ImageNet). It is also introduce a
new regularization technique called
ScheduledDropPath which improved the
generalization of the NASNet models.

4. Methodology

4.1 HMDB51 Dataset

HMDB51 is a 6766-video dataset with 51 human
action classes and for each class there are at least
100 videos. The dataset has 3 sets of videos for
training and testing.

The spatial resolution of the videos is 320x240
pixels. All videos were extracted from YouTube or
digitalized movies. The dataset can be
downloaded using this link1.

4.2 Set of Frames

By the intuition that the random selection of frames
in the training stage of a CNN affects the accuracy
of the architecture, we decided to create 4 different
sets of frames for the use in all CNNs. All frame
sets described here used the videos from the set 1
of the HDMB51 dataset.

4.2.1. First Set of Frames

This set of frames was built taking 10 evenly
spaced frames from each training and testing
video. The frames extracted from the training
videos were saved in a different folder that the
ones extracted from the test videos.

To extract the frames, first the program gets the
total number of frames in the video and this value
is divided by 10 to calculate the position between
each frame that will be extracted. Finally, the
program saves the index of each frame and if the
quotient between the frame index and the position
between frames is zero, then the frame is
extracted. Since the index for the first frame is 0,
the first frame of the video is always extracted (see
Fig. 2). For this set of frames, we did not include

Fig. 5. Image augmentation for each frame in the third
set of frames

Fig. 6. Image augmentation for each frame in the fourth
set of frames

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

Analysis of CNN Architectures for Human Action Recognition in Video 629

ISSN 2007-9737

any sort of image augmentation, so there is only
one image per frame (see Fig. 3).

4.2.2 Second Set of Frames

With the aim of evaluating the effect of data
augmentation, we decided to use 3 different
techniques. The first one used in this set of frames
considers the horizontal mirror of each frame, so
that instead of having 10 frames per video, this set
of frames will have 20 frames (10 original and 10
horizontal mirror). The saving and extraction of the
frames is as described in the first set of frames (see
Fig. 4).

4.2.3 Third Set of Frames

The second data augmentation technique consists
of resizing each frame to 256x256 pixels, and from
the resized frame cut a 224x224 region from the
center to each one of the four corners. This
process generated 5 sub-frames from each frame,
so at the end each video will have 50 frames (40
frames in total from all the corners and 10 central
frames). The saving and extraction of the frames is
as described in the first set of frames (see Fig. 5).

4.2.4 Fourth Set of Frames

The third data augmentation technique consists of
resizing each frame to 256x256 pixels, and from
the resized frame cut a 224x224 region from the
center to each one of the four corners. After that,
we took the horizontal mirror from each one of the
5 generated images. This process generated 10

subframes from each frame, so at the end each
video will have 100 frames (80 frames in total from
all the corners plus their mirrors and 20 frames
from the center of each one and its mirror). The
saving and extraction of the frames is as described
in the first set of frames (see Fig. 6).

4.3 Ensembles

For the experiments with ensembles, we
considered the best CNN architectures. Each
ensemble was built by 3 or 5 CNN architectures
and we used 5 different methods based on
averaging and voting to obtain the final
classification tag for each video. All CNN
architectures were trained with the same set of
frames. Each one of the 5 methods is
described below.

4.3.1 Using Simple Voting with n Frames of
Each Test Video

This method consists of extracting 10 frames
evenly spaced and applying the corresponding
image augmentation technique according to the
set of frames used for training. Each frame of the
set passes through all the CNNs in the ensemble
and they generate a tag and a number which are
added to a label dictionary. The key stored within
the dictionary corresponds to the tag predicted by
at least one of the CNNs and the number of
classifiers that predicted that tag. To obtain the
final tag, the voting method was used where the
tag that had the most votes by CNNs within the

Fig. 7. Final label generated by simple voting

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

David Silva, Alain Manzo-Martínez, Fernando Gaxiola, et al.630

ISSN 2007-9737

dictionary is used to establish the final tag for the
video (see Fig. 7).

4.3.2 Using Simple Voting with All Frames of
Each Test Video

This method works exactly as the previous
method; the only difference is that instead of using
only 10 frames we used all the frames in the
test video.

This was done with the purpose of seeing the
change in accuracy when considering all the
frames of the video.

4.3.3 Using Weight Voting with n Frames of
Each Test Video

This method consists of extracting 10 frames
evenly spaced and applying the corresponding
image augmentation technique according to the
set of frames used for training.

Each frame of the set passes through all the
CNNs in the ensemble and they generate a tag and
a value which are added to a label dictionary.

The key stored within the dictionary
corresponds to the tag predicted by at least one of
the CNNs and the value is the weight referred to
the CNN. The weight of each CNN was determined
according to its individual performance in
experiments before ensembles.

The best CNN has a weight of k, the second
best has a weight of k-1, and this continues until
we reached the weight of 1.

This was done for proving if exist any significant
difference between simple and weighted voting
method when taking in consideration the individual
performance of each CNN.

To obtain the final tag for the video, we looking
for the tag with the greater score within the
dictionary (see Fig. 8).

Fig. 8. Final label generated by weighted voting

Fig. 9. Final label generated by prediction averaging

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

Analysis of CNN Architectures for Human Action Recognition in Video 631

ISSN 2007-9737

4.3.4 Using Prediction Averaging with n
Frames of Each Test Video

This method consists of extracting 10 frames
evenly spaced and applying the corresponding
image augmentation technique according to the
set of frames used for training. Each frame of the
set passes through all the CNNs in the ensemble.

Each CNN generates n predictions, which are
stored in a matrix of predictions. The final tag for
the video is obtained by averaging all the
predictions of all CNN in the prediction matrix,
which gives us a vector with C classes.

Finally, we took the index that has the greater
value in the vector to generate the corresponding
tag (see Fig. 9).

4.3.5 Using Prediction Averaging with All
Frames of Each Test Video

This method works exactly as the method of
section 4.3.4; the only difference is that instead of
using only 10 frames we used all the frames in the
test video.

This was done with the purpose of seeing the
change in accuracy when considering all the
frames of the video.

Table 1. Average accuracy of each optimizer in each fold using the best models and the first set of frames

Optimizer Model Fold 1 Fold 2 Fold 3 Average

Adagrad Val_Loss 43.49% 39.12% 40.22% 40.95%

Val_Acc 44.03% 39.70% 40.69% 41.48%

Adam Val_Loss 39.48% 37.42% 37.89% 38.26%

Val_Acc 44.67% 43.29% 42.80% 43.59%

Nadam Val_Loss 42.58% 40.60% 36.00% 39.73%

Val_Acc 47.19% 45.90% 43.21% 45.43%

RMSprop Val_Loss 43.12% 38.45% 40.95% 40.84%

Val_Acc 42.73% 40.54% 42.84% 42.04%

SGD Val_Loss 43.90% 40.02% 39.74% 41.22%

Val_Acc 47.26% 45.23% 44.41% 45.63%

Table 2. Average accuracy of each optimizer in each fold using the best models and the second set of frames

Optimizer Model Fold 1 Fold 2 Fold 3 Average

Adagrad Val_Loss 45.83% 42.65% 40.97% 43.15%

Val_Acc 46.05% 42.75% 41.29% 43.36%

Adam Val_Loss 44.76% 43.01% 43.59% 43.78%

Val_Acc 50.59% 49.67% 48.24% 49.50%

Nadam Val_Loss 48.57% 43.53% 43.83% 45.31%

Val_Acc 53.80% 50.03% 49.41% 51.08%

RMSprop Val_Loss 41.89% 39.25% 40.11% 40.42%

Val_Acc 43.87% 39.23% 42.04% 41.71%

SGD Val_Loss 49.04% 45.62% 44.26% 46.31%

Val_Acc 53.71% 51.39% 49.71% 51.60%

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

David Silva, Alain Manzo-Martínez, Fernando Gaxiola, et al.632

ISSN 2007-9737

4.4 Our Proposal

The main purpose of this work is to make an
analysis of comparison about training time and
accuracy of 8 different CNN architectures using the
HMDB51 dataset.

By no means has it intended to achieve a better
accuracy than cited works. The training of each
CNN architecture was done by using only RGB
frames from the set of videos of the
HMDB51 dataset.

By this statement, our proposal is to treat each
CNN as an image classifier leaving aside the three
popular approaches for the HAR problem. To make
a prediction of human action in the video, we
averaged the predictions of all the frames in a
given test video.

4.5 Environment Setup

We used python as the programming language.
Regarding training variables, we used the default
input tensor dimension for all CNNs and the batch
size that we used was set to 16.

For the learning rate, we used the default value
that each optimizer has in Keras; refer to
https://keras.io/api/optimizers/ for more details.
Since the default image size is 299x299 for
InceptionV3 and Xception CNNs, we resized the
frames to have that size and take advantage of the
pre-trained weights of those CNNs. All other CNNs
work with 224x224 size.

We ran the experiments in 3 different
computers each one with a different GPU. The
GPUs that we used were as follows: NVIDIA 1060,
NVIDIA 1080 and NVIDIA TITAN RTX. The main
libraries used were: Keras implementation in
TensorFlow, efficientnet, NumPy, OS, OpenCV,
Shutil and Pickle.

We used Tensorflow as a backend to run the
CNN experiments. We loaded most of the CNN
architectures using the module of Keras library
except for the EfficientNet CNNs in which case we
used the efficientnet library. The metric that was
used to measure the performance of the CNNs
was accuracy in all experiments. In some
experiments, we also measured the training time in
different GPUs for all the CNNs.

5 Experiments and Results

The first experiment consists of selecting the best
optimizer to use in all CNNs. For this, we
considered 5 different optimizers: “Adagrad”,
“Adam”, “Nadam”, “RMSprop and “SGD” with their
default values in Keras library. We used a K-Fold
of 3 to validate our results. For this, we divided the
training videos of set 1 in 2 folders, 70% of the
videos were used for training and 30%
for validation.

Since each one of the 51 folders (classes) in the
HMDB51 dataset has 70 videos, each class was
divided in 49 videos for training and 21 videos for
validation. To extract the frames of each video in
both the training and validation folders, we used
the process described in 4.2.1 section.

Each fold was run 5 times to mitigate the bias
produced by random weight initialization on the
CNNs that was used. Due to the excessive time
that it would take to train 15 times each CNN for
each optimizer, we decided to use a less deep
CNN only for the first three experiments. The CNN
architecture is the following [41]:

– An input layer where the dimension for the
input tensor is 224x224x3.

– A convolutional layer with 32 filters of 3x3
followed by a “ReLU” activation function and a
2x2 maxpooling.

– A second convolutional layer with 32 filters of
3x3 followed by a “ReLU” activation function
and a 2x2 maxpooling.

– A third convolutional layer with 64 filters of 3x3
followed by a “ReLU” activation function and a
2x2 maxpooling.

– A flatten layer followed by a dense layer of 64
neurons with “ReLU” activation function, a
Dropout layer with a value of 0.5 and a final
dense layer with 51 neurons with a “softmax”
activation function.

The training was done for 50 epochs and the
model with the best validation accuracy (Val_Acc)
as well as the model with best validation loss
(Val_Loss) were saved. For the validation phase,
the final label of the video was obtained by
averaging the predictions of the n frames
generated of each validation video. The results
showed the average accuracy of the 5 best

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

Analysis of CNN Architectures for Human Action Recognition in Video 633

ISSN 2007-9737

Val_Acc and the 5 best Val_Loss models in the
validation set on each fold (see Table 1).

The second experiment was realized almost
exactly as the first one, but instead of extracting the
frames using the previous process, we use the
process of section 4.2.2. This was done with the
main purpose of observing if any optimizer
performs better than others when considering a
larger number of frames (see Table 2).

Based on the previous results, we decided to
use SGD optimizer for the training of all the CNNs
in the next experiments. For the third experiment,
we measure the training time of all the CNNs
architectures with the frames of the set 1. We
trained each of the CNNs 3 times for 50 epochs.
The CNNs were pre-trained with the ImageNet
dataset. We reported the average running time of
each CNN in seconds when using a GPU 1080 and
a GPU TITAN RTX (see Table 3).

From Table 3 we can observe that the fastest
CNN is the MobileNetV2 architecture, which is
understandable because it contains the lowest
number of parameters. An interesting fact is that
the Xception CNN is from 2 to 3 times slower than
the Inception CNN and they share almost the same
number of parameters. We decided to conduct

another experiment to understand why that
happened.

For the fourth experiment, we used the GPU
1060 and computed the average of the training
time of 5 epochs on both CNNs. We also measured
the average prediction time of 5 epochs, which was
calculated by measuring how much time the CNN
needed to make a prediction of all the training
frames. Finally, with both times we calculated the
time that the CNNs used to update their weights by
extracting the average prediction time to the
average training time (see Table 4).

With the previous results, we observed that
even if both CNNs share almost the same number
of parameters, the inner structure of the Xception
CNN made the network slower than the
InceptionV3, especially when we compared the
updating time of both networks.

In the fifth experiment, we trained all the CNNs
with each one of the four different sets of frames.
For the third and fourth set of frames, we decided
to train only four CNNs due to the excessive
training time since this process is carried on using
one GPU. We trained each one of the CNNs three
times for 50 epochs. The CNNs were pre-trained
with the ImageNet dataset. For each set of frames,
we used the corresponding testing frames for

Table 3. Running time in seconds of each CNN architecture on a Titan RTX and 1080 GPU.

CNN TITAN RTX 1080

EfficientNetB0 9133 s 18717 s

EfficientNetB3 17464 s 35321 s

Xception 28549 s 61730 s

InceptionV3 12033 s 26869 s

ResNet152 20878 s 49355 s

DenseNet201 15239 s 33675 s

MobileNetV2 7034 s 12913 s

NASNetMobile 14025 s 25519 s

Table 4. Prediction, updating and training time of Xception CNN and InceptionV3 CNN

CNN Prediction Updating Training

Xception 389.17 s 1538.89 s 1928.06 s

Inception 226.90 s 612.48 s 839.38 s

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

David Silva, Alain Manzo-Martínez, Fernando Gaxiola, et al.634

ISSN 2007-9737

validation and we saved the model with the best
validation accuracy for testing. For the testing
phase, the final label of each video is obtained by
averaging the predictions of the n frames
generated from each test video according to the
set of frames used during training. We reported the
average accuracy of the 3 runs of each CNN on the
testing videos for each set of frames used during
training (see Table 5).

According to the results of the previous
experiment, we noticed that all the CNNs were
benefited from using the second set of frames, but
on the third one, only two of the four CNNs
improved their accuracy. What is even more
interesting and that none of the four CNNs that
were trained on the fourth set of frames improved
their performance, instead of that, the performance
was worse than when using the second and third
set of frames.

This result can be explained by the fact that
when building the first and second set of frames,
we worked with the whole image, but when building
the third and fourth set of frames, we took five
different subsections of the whole image and some
of them did not contain the person doing the action.
With this in mind, we can argue that both the third
and fourth set of frames have many frames with
noise, and that is why the accuracy performance
on these two sets was affected negatively. Based
on that information, we decided to not train any of
other remaining CNNs on the 3rd and 4th set of
frames. Since the 2nd set of frames prove to be the
set with better results on the CNNs, we used that
set for the training of the CNNs for the
next experiments.

The sixth experiment was done with the
purpose of proving how well the CNNs perform on
the set 2 and set 3 of videos of the HMDB51
dataset. Aiming at this, we used the procedure
described in section 4.2.2 to generate new sets of
frames from the sets 2 and 3 of videos of the
HMDB51 dataset. We trained each one of the
CNNs 3 times for 50 epochs. The CNNs were pre-
trained with the ImageNet dataset. For each set of
frames, we used the corresponding testing frames
for validation and saved the model with the best
validation accuracy for testing. For the testing
phase, the final label of each video was obtained
by averaging the predictions of the 20 frames
generated from each test video according to the

set of frames that was used during training. We
reported the average accuracy of the 3 runs of
each CNN in the testing videos for each set of
frames used during training and included the
results obtained in the set 1 of videos using the
second set of frames from the previous table
(see Table 6).Something that caught our attention
on the result of the fifth and sixth experiment was
the fact that the Xception network proved to be
better than the EfficienNetB3 network, which is on
a higher rank on the ImageNet dataset.

For knowing if these results were caused by the
greater entry resolution of the Xception network,
we decided that the aim of the seventh experiment
would be to compare these two networks with the
same input resolution.

We fixed the input resolution of each of the two
CNNs to be 224x224 and trained both CNN for 50
epochs on the second set of frames of the set 1 of
videos of HMDB51. The CNNs were pre-trained
with the ImageNet dataset. We used the testing
frames of the second set of frames for validation
and saved the model with the best validation
accuracy for testing. For the testing phase, the final
label of each video was obtained by averaging the
predictions of the 20 frames generated from each
test video. We reported the average accuracy of
the 3 runs of each CNN in the testing videos (see
Table 7).

Based on the previous results, we can see that
even when both CNNs have the same input
resolution, the Xception CNN managed to outclass
the EfficientNetB3 CNN by a significant margin.

We can also see that the Xception network
works better with a 299x299 input image resolution
and that is due that input images of 299x299
resolution were used to generate the pre-training
weights of the Xception CNN on the ImageNet
dataset.

The eighth experiment was envisioned to take
advantage of those CNN models that showed the
best performance on previous evaluations. For
this, we thought of building several ensembles
made of such CNN's to evaluate if they could, as a
team, outperform the best individual model for
HAR, that is, Xception. If that is the case, then, this
ensemble can also be considered as a baseline for
future evaluation. Since we trained 3 times each
CNN, we selected the CNN model which test
accuracy was the closest to the average that was

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

Analysis of CNN Architectures for Human Action Recognition in Video 635

ISSN 2007-9737

reported on each set of videos to be part of the
ensembles.

We decided to separate the ensembles that
considered only n frames (n = 20) of each test
video and the ones that considered all video
frames of each test video. The ensembles were
formed in the following way:

– Ensemble 1: Ensemble of the 3 best CNNs
using simple voting and n frames.

– Ensemble 2: Ensemble of the 5 best CNNs
using simple voting and n frames.

– Ensemble 3: Ensemble of the 3 best CNNs
using weighted voting and n frames.

– Ensemble 4: Ensemble of the 5 best CNNs
using weighted voting and n frames.

– Ensemble 5: Ensemble of the 3 best CNNs
using prediction averaging and n frames.

Table 5. Average accuracy of each CNN on each set of frames

CNN Architecture 1st set 2nd set 3rd set 4th set

EfficientNetB0 47.39% 49.67% 51.35% 48.17%

EfficientNetB3 47.84% 50.70% N/A N/A

Xception 51.33% 53.99% 52.68% 50.26%

InceptionV3 48.21% 48.56% 48.39% 46.95%

ResNet152 44.81% 45.80% N/A N/A

DenseNet201 45.95% 45.99% N/A N/A

MobileNetV2 42.53% 43.75% N/A N/A

NASNetMobile 43.86% 44.47% 45.40% 44.18%

Table 6. Average accuracy of each CNN on each of the three set of videos of HMDB51 dataset.

CNN Architecture Set 1 HMDB51 Set 2 HMDB51 Set 3 HMDB51 Average

EfficientNetB0 49.67% 45.62% 45.66% 46.98%

EfficientNetB3 50.70% 46.97% 45.88% 47.85%

Xception 53.99% 50.00% 51.76% 51.92%

InceptionV3 48.56% 46.25% 47.25% 47.35%

ResNet152 45.80% 39.96% 40.46% 42.07%

DenseNet201 45.99% 42.42% 43.75% 44.05%

MobileNetV2 43.75% 41.33% 41.22% 42.10%

NASNetMobile 44.47% 40.04% 40.76% 41.76%

Table 7. Accuracy of EfficientNetB3 and Xception using 224x224 images.

CNN Architecture Accuracy

EfficientNetB3 50.70%

Xception 52.46%

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

David Silva, Alain Manzo-Martínez, Fernando Gaxiola, et al.636

ISSN 2007-9737

– Ensemble 6: Ensemble of the 5 best CNNs
using prediction averaging and n frames.

– Ensemble 7: Ensemble of the 3 best CNNs
using simple voting and all frames.

– Ensemble 8: Ensemble of the 5 best CNNs
using simple voting and all frames.

– Ensemble 9: Ensemble of the 3 best CNNs
using prediction averaging and all frames.

– Ensemble 10: Ensemble of the 5 best CNNs
using prediction averaging and all frames.

We reported the average accuracy of each
ensemble in each set of videos of the HMDB51
dataset (see Table 8).

5.1 Statistical Tests

To verify the robustness of the results of the first
and second experiments, three paired t-test were
conducted. The first one compared the vector
containing the average of hits per class from the 5
runs using the set 1 of frames, the SGD optimizer

Table 8. Accuracy of the different type of ensembles on each set of videos of HMDB51 dataset

Ensemble Set 1 HMDB51 Set 2 HMDB51 Set 3 HMDB51 Average

Ensemble 1 52.88% 48.30% 50.00% 50.39%

Ensemble 2 53.92% 49.80% 50.26% 51.33%

Ensemble 3 54.31% 50.39% 51.31% 52.00%

Ensemble 4 54.64% 50.98% 51.50% 52.37%

Ensemble 5 54.77% 51.11% 51.90% 52.59%

Ensemble 6 52.94% 50.33% 51.90% 51.72%

Ensemble 7 52.75% 51.37% 51.18% 51.77%

Ensemble 8 53.27% 50.65% 50.59% 51.50%

Ensemble 9 54.64% 53.07% 52.42% 53.38%

Ensemble 10 52.29% 52.03% 52.22% 52.18%

Table 9. Comparison with previous models

Paper Acc.

I3D Spatial stream [20] 74.80%

Two-stream Conv LSTM CNN Spatial-stream [25] 64.80%

KAVG Spatial stream [17] 61.44%

LSF CNN Spatial stream [1] 61.30%

DTPP Spatial stream [16] 61.06%

FSTCN [19] 59.10%

TSN Spatial stream [15] 53.70%

Best Ensemble 53.38%

LFN Spatial stream [18] 52.14%

Best Individual CNN 51.92%

Visual Attention Model [24] 41.30%

Spatial stream [14] 40.50%

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

Analysis of CNN Architectures for Human Action Recognition in Video 637

ISSN 2007-9737

and the best Val_Acc model, against the vector
containing the average of hits per class from the 5
runs using the set 1 of frames, the SGD optimizer
and the best Val_Loss model. The p-value
obtained was 5.512e-09.

The second paired t-test compared the vector
containing the average of hits per class from the 5
runs using the set 1 of frames, the Adagrad
optimizer and the best Val_Acc model, against the
vector containing the average of hits per class from
the 5 runs using the set 1 of frames, the SGD
optimizer and the best Val_Acc model. The p-value
obtained was 1.079e-09.

The third paired t-test compared the vector
containing the average of hits per class from the 5
runs using the set 1 of frames, the SGD optimizer
and the best Val_Acc model, against the vector
containing the average of hits per class from the 5
runs using the set 2 of frames, the SGD optimizer
and the best Val_Acc model. The p-value obtained
was 2.2e-16. With all these values, we rejected all
the null hypotheses, and thus show the robustness
of the results.

5.2 Comparison of Results with Previous
Works

To see where our best performance individual
CNN and ensemble with no fine-tuning stand
against the fine-tuned models of the state of the art
of the HMDB51 dataset, we decided to make a
comparison with 10 of the most accurate or most
popular models of the state of the art.

For a fair comparison, we only cited the models
that used only RGB frames as input (see Table 9).
Something to take in consideration is that our work
never intended to compete with the results of the
state of the art, but instead to demonstrate that the
idea of choosing the best performance CNN
trained with an image dataset will not always lead
to the best performance on a video dataset.

6 Conclusions

In this work, we compared the performance of eight
different CNNs on the different sets of frames
generated on the HMDB51 dataset. The Xception
network proved to be the best individual CNNs out
of all the CNNs that we chose to work with. We

argued that this was because of the absence of
non-linearity on the intermediate step of a DSC,
which is the main difference between the Xception
and the rest of the CNN. However, further
experiments modifying this feature of the Xception
CNN need to be done on the HMDB51 dataset to
see if this network feature is truly the reason
behind the good performance of the CNN.

Results also showed that mobile CNNs such as
MobileNetV2 and NASNetMobile are low on
accuracy when comparing to newer and bigger
models such as Xception or EfficientNets. The best
accuracy achieved was 53.38% when we used the
ensemble of the best three individual CNNs,
prediction averaging and when we took into
consideration all frames of a video during testing.

We proved that the performance of a CNN
above others in terms of accuracy can change
depending on the dataset that is used, i.e.,
between the ImageNet dataset and the HMDB51
dataset. Thus, we encourage the authors to
include the election of the CNN (at least
experiment with 2 different CNN) as a
hyperparameter of their models.

We also proved that considering more frames
that were created using image augmentation
techniques during training does not necessarily
improve the accuracy of a network such as happen
when the CNNs used the third and fourth set of
frames; but taking into consideration, more frames
during testing time can achieve better results like
what happened with the ensembles.

We have trained each CNN using only 10
frames per video along to corresponding extra
frames generated with the image augmentation
techniques, nevertheless, we encourage to use
more frames to improve classification accuracy on
each CNN. Results can also be improved with the
fine-tuning of hyperparameters such as learning
rate and batch size, with the use of regularization
techniques such as dropout and with the use of
different data augmentation techniques such as
RGB and scale-jittering.

Due to the use of image classifier models, the
accuracy on classes like sit, stand, walk, run and
others very similar classes was very low, because
the model was not made to capture the motion
feature that distinguishes one class from another.
However, these results can be improved with the
use of more complex models that include motion

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

David Silva, Alain Manzo-Martínez, Fernando Gaxiola, et al.638

ISSN 2007-9737

features like optical flow or with the use of any of
the three popular approaches for HAR previously
explained. Running time of the CNNs can also be
improved with more powerful GPUs and with the
use of a cluster of GPUs.

For future work, we would like to test more CNN
architectures with more different video datasets
like UCF101. We will also like to include motion for
the training of the CNN by extracting optical flow of
the frames and training a temporal stream or by
building a 3D CNN with every CNN tested.

The idea of including motion is because we
want to see if the current ranking of CNNs that we
have in our experiments by using only RGB frames
changes either with the use of only motion data or
with the inclusion of motion data with RGB frames.
We also want to test with more than 10 frames per
video for training, so we would like to analyze the
performance of CNNs while using different number
of frames.

Finally, as previously stated we would like to run
different tests on the best CNN to see what part of
its inner structure is responsible of its performance.

Acknowledgments

This work was supported by CONACyT and UACH
– FING through the Thesis titled as "Analysis of
state-of-the-art architectures CNN for activity
recognition in video".

References

1. Wan, Y., Yu, Z., Wang, Y., Li, X. (2020).
Action Recognition Based on Two-Stream
Convolutional Networks with Long-Short-Term
Spatiotemporal Features. IEEE Access, Vol. 8,
pp. 85284–85293. DOI: 10.1109/ACCESS.
2020.2993227.

2. Laptev, I. (2005). On space-time interest
points. International Journal of Computer
Vision, Vol. 64, pp. 107–123. DOI:
10.1007/s11263-005-1838-7.

3. Dollár, P., Rabaud, V., Cottrell, G., Belongie,
S. (2005). Behavior Recognition Via Sparse
Spatio-Temporal Features. 2005 IEEE
International Workshop on Visual Surveillance
and Performance Evaluation of Tracking and

Surveillance, 65-72. IEEE. DOI:
10.1109/VSPETS.2005.1570899.

4. Willems, G., Tuytelaars, T., Van Gool, L.
(2008). An Efficient Dense and Scale-Invariant
Spatio-Temporal Interest Point Detector. In:
Forsyth, D., Torr, P., Zisserman, A., editors,
Computer Vision – ECCV’08. Lecture Notes in
Computer Science, Vol 5303. Springer, pp.
650–663 DOI: 10.1007/978-3-540-88688-
4_48

5. Wang, H., Kläser, A., Schmid, C., Liu, C.L.
(2011). Action Recognition by Dense
Trajectories. Proceedings of the IEEE
Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 3169–
3176. DOI: 10.1109/CVPR.2011.5995407.

6. Wang, H., Schmid, C. (2013). Action
Recognition with Improved Trajectories.
Proceedings of the IEEE International
Conference on Computer Vision, pp. 3551–
3558.

7. Yang, H., Yuan, C., Li, B., Du, Y., Xing, J.,
Hu, W., Maybank, S.J. (2019). Asymmetric 3d
Convolutional Neural Networks for Action
Recognition. Pattern Recognition, Vol. 85, pp.
1–12. DOI: 10.1016/j.patcog.2018.07.028.

8. Varela-Santos, S., Melin, P. (2021). A New
Approach for Classifying Coronavirus COVID-
19 Based on its Manifestation on Chest X-rays
Using Texture Features and Neural Networks.
Information Sciences, Vol. 545, pp. 403–414.
DOI: 10.1016/j.ins.2020.09.041.

9. He, K., Zhang, X., Ren, S., Sun, J. (2016).
Deep Residual Learning for Image
Recognition. Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 770–778.

10. Szegedy, C., Liu, W., Jia, Y., Sermanet, P.,
Reed, S., Anguelov, D., Erham, D.,
Vanhoucke, V., Rabinovich, A. (2015). Going
Deeper with Convolutions. Proceedings of the
IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1–9.

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.
(2012). Imagenet Classification with Deep
Convolutional Neural Networks. Advances in
Neural Information Processing Systems, Vol.
25, pp. 1097–1105.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

Analysis of CNN Architectures for Human Action Recognition in Video 639

ISSN 2007-9737

12. Simonyan, K., Zisserman, A. (2014). Very
Deep Convolutional Networks for Large-Scale
Image Recognition. Computer Vision and
Pattern Recognition (cs.CV), DOI:
10.48550/arXiv.1409.1556.

13. Huang, G., Liu, Z., van der-Maaten, L.,
Weinberger, K.Q. (2017). Densely Connected
Convolutional Networks. Proceedings of the
IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4700-4708.

14. Xie, D., Deng, C., Wang, H., Li, C., Tao, D.
(2019, July). Semantic Adversarial Network
with Multi-scale Pyramid Attention for Video
Classification. Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33,
No. 1, pp. 9030–9037. DOI: 10.1609/aaai.
v33i01.33019030.

15. Simonyan, K., Zisserman, A. (2014). Two-
Stream Convolutional Networks for Action
Recognition in Videos. Advances in Neural
Information Processing Systems, Vol. 27,
pp.1–9.

16. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin,
D., Tang, X., Van Gool, L. (2016, October).
Temporal Segment Networks: Towards Good
Practices for Deep Action Recognition. In:
Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds) Computer Vision – ECCV 2016. ECCV
2016. Lecture Notes in Computer Science,
Vol. 9912. Springer, Cham. DOI: 10.1007/978-
3-319-46484-8_2.

17. Zhu, J., Zhu, Z., Zou, W. (2018). End-to-end
Video-Level Representation Learning for
Action Recognition. 24th International
Conference on Pattern Recognition (ICPR),
pp. 645–650. DOI: 10.1109/ICPR.2018.
8545710.

18. Cong, G., Domeniconi, G., Yang, C.C.,
Shapiro, J., Zhou, F., Chen, B. (2019). Fast
Neural Network Training on a Cluster of GPUs
for Action Recognition with High Accuracy.
Journal of Parallel and Distributed Computing,
Vol. 134, pp. 153–165. DOI: 10.1016/j.jpdc.
2019.07.009.

19. He, F., Liu, F., Yao, R., Lin, G. (2019). Local
Fusion Networks with Chained Residual
Pooling for Video Action Recognition. Image
and Vision Computing, Vol. 81, pp. 34–41.
DOI: 10.1016/j.imavis.2018.12.002.

20. Sun, L., Jia, K., Yeung, D.Y., Shi, B.E.
(2015). Human Action Recognition Using
Factorized Spatio-temporal Convolutional
Networks. Proceedings of the IEEE
International Conference on Computer Vision,
pp. 4597–4605.

21. Carreira, J., Zisserman, A. (2017). Quo
Vadis, Action Recognition? A New Model and
the Kinetics Dataset. Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 6299–6308.

22. Wang, L., Koniusz, P., Huynh, D.Q. (2019).
Hallucinating Idt Descriptors and I3d Optical
Flow Features for Action Recognition with
Cnns. Proceedings of the IEEE/CVF
International Conference on Computer Vision,
pp. 8698–8708.

23. Piergiovanni, A.J., Angelova, A., Toshev,
A., Ryoo, M.S. (2019). Evolving Space-Time
Neural Architectures for Videos. Proceedings
of the IEEE/CVF International Conference on
Computer Vision, pp. 1793–1802.

24. Stroud, J., Ross, D., Sun, C., Deng, J. &
Sukthankar, R. (2020). D3d: Distilled 3d
networks for video action recognition. In
Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer
Vision, 625-634.

25. Sharma, S., Kiros, R., Salakhutdinov, R.
(2015). Action recognition using visual
attention. arXiv preprint arXiv:1511.04119.

26. Ye, W., Cheng, J., Yang, F. & Xu, Y. (2019).
Two-stream convolutional network for
improving activity recognition using
convolutional long short-term memory
networks. IEEE Access, 7, 67772-67780.

27. He, D., Li, F., Zhao, Q., Long, X., Fu, Y. &
Wen, S. (2018). Exploiting Spatial-Temporal
Modelling and Multi-Modal Fusion for Human
Action Recognition.

28. Donahue, J., Hendricks, L. A., Rohrbach,
M., Venugopalan, S., Guadarrama, S.,
Saenko, K., Darrell, T. (2015). Long-Term
Recurrent Convolutional Networks for Visual
Recognition and Description. Proceedings of
the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2625–2634.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

David Silva, Alain Manzo-Martínez, Fernando Gaxiola, et al.640

ISSN 2007-9737

29. Yue-Hei Ng, J., Hausknecht, M.,
Vijayanarasimhan, S., Vinyals, O., Monga,
R. Toderici, G. (2015). Beyond Short
Snippets: Deep Networks for Video
Classification. Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 4694–4702.

30. Limin, W., Xiong, Y., Zhe, W., Yu, Q. (2015).
Towards Good Practices for Very Deep Two-
Stream ConvNets.

31. Saleh, H. (2019). Applied Deep Learning with
PyTorch. Birmingham: Packt Publishing Ltd.

32. A. Rosebrock. (2017). Deep Learning for
Computer Vision with Python (1st ed.).
PyImageSearch.

33. Bai, K. (2019). A Comprehensive Introduction
to Different Types of Convolutions in Deep
Learning. Towards Data Science.

34. Szegedy, C., Liu, W., Jia, Y., Sermanet, P.,
Reed, S., Anguelov, D., Erham, D.,
Vanhoucke, V., Rabinovich, A. (2015). Going
deeper with convolutions. Proceedings of the
IEEE conference on computer vision and
pattern recognition, pp. 1–9.

35. He, K., Zhang, X., Ren, S., Sun, J. (2016).
Deep Residual Learning for Image
Recognition. Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 770–778.

36. Huang, G., Liu, Z., van der-Maaten, L.,
Weinberger, K.Q. (2017). Densely Connected

Convolutional Networks. Proceedings of the
IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4700–4708.

37. Chollet, F. (2017). Xception: Deep Learning
with Depthwise Separable Convolutions.
Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp.
1251–1258.

38. Tan, M., Le, Q. (2019, May). EfficientNet:
Rethinking Model Scaling for Convolutional
Neural Networks. International Conference on
Machine Learning, PMLR. pp. 6105–6114.

39. Sandler, M., Howard, A., Zhu, M.,
Zhmoginov, A., Chen, L.C. (2018).
Mobilenetv2: Inverted Residuals and Linear
Bottlenecks. Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 4510–4520.

40. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.
(2018). Learning Transferable Architectures
for Scalable Image Recognition. Proceedings
of the IEEE Conference on Computer Vision
and Pattern Recognition, 8697-8710.

41. Chollet, F. (2016). Building Powerful Image
Classification Models Using Very Little Data.
The Keras Blog.

Article received on 07/06/2021; accepted on 17/11/2021.
Corresponding author is Alain Manzo-Martinez.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

Analysis of CNN Architectures for Human Action Recognition in Video 641

ISSN 2007-9737

