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Abstract. This work presents an improved algorithm
applied to a systolic architecture when a modular
multiplication is synthesized into a Field Programmable
Gate Array (FPGA). Here, we proved how this
proposed architecture for modular multiplication can be
employed in a modular exponentiation process. Modular
exponentiation is critical and helps in the performance of
algorithms like RSA, Digital Signature, Elliptic Curve, and
other cryptographic algorithms. Results obtained show
that these improvements in the systolic architecture
speed up the performance and reduces also the
resources used by the programmable device, specifically
when the Montgomery modular multiplication is used.
Also, we compare the results of this work with related
work published in the literature.

Keywords. Modular multiplication, montgomery
modular multiplication, modular exponentiation, systolic
architecture, FPGA, RSA, elliptic curve cryptography.

1 Introduction

It is well known that cryptographic algorithms like
Elliptic Curve Cryptography (ECC), and ElGamal
use modular multiplication; especially the modular
exponentiation uses modular multiplication. For
instance, among other algorithms, RSA is the
most used, since proposed by Rivest, Shamir, and
Adleman in the year 1977 at the MIT [16].

RSA is based on the modular exponentiation to
encrypt and decrypt critical data. Regarding this

mentioned algorithm, it can be said that the main
operation used is modular multiplication.

Even so, some difficulties are dealing with
division and modular reduction. However,
proposals like those made by Brickell [3], Barret
[1], and Montgomery [11] help to solve somehow
these problems and they are widely cited by many
authors in the literature.

After this, it can be said that the Montgomery
modular multiplication is the most efficient
algorithm for modular multiplication, so the
proposal made in this paper will deal with it.

The regular procedure used in this algorithm
begins with a translation of the conventional
representation of positive integers and brings
back this translation to its original conventional
integer representation at the end of the
multiplication procedure.

Besides, Montgomery modular multiplication
replaces the trial division with a series of additions
and divisions by a power of 2, this makes it suitable
to be implemented in programmable devices, like
Field Programmable Gate Array (FPGA) [20, 2, 9,
19, 14]. Divisions by the power of two can be made
by making only shifts to the right.

This considerably reduces the consumption of
resources on the programmable device. In the
search for solving issues like those mentioned
above, many authors have proposed some
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Algorithm 1 Montgomery multiplication

Require: m = (mn−1, · · · ,m0)b,
x = (xn−1, · · · ,x0)b, y = (yn−1, · · · , y0)b, with
0 ≤ x, y < m, R = bn with gcd(m, b) = 1, and
m′ = −m−1 mod b

Ensure: A = xyR−1 mod m
1: A← 0 {with A = (an, an−1, · · · , a1, a0)}
2: for i from 0 to n− 1 do
3: ui ← (a0 + xiy0)m

′ mod b
4: A← (A+ xiy + uim)/b
5: end for
6: if A ≥ m then
7: A← A−m
8: end if
9: return A

Algorithm 2 Montgomery multiplication with no
final subtraction
Require: m = (mn−1, · · · ,m0)b,

x = (xn−1, · · · ,x0)b, y = (yn−1, · · · , y0)b, with
0 ≤ x, y < 2m, 2m < R = bn with gcd(m, b) =
1, and m′ = −m−1 mod b

Ensure: A = xyR−1 mod m
1: A← 0 {with A = (an−1, · · · , a1, a0)}
2: for i from 0 to n− 1 do
3: ui ← (a0 + xiy0)m

′ mod b
4: A← (A+ xiy + uim)/b
5: end for
6: return A

architectures, for example, Karatsuba based
Montgomery modular multiplication [4, 7], Carry
Save Adders (CSA) [8, 18, 6], Compact Signed
Digits (SD) [15], and Systolic Architectures
[2, 9, 19, 14, 17, 21, 5], to speed up the
modular multiplication.

Specifically, the proposal Karatsuba based
Montgomery modular multiplication is a high speed
modular multiplication, it requires a few clock
cycles compared with other proposals. However,
it requires a large consumption of dedicated
multipliers and resources. CSA is an interesting
proposal since it uses only digital logic and no
dedicated multipliers.

However, it requires a large consumption of
resources and clock cycles to do the modular
multiplication. Among these proposals, the
Systolic Architecture is particularly interesting

because it has a balance between the two earlier
proposals. It reduces the resources compared
with CSA and reduces the dedicated multipliers
compared with Karatsuba-based Montgomery
modular multiplication. To do the mentioned
before, Systolic Architecture uses regular blocks
called Processing Elements (PEs).

For example, authors like Guilherme Perin et al.
[14] , compared a high radix systolic architecture
with a high radix multiplexed multiplication in
an FPGA. Amine Mrabet et al. [12] proposed
the implementation of the Coarsely Integrated
Operand Scanning (CIOS) method of Montgomery
modular multiplication using a two-dimensional
array of PEs. Hence, an improvement of PEs is
presented in this work, from which the associated
process can be speeded up and the resources
used in the FPGA are reduced as well. For this, a
Montgomery modular multiplication is implemented
that can deal with long integers within the finite
field GF (p), where p is a prime number digitally
expressed between 512 and 2048 bits.

This will be explained in the next section. The
rest of the paper is organized as follows: Section
2 reviews the Montgomery modular multiplication
algorithm and shows the improvements made.
Section 3 shows the architecture proposed for
implementation in an FPGA. In section 4, it is
implemented the proposed architecture in modular
exponentiation for use in the RSA algorithm. In
section 5, it is presented the results obtained of the
implementation and it is presented a comparison
with other works reported. Finally, in section 6, we
make the conclusions of this work.

2 Montgomery Multiplication

To perform a modular multiplication, it must have a
residue of a division of the multiplication of the two
positive integers. However, the arithmetic division
is an operation that consumes high resources and
time in hardware and software implementation, to
avoid this there is a proposal called Montgomery
modular multiplication algorithm [11].

The Montgomery modular multiplication is an
algorithm that can be used to perform the
modular multiplication x · y mod m without the
need to divide by the modulus m. In the
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Algorithm 3 Montgomery multiplication for FPGA

Require: m = (mn−1, · · · ,m0)b,
x = (xn−1, · · · ,x0)b, y = (yn−1, · · · , y0)b, with
0 ≤ x, y < 2m, 2m < R = bn with gcd(m, b) =
1, and m′ = −m−1 mod b

Ensure: A = xyR−1 mod m
1: A← 0 {with A = (an−1, · · · , a1, a0)}
2: for i from 0 to n− 1 do
3: Take the lowest k bits of ui ← (a0 + xiy0)m

′

4: for j from 0 to (n− 1) do
5: (cj , aj)← (aj + xiy + uim+ cj)≫ k
6: end for
7: end for
8: return A

Algorithm 4 Montgomery multiplier controller

1: Wait until the multiplication is enabled. i = 0.
2: Enable the operations of PEs.
3: i = i+ 1.
4: if i ≥ n− 1 then
5: Go to state 9.
6: else
7: Go to state 2.
8: end if
9: return the result.

next subsections, we will explain the Montgomery
modular multiplication from the software and
hardware point of view.

2.1 Software-base Montgomery Multiplication

First, from the software point of view, Montgomery
modular multiplication implementations use
Algorithm 1, shown next, which is the
original algorithm [10]. This algorithm is the
basis of many RSA software and hardware
implementation systems.

In Algorithm 1, the operands x and y are
positive integers with a radix b. The result is placed
on A and after n iterations, it is equal to xyR−1

mod m, which must retrieve the result xy mod m.
Initially, it is required that x and y must be in

the Montgomery domain, this is done applying the
same Algorithm 1, with x̃ and R2 as operands for x
value and ỹ and R2 as operands for y value, where
x̃ and ỹ are the original operands for the modular

multiplication. Next, to get the correct result Ã,
it is needed to apply an additional Montgomery
Multiplication with A and 1 as operands.

In modular exponentiation these added
operations are inexpensive since they are done
one time after the whole exponentiation. Since
the mathematician Peter L. Montgomery published
his algorithm in 1985, a lot of improvements
were proposed by much research. The next
section explains one of these approaches for
hardware implementation.

2.2 Hardware-based Montgomery
Modular Multiplication

On the other side, from the hardware point of
view, FPGAs have been widely used to perform
readily modular multiplications. It can be found
proposals using several techniques that can
improve Montgomery Multiplication implemented in
FPGA [11, 20, 13]. One of these proposals is
particularly interesting because it avoids the final
subtraction used in the original algorithm [20]. To
achieve this, x and y are set to be less than 2m,
and 2m must be less than bn. This proposal is
shown in Algorithm 2.

As was mentioned earlier, there is a technique
that was proposed for the implementation that
performs the Montgomery modular multiplication.
This technique, called Systolic Architecture, uses
a regular array based on a basic elemental PE.
Therefore, an advantage is taken from the fact that
operands are represented in a radix b of power
of 2, this is b = 2k, where k is the number of
bits. This simplifies the operations in the digital
implementation into the FPGA.

Each PE internally contains multipliers and
adders, which manage large operands in a
multi-precision context, based on Algorithm 2.
Specifically, PEs are settled in a one dimensional
array, all being identical, this was first proposed by
Tenca et al. [17].

Their Montgomery multiplier has a scalable
architecture, and it is based on the Multiple Word
Radix-2 Multiplication Algorithm (MWR2MM). As
was mentioned before, a Systolic Architecture can
reduce the resources needed for the hardware
implementation. Besides, it is possible to increase
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Fig. 1. Block diagram of systolic architecture
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Fig. 2. Block diagram of initial processing element (IPE)

the number of bits of the operands adding only the
required PEs for the specific dimension.

3 Systolic Architecture Proposed

Talking about the structure of the implemented
system, a systolic architecture consists on a
one-dimensional array of PEs [9, 20, 13], most
of them are identical, the only different PEs
are the first one and the last one, this will be
explained Ylater.

The proposed architecture is based on
Algorithm 2, where the operands are divided into
n words having a length of k-bits. This is shown
in Algorithm 3. Based on what was mentioned
above, this shows that the total number of PEs
in the systolic architecture has the same number

as the total of words considered, this is, there
will be n PEs.

The array of PEs performs step 4 outlined in
Algorithm 2, this is, A← (A+ xiy + uim)/b, where
A has been represented with the same radix as the
rest of the operands. This step is performed by
steps 4 and 5 in Algorithm 3.

Since the systolic architecture works in a
multi-precision context, each PE is responsible to
perform the arithmetic operations of each word
involved in the equation, step 5 in Algorithm 3.

The value cj in step 3 stands for the carry
obtained during the operation of each PE. As it
was already said, the operands are represented in
a radix b, this is, the numerical basis is the power
of 2. So, the division by b of step 4 of Algorithm 2
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is performed by a right shift operation of one word
of k bits in step 5 of Algorithm 3.

The operation of step 3, this is, ui ← (a0 +
xiy0) m′, in Algorithm 3, is performed in a
separated block, called CU. To perform the inner
loop of the Algorithm 3, a Finite State Machine
(FSM) was implemented, called Montgomery
Multiplier Controller (MMC).

The MMC block is designed to supply the
corresponding words to the one-dimensional array
of PEs and the block CU. The logic implementation
of the MMC is shown in Algorithm 4 4. The MMC
implemented works as follows:

– State 1: Variable i is initialized to 0 and waits
until the multiplication is enabled. At the same
time, y and m are split into n words of radix b
and are sent to each of the corresponding PEs.

– State 2: The first PE is enabled while at the
same time this PE enables the second PE,
and this sequence is followed until the last
PE is enabled.

– State 3: Here, i increase its account by 1, with
the help of the counter. In this state, the next
word in the register x is retrieved.

– State 4: In this state, i is compared with n − 1
and if it is greater or equal then goes to state 9,
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Algorithm 5 Square and multiply always, left
to right

Require: m = (ml−1, · · · ,m0)b, R = bl, m′ =
−m−1 mod b, e = (et, · · · , e0)2, with et = 1,
and an integer x < m.

Ensure: xe mod m
1: S[0]← R mod m
2: S[1]← 0
3: x̃← MontMult(x,R2 mod m,m)
4: for i from t down to 0 do
5: S[0]← MontMult(S[0],S[0],m)
6: S[1]← MontMult(x̃,S[0],m)
7: S[0]← S[ei]
8: end for
9: S[0]← MontMult(S[0], 1,m)

10: return S[0]

otherwise goes to state 2.
– State 9: This state ends the cycle and returns

the result of the multiplication.

While states are performing within the MMC,
Block CU is calculating at the same time the value
of ui. Fig 1 shows the block diagram of systolic
architecture as was implemented in an FPGA.

In Fig 1., the value j shows the corresponding
PE. In this work, it has been proposed three
different types of PEs, which are based on
step 5 of Algorithm 3. These PEs are Initial
Processing Element (IPE), General Processing
Element (GPE), and Final Processing Element
(FPE). These PEs have been settled in a
one-dimensional array as originally proposed.

To reduce resources, and area, and speed up
the implementation of the PEs, it has been used
Digital Signal Processing slices (DSP) integrated
into the FPGA. For our implementation in the
family Artix 7 of Xilinx, it is used DPS48E1. The
main features of these DSPs are that they have
internally a 25 × 18 two-complement multiplier and
a 48-bit accumulator.

This DSP indicates that the maximum radix that
can be implemented is with 18 bits, however, in
this work 16 bits were used. Description of the
elements in Fig. 1 is as follows: PE(0) is an IPE,
PE(n − 1) is equivalent to an FPE and finally, the
rest of PEs correspond to the type of GPE; then,

there will be n− 2 GPEs. Now, each type of PEs is
explained in the next subsections:

3.1 Initial Processing Element

This first type of PE is called Initial Processing
Element (IPE) and has direct communication with
the MMC block. It receives an enabling signal,
together with the value of xi and ui. The values
xi and ui are saved in a register. Fig. 2 shows the
block diagram implemented.

The performance of the IPE block is controlled
by an FSM, which consists of three states. The
performance is explained as follows: During the
first state, xi and ui are saved in registers, and at
the same time they are sent to the first GPE. Upon
the reception of the enabling signal, the fist GPE is
enabled and proceeds to the next state.

While yet in this first state, values of m0 and
ui are sent to the multiplier across the multiplexers
1 and 2 respectively, also a value of 0 is sent
to the pre-adder integrated into the DSP across
the multiplexer 3 and then the result is saved in a
register into a block called Accumulator of the DSP.

Next, during the second state the multiplication
of xi and y0 is performed and it is added the value
a0 and the result is added to the earlier value of
state 1 using the Accumulator of the DSP. Finally,
when the third sate is reached, the results of the
multiplications with the adders are stored into the
block Memory. The result of this addition has a
length of 2k + 2 bits.

However, the first k bits are discarded, this
means the division by b in A← (A+ xiy + uim)/b,
and the rest of the bits are saved in a register and
sent to the next PE as a carry. After this it is reset
the accumulator of the DSP. Since operation time
is important from the performance point of view,
it should be mentioned that passing through each
one of the states takes one clock cycle.

To save resources and speed up the operations,
a DSP has been used as a 16 × 16 bits multiplier,
pre-adder, and an accumulator.
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3.2 General Processing Element

The second type of PE is called General
Processing Element (GPE). The GPE unlike the
IPE receives as input a carry and gives the output
aj−1. Fig. 3 shows the block diagram of a GPE
implemented into the FPGA. The GPE is replicated
n − 2 times, the first GPE receives the input carry
from the IPE, and this first GPE sends its carry to
the second GPE, this is made until the last GPE
is reached and is then when the respective carry
is sent to the last type of PE. The performance of
this GPE is like the IPE, which is controlled by an

FSM with three states. However, in the first state it
is performed an addition of the carry input value.

The result, the same as in an IPE, has a length
of 2k + 2 bits. The first k bits are equivalent to
aj−1 and the rest of the bits are the output carry.
The output aj−1 of each GPE is left-shifted to
complement the operation of the division by b, as
was mentioned in the description of the IPE.

3.3 Final Processing Element

The third and last type of PE is the Final Processing
Element (FPE). The performance of this type of
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Table 1. Resources used by the FPGA for the montgomery modular multiplication with a module of 512 bits

Device Utilization

Resources Utilization Available Utilization %

Slice LUTs 3098 63400 4.89 %

Slice Registers 2670 126800 2.11 %

Slice 1471 15850 9.28 %

DSPs 34 240 14.17 %

Table 2. Resources used by the FPGA for the montgomery modular multiplication with a module of 1024 bits

Device Utilization

Resources Utilization Available Utilization %

Slice LUTs 6736 63400 10.62 %

Slice Registers 5337 126800 4.21 %

Slice 3429 15850 21.63 %

DSPs 66 240 27.50 %

element is like GPE, however, the output carry of
this PE is avoided. The block diagram of this PE
is shown in Fig. 4. As we mentioned before, the
output carry is avoided, and the output of this FPE
has a length of 2k bits. The first k bits of the output
are called aj−2 and the last k bits are called aj−1

which is equivalent to the value an−1. As the IPE
and GPE, this kind of PE is controlled by an FSM
with three states.

3.4 Block CU

Finally, the block named CU calculates the value ui

of step 3 as pointed out in Algorithm 2. As specified
previously, the numerical basis is the power of 2,
so for this block, the mod b operation needs only
the LSB of k in the result. Fig. 5 shows the
block diagram implemented for Block CU, where
two DSPs were used to perform the multiplications.

4 Modular Exponentiation

In this section, modular exponentiation, which uses
the modular multiplier proposed, is implemented

into an FPGA. The modular exponentiation
implemented is the Square and Multiply Always,
Left to Right (SMAL2R). Algorithm 5 shows
the regular modular exponentiation Square and
Multiply Always algorithm and it is in a left-to-right
form. This form begins the exponentiation with the
most significant bit (MSB) of the exponent e and
ends with the least significant bit (LSB).

From Algorithm 5, it is required that gcd(m,R) =
1. The values of R mod m and R2 mod m may
be provided as inputs. As was mentioned at
the beginning, the operands for the Montgomery
modular multiplication were settled into the
Montgomery domain, this is done in step 1 and
at the end the result was retrieved in step 9 of
the Algorithm 5. The function called MontMult()
in Algorithm 5 performs the Montgomery modular
multiplication. In this function, the first and the
second parameter are the operands and finally the
third parameter is the modulus.

An FSM was implemented to control the
Montgomery modular exponentiation. In Fig. 6, it
is shown the general block diagram which shows
the implementation in FPGA. In Fig. 6 the block
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Table 3. Resources used by the FPGA for the montgomery modular multiplication with a module of 2048 bits

Device Utilization

Resources Utilization Available Utilization %

Slice LUTs 12854 63400 20.27 %

Slice Registers 10648 126800 8.40 %

Slice 5132 15850 32.38 %

DSPs 130 240 54.17 %

Table 4. Comparison of hardware resources and performance for the montgomery modular multiplication

Work Device Module
m (bits)

Radix
b (bits) Freq. (MHz) Clock Cycles Slice LUTs Slice

Registers Slices DSPs

Perin Virtex-4 1024 16 110 384 - - 7012 130

Perin Virtex-5 1024 16 130 384 - - 6642 130

Wang Virtex-5 1024 16 120 199 14440 7826 - 66

C.McIvor Virtex-2 1024 16 104 199 - - 5709 131

Mrabet Artix-7 1024 16 65 66 5242 4208 2072 161

Mrabet Virtex-5 1024 16 65 66 5824 6072 - -

Proposed architecture Artix-7 1024 16 100 194 6736 5337 3429 66

labeled as Control is the FSM which controls the
whole modular exponentiation according to the
exponent e. The blocks labeled as S[0], S[1]
and x̃ are registers working as memories, and
they are set and reset according to the block
labeled as Control.

The block labeled as MontMult in Fig. 6
holds the modular multiplication proposed. The
operands for this block are set by the block Control.
RSA algorithm was chosen to provide both the
public key and the private key. From the RSA
algorithm, the value e, also known as public-key
in Montgomery modular exponentiation, is used to
encrypt, and x is the data to be encrypted, also
known as plain text. This is shown in 1:

enc = xe mod n. (1)

To decrypt the data encrypted, the same
modular exponentiation is used, however, the
exponent is now d, also known as private-key, in
this case, the value x is known cipher-text. This is
shown in 2:

x = encd mod m. (2)

Since e or d are represented as a binary with t+
1 bits, there will be t+1 cycles as it was mentioned
before. Now, considering that Square-and-multiply
Always, Left to Right Algorithm is regular, no matter
if the corresponding bit of the exponent during
the cycle is one or zero, the two multiplications
will be performed in the loop as well. Thus, the
total number of multiplications during the complete
process of the exponentiation is:

multiplications = 2(t+ 1) + 2. (3)

The two extras multiplications in 3 are due to
steps 3 and 9 in Algorithm 5. Once the blocks
were defined and the function of each one was
explained, implementation on a FPGA was made
and results are presented in the following section.

5 Results

The proposed design was implemented into an
FPGA Artix-7 XC7A100T-CSG324 working at 100
MHz; no area or speed optimization was set for

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 1703–1714
doi: 10.13053/CyS-28-4-4298

Efficiency Evaluation of a Modified Montgomery Multiplication Systolic Architecture ... 1711

ISSN 2007-9737



Table 5. Resources used by the FPGA for the montgomery exponentiation with a module of 1024 bits

Device Utilization

Resources Utilization Available Utilization %

Slice LUTs 7587 63400 11.97 %

Slice Registers 9499 126800 7.49 %

Slice 4253 15850 26.83 %

DSPs 66 240 27.50 %

the synthesis. The synthesis into the FPGA for
the proposed design was settled to a module m of
512, 1024, and 2048 bits of length, and the radix
b of 16 bits and performance of the multiplications
were evaluated. Besides, the final subtraction was
avoided settling the conditions x < 2m and y < 2m.

First, Table 1 shows the resources used for the
proposed implementation of a module of 512 bits.
In this case, the implementation used 1 IPE, 1 FPE,
and 30 GPE’s. Table 2 shows the resources used
for the proposed implementation using a module
of 1024 bits. The implementation used 1 IPE, 1
FPE, and 62 GPEs. Finally, Table 3 shows the
resources used for the proposed implementation
using a module of 2048 bits. The implementation
used 1 PE, 1 FPE, and 126 GPEs.

Additionally, the implementation takes 98 clock
cycles to perform the Montgomery modular
multiplication for a module of 512 bits, 194 clock
cycles for a module of 1024 bits, and 386 clock
cycles for a module of 2048 bits. Table 4 shows a
comparison of this work with other implementations
using 1024 bits modular multiplication, and a radix
of sixteen bits.

From the above, it can be seen that the proposal
allows a reduction of resources consumption
within the programmable device, compared with
other developments. On the other side,
the implementation of the Montgomery modular
exponentiation uses a module m of a length of
1024 bits.

The resources used by the implementation
into the FPGA for the modular exponentiation are
shown in Table 5. As it was already said, in this
proposal, the implementation of the Montgomery
modular exponentiation was used to encrypt and
to decrypt data.

The public-key and the private-key were
generated with the RSA algorithm. According to
Table 4, the proposed architecture reduces 5 clock
cycles compared with the performance reported
in[9] and [21]. With these 5 clocks cycles, the
time consumption in the Modular Exponentiation of
Algorithm 5 is reduced.

For example, with t = 1023 bits and using 3,
there will be a total of 2,050 multiplications. So,
this means that for the works [9] and [21] this
process takes a total of 407,950 clock cycles while
the proposed architecture here reported takes a
total of 397,700 clock cycles, having considerable
differences of 10,250 clock cycles. Therefore, time
reduction with this algorithm is evident. Therefore,
time reduction with this algorithm is clear. This
proposal compared to that Mrabet [12] reduces the
number of DSPs used, hower, it requires a greater
number of clock cycles.

6 Conclusions

As can be seen in the tables reported, the most
resources in the modular exponentiation are due
to the modular multiplication, so it is important to
reduce them. As we can see from the results
of this work, the proposed architecture, compared
with the other works that use a high-radix modular
multiplication reduces the time consumption and
the resources used for the FPGA, as well.

Due to this low use of resources into the FPGA,
the implementation of the Modular Exponentiation
and Multiplication using the proposed Algorithm
can allow its use in programmable devices that
have limited available resources. Therefore, the
programmable device to be used will be cheaper
than a high-end programmable device.
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This work implements modular exponentiation
for RSA cryptographic algorithms; however, it is
possible to use in other cryptographic algorithms
like ECC, ElGamal, DH. Even more it is possible
to implement this proposal to different modular
exponentiation algorithms. Besides, it is important
to say also that the proposed architecture is
scalable to another module. For example, making,
this same procedure with a device that has more
DSPs, it will be possible to increase the module to
a value up-to 4,096 bits with the use of 258 DSPs.
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